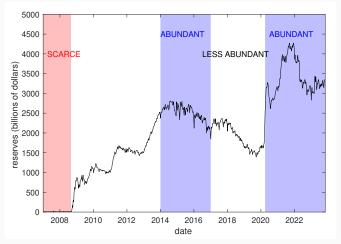
Monetary Policy Implementation with an Ample Supply of Reserves

Kyungmin Kim (Federal Reserve Board) with G Afonso, A Martin, E Nosal, S Potter and S Schulhofer-Wohl November 3, 2023

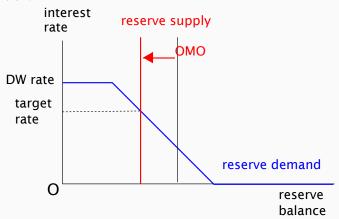

* Material represents the authors' view, not those of any Federal Reserve Bank, the Federal Reserve Board or the Federal Reserve System.

Motivation

- Monetary policy implementation regime has been changing in the U.S. and elsewhere:
 - In 2019, the Federal Reserve announced that it would implement policy with an ample supply of reserves.
- · Is this a good idea?
- · What is the optimal level of reserve supply?
 - · QT is happening again.

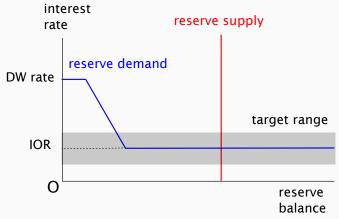
Reserve Supply 2007-2023 in the U.S.

· Level of reserve supply has been changing.

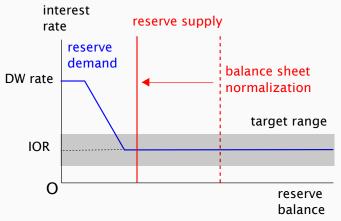


Pre-2008 Regime: Scarce Reserves

- Tightly managed reserve supply to control the fed funds rate.
 - (Excess) Reserve supply was very low, \sim \$2B in 2007.
 - Daily forecast of reserve demand and open market operations: \sim a few \$B.


Pre-2008 Regime: Illustration

 Daily open market operations to adjust reserve supply (vertical bar):

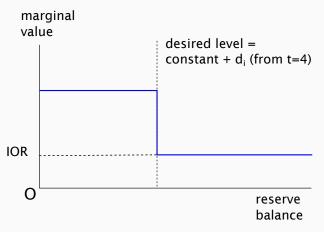

Post-2008 Regime: Abundant Reserves

 Large-scale reserve injections through quantitative easing post-2008: Fed funds rate was essentially at a floor.

Balance Sheet Normalization 2017-2019

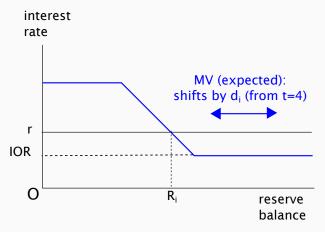
 Only occasional and minimal movements in the fed funds rate emerged.

Determining a Policy Regime

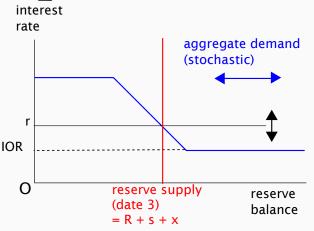

- Federal Reserve stopped draining reserves in late 2019, at around \$1.5T.
- · Started draining reserves again in mid-2022.
- How do we choose the right regime or the optimal reserve supply?
 - A stylized model of MP implementation: CB chooses the level of reserve supply.
 - Depending on model parameters, either scarce or ample supply is optimal.
 - Recent changes favor ample reserves (relatively).

Model

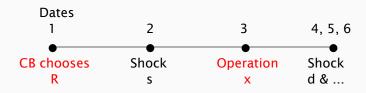
- A six-period model describing events happening over a day.
 - 1. CB chooses the baseline supply of reserves R.
 - 2. Reserve supply shock s is revealed.
 - 3. CB adds x (drains -x) reserves.
 - 4. Demand shock d is revealed. $d = \sum d_i$, where d_i is bank i's demand shock.
 - 5. Fed funds market clears in a competitive market and the fed funds rate *r* is determined.
 - 6. Each bank i receives a further shock to reserves, u_i (Poole 1968).


Banks' Reserve Valuation

• Date 6: Bank i's MV for reserves is a step function.


Federal Funds Market

• Date 5: bank *i* trades using its expected MV.


Aggregate Demand

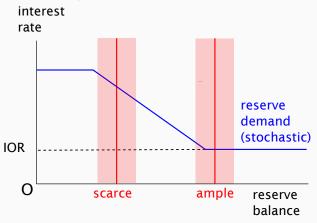
• From CB's perspective (date 3): Aggregate demand factor $d = \sum d_i$ is a random variable.

CB Actions

• CB chooses the initial reserve supply R and conducts operations x(R,s) conditional on realized supply shocks:

 Initial choice R determines the distributions of (conditionally optimal) x and r.

CB Objective


- · CB wants to minimize:
 - 1. Interest rate uncertainty \Longrightarrow dist. of r.
 - 2. Size of operations \Longrightarrow dist. of x.
 - 3. Level of reserve supply (political cost) $\Longrightarrow R$.
- The objective function is a weighted average of these:

$$\min_{R \geq R_{LC}, x(R,s)} E[\alpha | r(R+s-d+x(R,s)) - r(R)| + \beta |x(R,s)| + R].$$
(1)

- $R \ge R_{LC}$: CB wants to supply at least some level of reserves for market functioning.
- α/β large enough to make operations worthwhile.

Local Optima

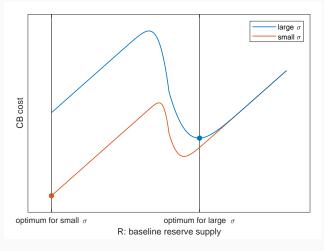
• Result 1: There are two local optima in choosing *R*: 'scarce' and 'ample'.

Characterization of Local Optima

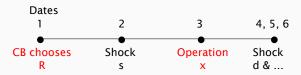
- · Scarce local optimum
 - Small R, large E|x|.
 - $R \uparrow$ does not $E|x| \downarrow$ enough.
- Ample local optimum
 - Large R, small E|x|.
 - $R \uparrow$ will eventually lead to $E|r-r(R)| \sim 0$ and $E|x| \sim 0$, thus suboptimal.

Environment: Shocks

 Choice between scarce and ample depends on the distribution of s and d:


• Two shocks s (date 2) and d (date 4):

$$\begin{bmatrix} s \\ d \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \sigma^2 \begin{bmatrix} 1 - \rho^2 & 0 \\ 0 & \rho^2 \end{bmatrix}). \tag{2}$$

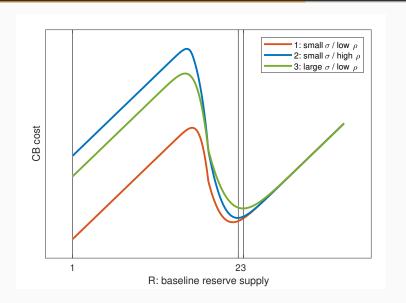

- σ : total magnitude of shocks.
- ρ : relative size of demand shocks.

Ample vs. Scarce for Larger Shocks

• Result 2: Ample reserves are relatively preferred for larger shocks (larger σ).

Supply vs. Demand Shocks: an Example

- Example: s and d can be +1 or −1 with equal prob.
 CB wants to offset s + d.
 - If s = -1, then s + d can be either -2 or 0.
 - · No operation.
 - · Interest rate uncertainty.
- If instead s and d were both known, CB would totally offset interest rate movement.


Ample vs. Scarce for Different Shock Composition

· Recall

$$\begin{bmatrix} s \\ d \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \sigma^2 \begin{bmatrix} 1 - \rho^2 & 0 \\ 0 & \rho^2 \end{bmatrix}). \tag{3}$$

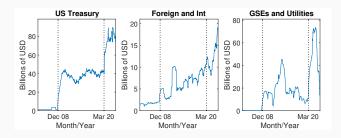
- Result 3: More uncertain (higher ρ) shocks increase the relative cost of the scarce-reserve regime.
 - Remaining uncertainty at the time of operations (d, variance $\rho^2\sigma^2$) makes open market operations less effective.

Cross-Model Comparison

Results Summary

• Recall: s on date 2 and d on date 4.

$$\begin{bmatrix} s \\ d \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \sigma^2 \begin{bmatrix} 1 - \rho^2 & 0 \\ 0 & \rho^2 \end{bmatrix}). \tag{4}$$


- Larger σ : CB wants to avoid costs associated with reserve supply and demand shocks by supplying ample reserves.
 - Increases in the volatility of reserve supply and the complexity in regulations.
- Larger ρ : open market operations are less effective and thus ample reserves are preferred.
 - Emphasize the role of regulatory complexity.

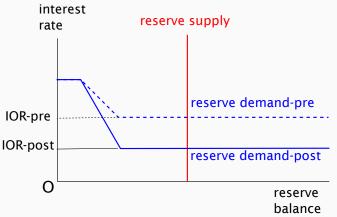
Scarce vs. Ample

- Since the 2007-2009 financial crisis, reserve supply and demand have become more volatile and harder for CB to forecast in the U.S.
- Model illustrates why such changes make ample regime relatively more preferable.

Changes in Banking Environment: Reserve Supply

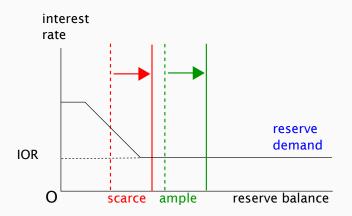
- With no CB action, Δ (reserve supply to banks) = $-\Delta$ (reserves held by non-bank entities).
- The right-hand side has become more volatile:

Changes in Banking Environment: Reserve Demand


- Banks are willing to hold a large amount of excess reserves to meet regulatory requirements.
 - · And willing to pay substantially more than IOR.
- More complex regulations: CB might find it difficult to forecast reserve demand precisely.
 - Liquidity Coverage Ratio (LCR): Banks needs to hold high-quality liquid assets (HQLA).
 - Can choose between reserves, government securities, and other lower-quality assets.
 - · Resolution planning, etc.

Other Practical Concerns

- The stylized model emphasizes efficiency of implementation and operational cost.
- There are other potential considerations:
 - · Robustness of transmission to money market rates.
 - CB liquidity interventions.


Transmission to Money Market Rates

- Near one-to-one transmission from IOR to money market rates with ample or abundant reserves.
- Predicted by theory and confirmed by market responses to technical adjustments.

Liquidity Injections

- With ample reserves, large-scale liquidity injections has little impact on money market rates.
 - With scarce reserves, need to switch interest rate control regime or 'sterilize' reserve injections.

Conclusion

- Conceptual framework to understand the change in monetary policy implementation regime.
 - Stylized model captures changes in the banking environment post-2008.
 - · Concept of ample reserves naturally emerges.
- Discussion of ample reserves has become relevant again.