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Abstract

This paper examines the performance of machine learning models in forecasting Dutch
inflation over the period 2010 to 2023, leveraging a large dataset and a range of machine
learning techniques. The findings indicate that certain machine learning models outperform
simple benchmarks, particularly in forecasting core inflation and services inflation. However,
these models face challenges in consistently outperforming the primary inflation forecast of
De Nederlandsche Bank for headline inflation, though they show promise in improving the
forecast for non-energy industrial goods inflation. Models employing path averages rather
than direct forecasting achieve greater accuracy, while the inclusion of non-linearities, fac-
tors, or targeted predictors provides minimal or no improvement in forecasting performance.
Overall, Ridge regression has the best forecasting performance in our study.
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1 Introduction

Inflation forecasts are important inputs for monetary policy decision making. Unfortunately, fore-

casting inflation turns out to be a rather challenging task, with simple time-series models often

yielding the most accurate forecasts. Quoting Faust and Wright (2013) “We find that [. . . ], ex-

tremely simple inflation forecasts – that however take account of nowcasting and secular changes

in the local mean inflation rate – are just about the best that are available.” In recent years, how-

ever, various papers have been published showing that the combination of “big data” and machine

learning (ML) models can lead to more accurate inflation forecasts. For example, Medeiros et al.

(2021) consider several ML models use the FRED-MD database McCracken and Ng (2016) to

forecast U.S. consumer price index (CPI) inflation, and are able to outperform standard bench-

marks, with the random forest (RF) model delivering the smallest errors. This paper examines

the broader applicability of ML models for forecasting inflation by applying these methods to

inflation in the Netherlands, one of the larger countries in the euro area.

We contribute to the existing literature by examining the usefulness of ML models for fore-

casting (sub-components of) HICP inflation in the Netherlands, both before, during and after the

COVID-19 pandemic. The analysis benchmarks the performance of these models against both

a simple time-series model and the inflation projections provided by De Nederlandsche Bank

(DNB), the central bank of the Netherlands.

We build on Medeiros et al. (2021) by using a large dataset and evaluating multiple ML models

to forecast the year-on-year inflation rate. Our dataset consists of 129 monthly Dutch and inter-

national series spanning from January 1990 to January 2024. The target variables in our analysis

are the harmonized index of consumer price (HICP) and three of its sub-components: services in-

flation, non-energy industrial goods (NEIG) inflation, and core inflation (HICP excluding energy

and food). To generate year-on-year inflation forecasts we usetwo different approaches. The first

is the direct approach, which involves forecasting the year-on-year inflation rate directly using a

single model. This is the more conventional method. The second approach, known as the path

average method, introduced by Goulet Coulombe et al. (2021), involves forecasting month-on-

month changes in the price index and then cumulating these forecasts to derive the year-on-year

inflation rate.

Our main results can be summarized as follows. First, ML models can outperform simple
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benchmark models in forecasting Dutch inflation, particularly when forecasting core inflation and

services inflation. Second, non-linear models, such as the random forest, although effective in

some contexts, do not consistently outperform linear models. Third, ML models typically pro-

vide more accurate forecasts for longer horizons (6 to 12 months) compared to shorter periods.

Moreover, path average forecasts often outperform direct forecasting methods for year-on-year

inflation. Fourth, ML models face challenges to consistently outperform DNB’s official inflation

forecasts, particularly for headline HICP inflation. However, for NEIG inflation, some ML models

outperform DNB’s forecasts over certain horizons. Finally, combining the results of the forecast-

ing ‘horse races’ between the machine learning models and the two benchmarks, the preferred

machine learning model is the path average Ridge regression.

The rest of the paper is organized as follows. Section 2 reviews the literature. In Section 3 we

describe the data, the forecast design and the forecast evaluation metrics. In Section 4 we introduce

the ML models. The main results are in Section 5. Concluding remarks are in Section 6. Details

on the dataset and additional charts are shown in Appendices A and B, respectively. A complete

set of all results is in the online Appendix (here).

2 Literature

Following the seminal article by Medeiros et al. (2021), numerous studies have been published

demonstrating the usefulness of ML models for forecasting inflation. Naghi et al. (2024) elaborate

on the work by Medeiros et al. (2021) by extending the sample from 2016 to 2022, considerably

expanding the set of machine learning models, and also applying the methods to Canadian and

U.K. datasets. They find that the claimed superiority of the RF model for forecasting U.S. inflation

carries over to U.K. inflation, but much less so to Canadian data. Furthermore, from 2020 onward

the RF model performs poorly on U.S. data. Similarly, Huang et al. (2024) use a large dataset

of macroeconomic and financial predictors to forecast Chinese CPI inflation and producer price

index (PPI) inflation. They find that penalized linear regression models outperform benchmarks.

Maehashi and Shintani (2020) analyze, among other things, Japanese CPI and wholesale price

index (WPI) inflation. They show that beyond the very short-term horizon, the RF model and

boosted trees outperform the benchmark AR model. Das and Das (2024) conclude that for Indian

CPI the RF model provides much more accurate forecasts than an ARIMA model, but only when
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the COVID-19 pandemic period is included. Using pre-pandemic data the ARIMA model turns

out to be difficult to beat. Lenza et al. (2023) apply the quantile random forest (QRF) model to

euro area data. QRF density forecasts appear competitive with those of a linear model and the

ECB survey of professional forecasters.

Although inflation in many large economic blocks has been studied extensively, evidence for

smaller countries, such as the the Netherlands, remains limited. Kohlscheen (2022) employs the

RF model to examine the drivers of CPI inflation in a panel of high-income countries, including

the Netherlands. Results for the Netherlands separately are not provided however. Vedder and

van de Winkel (2024), replicating Goulet Coulombe et al. (2022) on Dutch data, demonstrate that

many ML models can generate significantly better forecasts of CPI inflation than an AR model.

Our analysis also relates to studies on multiperiod-ahead forecasting. Multiperiod-ahead times

series forecasts can be computed in various ways. Marcellino et al. (2006) use a large dataset of

U.S. macroeconomic time-series and demonstrate that iterated AR(p) forecasts tend to outperform

direct AR(p) forecasts, with the relative performance improving as the forecast horizon extends.

Quaedvlieg (2021) reaches similar conclusions using tests for multi-horizon superior predictive

ability. Kock and Teräsvirta (2016) examine multiperiod-ahead forecasting using nonlinear neural

network prediction methods. They find that iterated and direct forecasts often exhibit similar

performance, with their ranking depending on the dataset. Goulet Coulombe et al. (2021) provide

a new perspective on this literature. They systemically compare direct forecasts to path average

forecasts for several target variables. In a linear context, the two approaches should yield fairly

similar results. However, for nonlinear models, path average forecasts offer greater flexibility,

potentially leading to more accurate forecasts. They demonstrate that the preference for direct

versus path average forecasts is often variable specific, although the latter is generally preferred

for variables that strongly co-move with the business cycle. They find that for U.S. CPI inflation,

direct forecasts are usually more accurate than path average forecasts.

Finally, our analysis is also related to the literature that analyses the properties of institutional

forecasts. In the academic literature, simple time-series models are often used as benchmarks.

A more pertinent issue for policymakers and other users of inflation forecasts is whether newly

developed models can outperform existing institutional forecasts. In other words, it is important

to determine whether adding one or more ML models to the existing suite of models is bene-

ficial. Lenza et al. (2023) show that QRF forecasts of euro area inflation perform on par with
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the published Eurosystem inflation projections. Yoon (2021) demonstrates that boosting and RF

models can produce forecasts of Japanese GDP growth that are more accurate than those made

by the IMF and the Bank of Japan. Araujo and Gaglianone (2023) show that ML models can, in

numerous cases, outperform traditional econometric models for Brazilian inflation.

3 Data, forecast design and forecast evaluation

3.1 Data

We have compiled a dateset consisting of monthly observations of 129 Dutch and international

macroeconomic time-series. All series were downloaded on March 4th, 2024, and cover the pe-

riod from January 1990 to January 2024. The target variables in our analysis are four inflation

series: headline HICP (HICP) inflation, services inflation (HICPS), non-energy industrial goods

inflation (HICPNEIG), and core inflation (headline HICP excluding energy and food, HICPMEF).

Our list of time-series can be subdivided into eleven groups, following McCracken and Ng (2016)

and Medeiros et al. (2021), namely: (1) output & income, (2) labor market, (3) consumption, (4)

orders & inventories,(5) money & credit, (6) interest & exchange rates, (7) commodity prices,

(8) producer prices, (9) domestic prices, (10) price expectations, and (11) stock market. In ad-

dition to the monthly series in our database, we include as potential predictors the four principal

components (factors) computed from this set of variables. Further details are provided in Section

4.5. We consider four lags of all variables, as well as four autoregressive terms of the dependent

variable. Hence, the analysis contemplates 532 potential predictors. Table A.1 in Appendix A

presents more details on the data series used, seasonal adjustments, and transformations of all

series. In this paper, we consider two methods for constructing forecasts of year-on-year inflation:

the direct method and the path average method. Details on both methods are presented in Section

3.4. The datasets used to compute these forecasts differ in how trending predictors are transformed

to achieve stationarity. For path average forecasts, trending time-series are transformed to station-

arity by taking (log) first differences. For direct forecasts, year-on-year changes of the predictors

are used.

Figure 1 illustrates the development of headline HICP inflation and its three sub-components.

After a period of inflation around 2 percent, headline HICP inflation increased during the pan-
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demic. Following the first case of COVID-19 in the Netherlands in February 2020, inflation began

a steep ascent in the summer of 2021, peaking at 17.1% in September 2022 before starting to de-

cline. The main driver behind this increase was the significant rise in energy and food prices. This

is evident from Figure 1, which shows that the increase in core inflation (HICPMEF) during the

pandemic was much less steep, although still noticeable. Non-energy industrial goods inflation

(HICPNEIG) is much more volatile than core inflation. The smaller increase in core inflation

during the pandemic appears to be due to the relatively stable path of services inflation.

Figure 1: HICP inflation and its main sub-components†

Minimum: -0.7 Minimum: -0.2 Minimum: -1.6 Minimum: -0.2
P25: 1.4 P25: 1.0 P25: -0.2 P25: 1.7
Median: 1.8 Median: 1.6 Median: 0.6 Median: 2.5
Mean: 2.3 Mean: 1.8 Mean: 0.9 Mean: 2.7
P75: 2.6 P75: 2.4 P75: 1.5 P75: 3.5
Maximum: 17.1 Maximum: 7.1 Maximum: 8.7 Maximum: 6.3
Coeff. of variation: 0.9 Coeff. of variation: 0.6 Coeff. of variation: 1.8 Coeff. of variation: 0.5
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† HICP = headline HICP inflation, HICPMEF = HICP inflation excluding food & energy, HICPNEIG = non-energy industrial goods inflation, HICPS = services inflation.

The pass-through of higher energy and food prices in the industrial sector is much stronger than

in the services sector. This is also clearly seen by examining some distributional characteristics

in Figures 1. Non-energy industrial goods inflation has the highest coefficient of variation (1.8),

followed by headline HICP inflation (0.9), core inflation (0.7) and services inflation (0.5).

3.2 Forecast design

The forecasts are based on a rolling window with a fixed length of 216 months (18 years). This

means that the number of forecasts depends on the forecast horizon. One advantage of a rolling-

window framework is that it provides some protection against structural breaks or trends in the

target variable. We re-calculate the seasonal inflation factors for each estimation window to avoid

hindsight bias in these factors.
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We employ a quasi real-time design, taking into account the data publication delays as of our

download date (March 4th, 2024). However, we ignore the possibility of data revisions for the

predictors, such as industrial production. The latter implies that we might overestimate the fore-

casting accuracy of the ML models. Unfortunately, a large real-time dataset for the Netherlands

does not yet exist. Furthermore, Bernanke and Boivin (2003) have shown that the scope of the

dataset appears to matter more for forecasting accuracy than the use of real-time (unrevised) data.

Moreover, HICP inflation and its sub-components, our target variables, are not revised after the

initial publication, which further mitigates the drawback of our quasi real-time design. Overall, it

is very unlikely that the relative ranking of the ML models in terms of forecasting accuracy will

change in a meaningful way when conducting a full-fledged real-time analysis. We evaluate the

out-of-sample forecast performance of the ML models over the 1- to 12-month forecasting horizon

(h = 1, . . . , 12). Since the maximum horizon of the institutional forecast is only 10 months, the

comparison between these forecasts and the ML models is limited to the 1- to 10-month horizon.

3.3 Forecast evaluation

Following the literature, we measure the accuracy of the forecasts using the root mean squared

forecast error (RMSFE). We compute the gain in RMSFE relative to benchmark models for each

horizon separately. The standard Diebold and Mariano (1995) (DM) test procedure is utilized to

test the significance of the gains in relative predictive accuracy.

To gain insight into the evolution of the forecast errors over time, we examine the forecast

accuracy of the ML models over both the full sample and over the pre-pandemic sample. The full

sample runs from January 2010 (2010M1) to December 2023 (2023M12), meaning that the first

forecast is produced in January 2010 and the last (1-month ahead) forecast in December 2023.

The pre-pandemic sample ends in January 2019, ensuring that even the 12-month ahead forecast

refers to a date before the outbreak of the pandemic. Furthermore, we calculate the cumulated

sum of squared forecast errors difference (CSSFED), which is defined as:

CSSFEDM,h = −
t1∑

t=t0

(e2t,M,h − e2t,BM,h) (1)

where M represents a machine learning model and BM represents a benchmark model. A CSS-
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FED above zero indicates that the forecasts of the machine learning model have a lower CSSFE

up until that point in time, and are therefore more accurate than the benchmark model’s forecasts.

Conversely, a CSSFED below zero indicates that the benchmark model has a lower forecast ac-

curacy at that point in time. Additionally, a decrease in the CSSFED indicates that the model

performance of the machine learning model is decreasing relative to the benchmark model, while

an increase indicates the opposite.

Finally, we analyze the influence of several model specifications in the spirit of Goulet Coulombe

et al. (2022). First, we compare the forecast accuracy of direct forecasts against path average fore-

casts. Second, we compare forecasts derived from a dataset that includes factors among the pre-

dictors to those that exclude them. Third, we analyze the impact of using targeted predictors.We

follow the approach of Bai and Ng (2008) to target the variables and select approximately 30 rel-

evant predictors using soft thresholding combined with the LASSO regularizer. For each model

M , we compute the OOS.R2 as follow:

OOS.R2
t,h,M = 1−

ϵ2t,h,M
1
T

∑T
t=1(yt+h − ŷt+h)

(2)

where ϵ2t,h,M is the squared forecast error of model M for horizon h at time t. To assess the

influence of feature f , we run Diebold-Mariano-style regressions for model Mf , which includes

the feature, and model M−f , which does not include the feature:

OOS.R2
t,h,Mf

−OOS.R2
t,h,M−f

= αM,f + νt,h (3)

The main advantage of equation (3) is that the coefficient αM,f can be interpreted as the gain in

the OOS.R2, and is not unit- or series-dependent. We then count the number of models for which

the version with feature f makes significantly more accurate forecasts than the version without

feature f , and vice versa. We also calculate the median difference between OOS.R2 for models

with and without feature f , separately for the various model types.

3.4 Direct and path average forecasts

Let Yt be (a sub-component of) the monthly HICP index, and let xt be a large macroeconomic

dataset comprising of N predictors, for t = 1, . . . , T . Yt is not seasonally adjusted. Our target
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variable is yt+h, the year-on-year percentage change in Yt h periods into the future: yt+h = 100 ∗

(Yt+h − Yt+h−12)/Yt+h−12. Direct forecasts of yt+h, denoted by ŷdirt+h, can be obtained using the

following prediction model:

ydirt+h = Gh(xt) + ϵt+h (4)

where Gh(·) is a (potentially non-linear) mapping between the predictor variables xt and future

inflation. Following Goulet Coulombe et al. (2021), another method to compute forecasts of year-

on-year inflation h periods into the future is by ‘averaging’ 1 to h periods ahead forecasts of

month-on-month changes in Yt. Consider the following alternative prediction model:

y′t+h = Gh(x
′
t) + ϵ′t+h (5)

where y′t+h = ln(Y ′
t+h/Y

′
t+h−1) and Y ′

t is equal to Yt corrected for seasonal factors, ζt, i.e. Yt =

Y ′
t + ζt. A path average forecast of year-on-year inflation, denoted by ŷpat+h, is then computed as:

Ŷ pa
t+h =exp(ln(Y ′

t ) +
h∑

i=1

ŷ′t+i) + ζt+h (6)

ŷpat+h =100 ∗ (Ŷ pa
t+h − Yt+h−12)/Yt+h−12 (7)

4 Models

We construct h-period ahead forecasts of the target variable yt using various models, distinguish-

ing five ‘types’ of models: benchmark models, shrinkage models, tree models, ensemble mod-

els, and factor models. Model names are abbreviated according to the following convention:

[method].[model].[factor].[modelsel]. [method] can take on two values, depending of

the method used for constructing the forecasts. [method] equal to Y (‘year-on-year’) denotes di-

rect forecasts. Path average forecasts are represented by M, as they are computed using forecasts

of month-on-month changes in the price index. factor indicates whether factors are included in

the set of predictors (F) or not (NF). For some models, tuning of the parameters is done in multiple

ways. In those cases, [modelsel] can take on the values BIC (Bayesian Information Criterion)

and CV (Cross Validation). If only a single method is used to tune the model, [modelsel] is left

blank. In the following, we present a brief overview of the models we use in our analysis.
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4.1 Benchmark model

The first benchmark is the random walk model. Direct forecast using the random walk model

(Y.RW) matches the no-change forecast in Atkeson and Ohanian (2001), i.e. past year’s inflation

is used as a forecast: yt+h = yt. In path average forecasts, on the other hand, the no-change

forecast (M.RW) is past month’s month-on-month inflation, similar to Stock and Watson (1999):

y′t+h = y′t. The second benchmark extends the two random walk models with a ‘drift’ parameter:

yt+h = β0 + yt (Y.RWD) and y′t+h = β0 + y′t (M.RWD), respectively. The third benchmark is the

autoregressive model of order p, where p is determined by the BIC, with a maximum of 4 lags.

The AR(p) is used both to produce direct forecasts yt+h = β0 + β1yt + · · · βpyt+p−1 (Y.AR) and

path average forecasts y′t+h = β0 + β1y
′
t + · · · βpy

′
t+p−1 (M.AR), respectively. The parameters are

estimated by OLS. Considering all forecast horizons (12) and target variables (4), M.RWD has the

lowest RMSFE in 23 out of the 48 cases, and is hence selected as the main benchmark model in

the remainder of the paper.

4.2 Shrinkage models

We estimate several shrinkage estimators where Gh(xt) = βhxt. All methods minimize the ob-

jective function:
T∑
t=1

=
{
(yt+h − βhxt)

2 + λJ(βh)
}

(8)

where λ is the hyperparameter determining the degree of regularization. The methods differ in

terms of the specification of the penalty term J(βh). We choose λ either by BIC or CV.

LASSO (LAS) The least absolute shrinkage and selection operator (LASSO) was introduced

by Tibshirani (1996) and corresponds to the penalty term given by J(βh) =
∑N

i=1 |βh,i|. The

penalty term of LASSO is the L1 norm, which shrinks parameters of irrelevant predictors to zero.

To achieve consistent model selection, Zou (2006) proposed adaLASSO (ALAS). AdaLASSO is

similar to LASSO but includes weighting parameters ωi obtained from a first-step estimation. In

this paper, we use LASSO for this purpose, with the penalty given by J(βh) =
∑N

i=1 ωi|βh,i|.

Ridge regression (RR) was proposed by Hoerl and Kennard (1970) and assumes an L2 norm

penalty J(βh) =
∑N

i=1 β
2
h,i. The parameters of less-relevant predictors can become very small,

but unlike LASSO, will rarely be exactly zero.
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Elastic Net (EN) was designed to make the most out of LASSO and Ridge regression, and

includes these models as special cases. The penalty term of Elastic Net is given by J(βh) =

ω
∑N

i=1 |βh,i| + (1− ω)
∑N

i=1 β
2
h,i, where ω is an additional tuning parameter setting the relative

importance of the L1 and L2 penalty, respectively. We follow Medeiros et al. (2021) and fix ω at

0.5.

For estimation of shrinkage models we use R-package glmnet.

4.3 Tree models

A regression tree with M terminal nodes can be written as:

yt+h =
M∑
i=1

βh,i1{xt∈Ri} + ϵt+h (9)

where 1{·} is an indicator function, Ri is a partition of the space of xt and βh,i is the sample av-

erage of yt+h given xt ∈ Ri. Estimation of (9) entails finding the best tree structure to minimize∑T
t=1 ϵ

2
t+h. A strength of regression trees is its capability to deal with non-linearity and interac-

tion terms among predictors. A weakness, though, is that due to over-fitting the out-of-sample

forecasting properties can be very poor. To deal with the issue of over-fitting, we consider three

types of ensemble methods.

Random Forest The random forest (RF) model was introduced by Breiman (2001). The

method is based on bootstrap aggregation (bagging) of randomly constructed regression trees.

While the forecast of a regression tree in each bootstrap sample may suffer from over-fitting, av-

eraging forecasts of bootstrap samples diminishes the variation and yields a more stable forecast.

Ideally, regression trees of different bootstrap samples should not be highly correlated, since oth-

erwise averaging may not be effective in lowering the variance of the forecast. In the random forest

model, a dropout procedure is used to de-correlate the regression trees of the bootstrap samples.

For estimation we use R-package ranger, with default settings and 500 trees.

Boosted Tree In Boosted Trees (BTREE) multiple regression trees are constructed similarly

to bootstrap aggregation to overcome over-fitting. The algorithm starts with an initial regression

tree:

f0(xt) =
M∑
i=1

βh,i1{xt∈Ri} (10)
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Then the model is updated in an iterative fashion from k− 1 to k according to the following rule:

fk(xt) = fk−1(xt) + η

Mk∑
i=1

βh,k,i1{xt∈Rk,i} (11)

where η is a learning rate (that we set at 0.05) and the regression tree in step k is estimated from

the residual from step k−1, yt+h−fk−1(xt). For estimation we use R-package xgboost, with the

maximum depth of a tree equal to 4 and the maximum number of boosting iterations set to 1000.

BART The BART model is a sum-of-trees model introduced by Chipman et al. (2010). The

Bayesian approach addresses the problem of over-fitting by using prior distributions to regular-

ize the fit of each individual tree. Consequently, each tree explains only a small fraction of the

variation in the target variable. To compute BART forecasts, we follow recommendations of Prüser

(2019). We set the number of trees to 200, andα and β, which jointly control the depth of the trees,

to 0.1 and 1, respectively. The hyperparameters k and q, which together determine the tightness

of the prior of the values of the terminal nodes, are set at 2 and 0.9.

Borup et al. (2023) argue that “RF applied in high dimensions without an initial weeding out

of irrelevant predictors may fail to reach its full potential”. We follow their advise and add TRF

and TBART to the list of tree models. In these models, we first select around 30 relevant targeting

predictors, applying soft thresholding in combination with the LASSO regularizer, as suggested

by Bai and Ng (2008).

4.4 Ensemble models

Random Subset Regression Unlike traditional regression methods that select a single best subset

of predictors, the idea of Complete Subset Regression (Elliott et al. (2013)) is to generate a large

number (K) of forecasts based on different subsets of xt, denoted xi
t. The final forecast ŷt+h is

then computed by taking a simple average of the individual forecasts ŷit+h:

yit+h = βhx
i
t + ϵt+h, i = 1 . . . K (12)

ŷt+h =
M∑
i=1

ŷit+h/M (13)
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In this paper, we average over 1000 Random Subset Regressions (RSR), cf. Boot and Nibbering

(2019). In each regression, the number of predictors, in addition to the four lags of the target

variable, is randomly selected, with a maximum of four. We also investigate the performance of a

targeted version of Random Subset Regression (TRSR), following Bai and Ng (2008) and Kotchoni

et al. (2019).

Bagging In bagging (BAGG), bootstrap samples of the original predictor variables and the target

variable are repeatedly generated. We construct K = 100 samples using the block bootstrap

method, with a fixed block length of five months. For each bootstrap sample, we select around

10 relevant predictors using soft thresholding. Then, a regression is applied to compute a forecast

yit+h. The final forecast from bagging is constructed as the simple average of the forecasts from

the individual bootstrap samples.

4.5 Factor models

Following Stock and Watson (1999), we compute k common factors F k
t as the first k principle

components of all predictor variables xt. The h-period ahead forecast is constructed by running

a principal components regression of the form:

yt+h = βhF
k
t + ϵt+h (14)

where βh is a (1 × k) vector of coefficients. To select the number of factors, we consider the

information criteria of Bai and Ng (2002). In the full sample, their IC1, IC2 and IC3 criteria

suggests that 2, 2, and 9 factors, respectively, are appropriate. We settle for four factors. In

addition to this plain vanilla factor model (FACT), we also include a factor model with targeted

predictors (TFACT) and a boosted factor model (BFACT). In the targeted factor model, we follow

Bai and Ng (2008) and select around 30 relevant predictors using soft thresholding in combination

with the LASSO regularizer. In the boosted factor, we adopt the boosting algorithm as in Bai and

Ng (2009) to the select the factors and the number of lags in the model. The maximum number

of factors and lags is set at 10 and 4, respectively.
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5 Results

This section presents the results of the out-of-sample forecasting experiments. In Subsection 5.1,

we graphically display the relative RMSFEs for all target variables, models, and forecast hori-

zons. In Subsection 5.2, we identify the best-performing models for each inflation measure and

forecast horizon. Subsection 5.3 investigates which specification choices contribute to forecast-

ing accuracy (following Goulet Coulombe et al., 2021). Finally, Subsection 5.4 examines whether

ML models can outperform DNB’s official inflation forecast. Detailed results, including RMS-

FEs, OOS.R2 statistics and p-values of the Diebold and Mariano-test, are provided in the online

Appendix (here).

5.1 Forecasting accuracy of machine-learning models: a bird’s eye view

Figures 2 and 3 display the RMSFE relative to M.RWD –the path average random walk with drift

model–for all 61 models, over the full sample and the pre-pandemic sample, respectively. The dots

represent the relative RMSFEs of the individual models. To visualize the central tendency of the

RMSFE distribution, the bold vertical line indicates the median across all models. The right and

left boundaries of the boxplot represent the 75th and 25th percentiles, respectively, summarizing

the spread of the distribution. The rightmost whisker is positioned at the smaller of the maximum

RMSFE value and the 75th percentile plus 1.5 times the interquartile range (IQR). The leftmost

whisker is positioned at the larger of the minimum RMSFE value and the 25th percentile minus

1.5 times the IQR.

The first conclusion that can be drawn from Figures 2 and 3 is that outperforming a sim-

ple benchmark model (M.RWD) for short forecasting horizons is quite challenging. However, ML

models show substantial improvements over the benchmark for longer forecasting horizons, par-

ticularly in the full sample. The improvements in forecast accuracy over the benchmark model

vary widely between models, ranging from minimal to as much as 48%, depending on the target

variable and the forecasting horizon.

Second, there is a steadily increasing gain in the forecasting accuracy of the ML models for

services inflation. However, the gains are markedly smaller in the pre-pandemic sample, which

may be related to the stability of services inflation prior to the pandemic.

Third, for NEIG inflation, the median forecast across all ML model is unable to outperform

14
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Figure 2: Relative RMSFE, full sample (2010M1–2023M12)†
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† (RMSFE indicator model)/(RMSFE M.RWD); HICP = headline HICP inflation, HICPMEF = HICP inflation excluding food & energy, HICPNEIG = non-energy industrial goods
inflation, HICPS = services inflation.

Figure 3: Relative RMSFE, pre-pandemic sample (2010M1–2019M12)†
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† (RMSFE indicator model)/(RMSFE M.RWD); HICP = headline HICP inflation, HICPMEF = HICP inflation excluding food & energy, HICPNEIG = non-energy industrial goods
inflation, HICPS = services inflation.

the simple benchmark model in the pre-pandemic sample. However, the benchmark model can

be outperformed in the full sample, particularly for medium term forecast horizons. The results

for NEIG inflation and services inflation are consistent with those for core inflation, where the

median forecast across all ML model clearly outperforms the benchmark in the full sample.

Fourth, the differences between the full sample and the pre-pandemic sample are particularly

notable for headline HICP. While most models are outperformed by the benchmark model (M.RWD)

in the full sample, in the pre-pandemic sample, the median gain increases with the forecasting

horizon. This is most likely related to the high volatility in food and energy prices in the post-

pandemic period. The fluctuations in food and energy prices directly impacted HICP inflation,
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whilst the other inflation series were not or only indirectly affected via second round-effects by the

high food en energy inflation. The machine learning models seem ill equipped to pick up these

movements1.

Finally, it is interesting to note that the spread of the forecasts appears to have widened since

the pandemic, as shown by the larger boxplots in Figure 2 compared to Figure 3. This suggests

that the surge in inflation since the pandemic has helped to distinguish between more and less

accurate forecasting models.

5.2 The best performing machine learning models

To gain more insight into the best-performing model we analyze the model performance in more

detail. Figure 4 and 5 show the relative forecasting performance of all 62 models analyzed against

the benchmark model (RMSFEML/RMSFEM.RWD) to provide a deeper insight into which models

within the model types perform best. White cells indicate the forecasting accuracy of the machine

learning model is not statistically different from the benchmark model, i.e. the Diebold and Mar-

iano-test is not statistically significant at the 10% level. A green cell indicates the relative gain

in forecasting accuracy of the machine learning model is 5% or larger, red cells indicate there is

5% or larger decline in forecasting accuracy from using the machine learning model. The col-

ors range from light green(red) to dark green(red), corresponding to a gain(loss) in forecasting

accuracy ranging from 5% tot 50% or more.

The first conclusion from Figure 4 it that in the full sample, none of the models is capa-

ble of systemically outperforming the headline HICP inflation forecast of the benchmark model.

Moreover, using direct forecasts (denoted by Y.) can even lead to a substantial lower forecast ac-

curacy then using path average forecasts (denoted by M.). A possible explanation is that, since

the volatility of HICP inflation is largely due to volatility in the energy and food components, our

set of predictors is not sufficiently rich in terms of energy and food prices related series. Also,

(announced) tax changes may play a role.

Second, for core inflation, NEIG inflation and services inflation, machine learning models can

significantly outperform the benchmark for all horizons. Specifically, three specifications of the

path average Ridge regression forecasts (M.RR.NF.BIC, M.RR.F.CV, M.RR.F.BIC) are among the
1 This might also be caused by the selection of indicators in our database. There is a lack of long monthly time-

series on energy components and food prices for the Netherlands.
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best performing models across the three sub-components of inflation. These models outperform

the benchmark model for core inflation and services inflation on all forecasting horizons, often

by a substantial margin. For NEIG inflation, these specific Ridge regressions outperform the

benchmark for at least seven forecasting horizons.

Third, some specifications of the factor model have smaller forecast errors than the Ridge

regression model, but their performance is less consistent across horizons and target variables. For

instance, the Y.BFACT.F model performs better than the Ridge regressions for forecasting core

inflation 4 to 8 months ahead (the cells are darker green). However, on some forecasting horizons,

this factor model does not outperform the benchmark model, whereas the Ridge regressions often

do, and by a substantial margin.

Fourth, the forecasting accuracy of the tree-based models is quite poor. They do not systemat-

ically perform better than the linear shrinkage and factor models, as indicated by the darker green

colors for the latter models. Moreover, the tree-based models show less consistent performance.

The only model consistently outperforming the benchmark in the full sample is the path average

random forecast model including factors (M.RF.F). This is a striking outcome, as in the literature

tree-based methods are often found to be among the best-performing models.

Fifth, the outcomes indicate that path average inflation forecasts perform better than direct

forecasts. The red cells are almost exclusively reserved for some of the direct forecasts. Strikingly,

the Ridge regression, when using the direct forecast method, is the worst-performing machine

learning model, while using the path average method, it is the best-performing machine learning

model.

In the pre-pandemic sample (Figure 5), the results are somewhat different. For headline HICP

inflation, various machine learning models now perform better than the benchmark. For the sub-

components of inflation, the outcomes are actually reversed: there are significantly fewer (dark)

green cells and more red cells. The path average Ridge regression models once again emerge as

the best-performing models, consistently excelling in forecasting HICP inflation, core inflation,

and services inflation. Except for one Ridge regression model (M.RR.F.CV) for headline HICP,

none of the models surpass the benchmark model across all forecasting horizons. The forecasting

performance of the factor models and tree-based models is significantly worse than when eval-

uated over the full sample. The relatively high forecasting accuracy of the path average Ridge

regression is also evident in the pre-pandemic sample.
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Figure 4: Heatmap relative RMSFE, full sample (2010M1-2023M12) †
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Figure 5: Heatmap relative RMSFE, pre-pandemic sample (2010M1-2019M12) †
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† White cells indicate the forecasting accuracy of the machine-learning model is not statistically different from the benchmark model, i.e. the Diebold and Mariano-test is not statistically significant at the 10% level. A green
cell indicates the relative gain in forecasting accuracy of the machine learning model is 5% or larger, red cells indicate there is 5% or larger decline in forecasting accuracy from using the machine learning model. The
colors range from light green(red) to dark green(red), corresponding to a gain(loss) in forecasting accuracy ranging from 5% tot 50% or more.
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5.3 A closer look at model specification

The previous two subsections presented our findings focusing on the forecasting performance of

model types. This section examines our outcomes through the lens of differences in model spec-

ification. As described in Section 4, models can differ across several dimensions. In this section,

we look at three specification choices: (1) the transformation of the target variable, where we

compare the relative performance of path average forecasts and direct forecasts, (2) the inclusion

or exclusion of factors in the set of predictors, and (3) the use of all predictors versus using only

targeted predictors. The list of modeling choices could be extended further, but some of them are

specific to the model type. For example, for some models, the tuning of the parameters is done in

several ways, such as via the BIC (Bayesian Information Criterion) or CV (Cross Validation). We

do not consider these differences here.

We run regressions inspired by Goulet Coulombe et al. (2021) and Goulet Coulombe et al.

(2022); see equation (3) in Section 3. Figure 6 shows the outcome of our comparison of path

average versus direct forecasts for the full sample. The blue bars show the percentage of models

for which the OOS.R2 of the path average forecasts (M) is not significantly different from the

direct forecasts (Y). On the other hand, the red bars show the percentage of models for which the

path average forecasts are significantly better than the direct forecasts at the 10% level. Lastly, the

green bars refer to cases for which the direct forecasts are significantly better than the path average

forecasts, again at the 10% level. Figure 7 tests whether it is beneficial to add statistical factors

to the set of predictors. Finally, Figure 8 examines whether using targeted predictors improves

forecasting accuracy or not2.

The main message from Figure 6 is that it is a ‘no-regret’ policy to forecast headline HICP

inflation using path average forecasts. The blue (no difference between path average and direct

forecast) and red bars (path average forecast better than direct forecast) sum to 100%, indicating

that direct forecasts are never better. The same holds true for almost all forecasting horizons when

forecasting NEIG inflation. The results are more ambiguous when forecasting core inflation and

services inflation. The advantage of path average forecasts is their ability to model short-term

volatility, leading to more stable long-term forecasts. On the other hand, direct forecasts may

avoid cumulating errors, which are inherent in path average forecasts. The lower volatility of
2 Factor models are excluded from the comparison in Figure 7. Shrinkage models always use the complete set of

predictors and are excluded from Figure 8.
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core inflation and services inflation lessen the need for using path average forecast as ‘insurance’

against short-term volatility. For the full sample, both the case for including factors in the set of

predictors (Figure 7) and for using targeted predictors (Figure 8) is strong. For almost all horizons

and measures of inflation, including factors doesn’t hurt and often improves forecasting accuracy.

The same conclusion holds for the use of targeted predictors.

To gain more insight into the quantitative differences between direct and path average fore-

casts, Figure 9 shows the gain in OOS.R2 of path average forecasts over direct forecasts, broken

down by model type. For headline HICP inflation and NEIG inflation, the gains are larger at

longer horizons, particularly for shrinkage models. Ensemble models perform worse when using

path average forecasts. However, the weight given to the latter result should be low, because in

the previous two sections, ensemble models hardly featured among the best-performing models.

Depending on the forecasting horizon, factor models are sometimes better when using the direct

forecasting approach.

The gains in the OOS.R2 from adding factors and targeted predictors are much smaller, espe-

cially from adding factors.

Section B in the Appendix presents the results for the pre-pandemic sample. Qualitatively,

the results are broadly similar to those for the full sample. For example, the use of path average

forecasts also tends to raise the OOS.R2. A key exception is that for factor models, it is clearly

better to use direct forecasts for all inflation measures, apart from headline HICP inflation. This

also holds for ensemble models, but given their weak forecasting performance it is inadvisable to

use this model type anyway.

The main message from the OOS.R2 analysis is that, in general, path average forecasts are

the preferred option for inflation forecasting in our dataset. Exceptions are factor models, where

the picture is more mixed, especially in the pre-pandemic sample. The gains from following this

strategy are sizable. Including factors and using targeted predictors is generally a ‘no-regret‘

policy, although the gains are relatively small compared to the much larger gains from using the

path average forecasts.
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Figure 6: Test of direct versus path average forecast, full sample (2010M1-2023M12)†
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Figure 7: Test of factor versus no factor forecast, full sample (2010M1-2023M12)†
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Figure 8: Test of targeting versus no targeting of predictors, full sample (2010M1-2023M12)†
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Figure 9: Gain in OOS.R2 of path average forecast compared to direct forecast, full sample
(2010M1-2023M12)†
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Figure 10: Gain in OOS.R2 of factor versus no factor forecast, full sample (2010M1-2023M12)†
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Figure 11: Gain in OOS.R2 of targeting versus no targeting of indicators, full sample (2010M1-
2023M12)†
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5.4 ML models versus institutional forecasts

In this section, we examine whether ML models can not only produce more accurate forecasts of

Dutch inflation than simple benchmark models, but also outperform an established institutional

forecast, DNB’s official inflation forecast.

Since the introduction of the euro in 1999, DNB has been a member of the Eurosystem. The

Eurosystem publishes macroeconomic projections four times a year3. Darracq Pariès et al. (2021)

presents a recent assessment of the modeling toolbox currently in use within the Eurosystem, while

Conrad and Enders (2024) investigate the accuracy of the inflation projections. DNB contributes

to the quarterly projection exercises by providing forecasts of the Dutch annual inflation rate,

ranging from 1- to 10-months into the future. These forecasts, known as the Narrow Inflation

Projection Exercise (NIPE), will be referred to as NIPE throughout the remainder of the paper.

DNB’s NIPE forecasts are based on a suite-of-models approach. This suite includes linear

models for forecasting key components of HICP inflation, such as NEIG, food and services in-

flation, building on Den Reijer and Vlaar (2006). Additionally, SARIMA models are used to

separately forecast more than 200 individual (COICOP) price sub-components of the HICP. In-

formal model averaging is employed to arrive at the final forecasts. The forecasts also consider

announced government measures, such as changes in the VAT rate or energy taxes. Finally, the

model-based forecasts are sometimes adjusted using expert-judgment to reflect relevant off-model

information.

DNB produces inflation forecasts in four specific months of the year: February, May, August,

and November. This contrasts with the ML model forecasts analyzed before, which are made every

month. To fairly compare the forecast quality between NIPE forecasts and the ML forecasts, we

will only use the forecasts from the four months when DNB forecasts are available. This means,

for example, that we will only have 1-month ahead forecasts for March, June, September, and

December, and 2-months ahead forecasts for April, July, October, and January, and so on.

Figures 12 and 13 illustrate the forecasting performance of all 62 models compared to the

NIPE forecasts, offering deeper insights into which models within each model type perform best.

The figures display heatmaps of the forecasting performance. The heatmap colors range from a

gain in forecasting accuracy against the benchmark model (RMSFEML-RMSFENIPE) of 5% (light
3 See https://www.ecb.europa.eu/press/projections/html/index.en.html and https://www.

ecb.europa.eu/pub/pdf/other/staffprojectionsguide201607.en.pdf

24

https://www.ecb.europa.eu/press/projections/html/index.en.html
https://www.ecb.europa.eu/pub/pdf/other/staffprojectionsguide201607.en.pdf
https://www.ecb.europa.eu/pub/pdf/other/staffprojectionsguide201607.en.pdf


blue) to 50% (dark blue). The relative gains are only shown if the forecast gain against the NIPE

is at least 5% and the gain is statistically significant at the 10% level according to the Diebold

and Mariano test.

Figure 12 depicts the forecasting performance over the full sample. The key insights for this

sample are as follows:

First, none of the models is capable of consistently outperforming the NIPE headline HICP

inflation forecast. This is not surprising given the weak performance of machine learning in fore-

casting headline HICP compared to the naive benchmark model in Figure 4. What is quite surpris-

ing is that the NIPE model’s headline HICP forecast is often significantly better than the machine

learning models, especially for very short horizons (1 and 2 months). This suggests that relying

solely on a machine learning model can negatively impact forecasting performance.

Second, the weak forecasting performance of the machine learning models becomes even more

evident when comparing the NIPE forecasts for core inflation and services inflation. Once again,

none of the machine learning models is able to outperform the NIPE forecast in a meaningful

and statistically significant way. Given the previously relatively good performance of the machine

learning models against the benchmark model, these outcomes are noteworthy (see Figure 4), as

the usefulness of machine learning models was most widespread for these inflation measures.

Third, the outcomes for the NEIG inflation forecast present a somewhat different picture

compared to the other inflation measures. Although almost none of the models can outperform

the NIPE model, the differences are much smaller for most models, as indicated by the white

cells. Only two models can outperform the NIPE forecast on one or more horizons: M.RF.F and

M.BTREE.F.

A possible explanation for the relatively weak performance of the machine learning models in

the full sample is that inflation during the observed period was strongly influenced by announced

tax changes and levies. These announcements could be considered by researchers when making

the NIPE forecast, but are not incorporated into the mechanical forecasts of the machine-learning

models.

Turning to the pre-pandemic sample, the main conclusions from Figure 13 are:

25



Figure 12: Heatmap relative RMSFE, full sample (2010M1-2023M1) †
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† White cells indicate the forecasting accuracy of the machine-learning model is not statistically different from the NIPE forecast, i.e. the Diebold and Mariano-test is not statistically significant at the 10% level. A green cell
indicates the relative gain in forecasting accuracy of the machine learning model is 5% or larger, red cells indicate there is 5% or larger decline in forecasting accuracy from using the machine learning model. The colors
range from light green(red) to dark green(red), corresponding to a gain(loss) in forecasting accuracy ranging from 5% tot 50% or more.

First, the forecasting performance for headline HICP inflation during the pre-pandemic sample

echoes the lackluster forecasting performance of the machine learning models over the full sam-

ple. Using a machine learning model instead of the NIPE forecast hurts forecasting performance

for almost all horizons and models. The same holds for the machine learning forecasts for core in-

flation and services inflation, although to a somewhat lesser extent. The exception is Y.BFACT.T,

which outperforms the NIPE core inflation forecast over an 8-month horizon.

Second, some machine learning models can outperform the NIPE forecast for NEIG inflation

at specific forecast horizons. The relatively strong performance of several Ridge regression speci-

fications is noteworthy. Three of the path average Ridge regressions (M.RR.NF.BIC, M.RR.F.CV,

M.RR.F.BIC) are either better or equally good according to our measures of economic and statis-
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Figure 13: Heatmap relative RMSFE, pre-pandemicsample (2010M1-2019M12) †
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† White cells indicate the forecasting accuracy of the machine-learning model is not statistically different from the NIPE forecast, i.e. the Diebold and Mariano-test is not statistically significant at the 10% level. A green cell
indicates the relative gain in forecasting accuracy of the machine learning model is 5% or larger, red cells indicate there is 5% or larger decline in forecasting accuracy from using the machine learning model. The colors
range from light green(red) to dark green(red), corresponding to a gain(loss) in forecasting accuracy ranging from 5% tot 50% or more.

tical significance across all horizons4. Comparing the forecasting performance of the NIPE and

the naive benchmark models (M.RWD) suggests that the NIPE model has relatively limited fore-

casting power for NEIG inflation in the pre-pandemic period. The simple benchmark model has

equal forecasting accuracy to the NIPE forecast for NEIG inflation across all horizons and even

outperforms the NIPE forecast over a 5-month horizon.

To better understand the performance of the Ridge regression models for NEIG inflation over

time, Figure 14 illustrates the evolution of realized NEIG inflation (left-hand axis) and the evolu-

tion of the CSSFED of M.RR.F.BIC compared to the NIPE model for forecasting horizons of 1

to 10 months ahead (right-hand axis).
4 We tested for average superior predictive ability, as described by Quaedvlieg (2021). The ridge models have -

on average - statistically significant lower mean Square Forecast Error compared to the NIPE over short horizons (1-
to 5-months), long horizons (6- to 10-months) and all horizons (1- to 10-months).
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Figure 14: NEIG inflation: CSSFED M.RR.F.BIC versus NIPE benchmark
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Between 2010 and 2019, M.RR.F.BIC shows some marginal forecasting gains over the NIPE

forecasts for most forecasting horizons. From 2020 onwards, as NEIG inflation edged up sligthly,

there was an initial slight deterioration in the CSSFED. However, as NEIG inflation surged later

on, M.RR.F.BIC clearly outperformed the NIPE forecasts, especially at longer forecast horizons.

Figure 15 highlights the predictors that most significantly contributed to the enhanced per-

formance of M.RR.F.BIC in forecasting NEIG inflation during the pandemic and post-pandemic

periods. The figure displays the contributions of various predictor sets. The contribution of each

individual predictor is calculated as the product of its regression coefficient and its value (in de-

viation from the mean). These contributions are closely related to the concept of Shapley values,

which are commonly used to quantify variable importance in ML models. In linear regression

models, such as the Ridge regression model, predictor contributions are equivalent to Shapley

values if the predictors are orthogonal (which is not the case in our dataset).

During the pandemic, real activity predictors, expectations, and financial predictors were the

primary contributors to the M.RR.F.BIC forecasts. From the end of 2021 onwards, producer

prices (PPI) and domestic price pressures, including headline HICP inflation and its main sub-
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components (excluding NEIG inflation), became the dominant driving forces. This shift reflects

the pass-through of energy prices, ongoing supply chain disruptions, and some overheating of the

Dutch economy.

Figure 15: Decomposition of the M.RR.F.BIC forecast
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6 Concluding remarks

In this paper, we examine whether machine learning methods can generate accurate short- and

long-term inflation forecasts for the Netherlands.

In the first ’horse race’, we compared forecasts of machine learning models to those of a simple

benchmark model. We found that the improvements in relative RMSFE ranged from negligible at

short horizons to more than 40% at longer horizons, depending on the inflation measure. Machine

learning models are not very good at forecasting headline HICP inflation. Across the full sample,

none of the machine learning models outperformed the simple benchmark model. However, when

excluding the pandemic and post-pandemic periods, the results for the machine learning models

are more favorable. Bycontrast, for core inflation, NEIG inflation, and services inflation, the

relative forecast performance of machine learning models improves when the pandemic and post-

pandemic data are included in the evaluation sample.

In the second evaluation exercise, we assessed the performance of machine learning models

against DNB’s official NIPE forecast. We found that the performance of the machine learning

models was weak in both the full and pre-pandemic samples. The main exception is NEIG infla-

tion, where some of the Ridge regression models are able to outperformed the NIPE forecast.

Combining the outcomes of both forecasting ’horse races’, the preferred machine learning

model is the path average Ridge regression. The M.RR.F.BIC model either outperformed or

matched the forecasting accuracy of the benchmark and NIPE models. In contrast to other re-

search, we find that the non-linear random forest is not very helpful in forecasting inflation,

whether in tranquil or volatile times. The forecast accuracy of the best linear models was compa-

rable to or significantly better than that of non-linear models. Furthermore, we show that using

path average forecasts is superior to using direct forecasts, while the use of statistical factors or

targeting predictors adds little value.

Future research could investigate whether these outcomes apply to other countries and time

periods as well. Another promising avenue for future research would be to incorporate textual or

other big-data sources into the dataset to assess whether these data sources can enhance forecasting

performance.
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A Data set

Table A.1 provides the 129 monthly series that have been used for the estimation of the models

in the main text. As mentioned in the main text, the data set can be split-up into eleven groups:

1) output & income: 27 series, 2) labor market: 10 series, 3) consumption: 14 series, 4) orders

& inventories: 6 series, 5) money & credit: 9 series, 6) interest & exchange rates: 14 series, 7)

commodity prices: 7 series, 8) producer prices: 20 series, 9) domestic prices: 13 series, 10) price

expectations: 3 series, and 11) stock market: 6 series. A complete list of the series is provided in

Table A.1.

We constructed two databases: one for computing path average forecasts and another for calcu-

lating direct forecasts. First, we collected all monthly series in the economics and finance sections

from data warehouses (see column ‘Source’) that started in January 1990 or earlier, and hand-

picked series within each of the eleven groups we defined. Next, for the path average database, we

performed seasonal adjustment on all series that were not seasonally adjusted at the source using

the US Census X13 ARIMA-SEATS method. Then, we transformed all variables to stationarity.

For the path average forecast database we mostly applied the first difference or log first difference

operator to the series, whereas for the direct forecast database we employed annual differences or

annual log differences5. Details on the transformations applied in both databases are given in the

‘Transf.’ column in Table A.1. We use the monthly current and one year ahead consumer price

inflation forecast for the Netherlands from Consensus Forecasts to calculate a monthly series of

consumer price inflation expectations 12 months ahead.

Table A.1: Description monthly database

Nr. Description Source Transf. Last
1. Output & Income
1. Manufacturing (total) EUR 2,5 Dec-23
2. Manufacturing of food products, beverages & tobacco EUR 2,5 Dec-23
3. Manufacturing of textiles EUR 2,5 Dec-23
4. Manufacturing of wearing apparel EUR 2,5 Dec-23
5. Manufacturing of leather & related products EUR 2,5 Dec-23
6. Manufacturing of wood & of products of wood & cork EUR 2,5 Dec-23
7. Manufacturing of paper & paper products EUR 2,5 Dec-23
8. Printing & reproduction of recorded media EUR 2,5 Dec-23
9. Manufacturing of coke & refined petroleum products EUR 2,5 Dec-23

Continued on next page . . .

5 There are two exceptions to this rule: the economic sentiment indicator and business climate indicator are
included in levels as proxies for the output gap.
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Table A.1 – Continued from previous page
Nr. Description Source Transf. Last
10. Manufacturing of chemicals & chemical products EUR 2,5 Dec-23
11. Manufacturing of rubber & plastic products EUR 2,5 Dec-23
12. Manufacturing of other non-metallic mineral products EUR 2,5 Dec-23
13. Manufacturing of basic metals EUR 2,5 Dec-23
14. Manufacturing of fabricated metal products EUR 2,5 Dec-23
15. Manufacturing of computer, electronic & optical products EUR 2,5 Dec-23
16. Manufacturing of machinery & equipment EUR 2,5 Dec-23
17. Manufacturing of motor vehicles & trailers EUR 2,5 Dec-23
18. Manufacturing of furniture EUR 2,5 Dec-23
19. Other manufacturing EUR 2,5 Dec-23
20. Supply of natural gas CBS 2,5 Jan-24
21. Use of natural gas CBS 2,5 Jan-24
22. Hotels & similar accommodation, arrivals, foreigners EUR 2,5 Dec-23
23. Hotels & similar accommodation, arrivals, total EUR 2,5 Dec-23
24. Hotels & similar accommodation, nights spend, foreigners EUR 2,5 Dec-23
25. Hotels & similar accommodation, nights spend, total EUR 2,5 Dec-23
26. Economic sentiment indicator EUR 0,0 Feb-24
27. Business climate indicator EUR 0,0 Feb-24
2. Labor market
28. Unemployment rate, total ECB 1,4 Jan-24
29. Unemployment rate, female ECB 1,4 Jan-24
30. Unemployment rate, total, < 25 years ECB 1,4 Jan-24
31. Unemployment rate, female, < 25 years ECB 1,4 Jan-24
32. Hourly wages CBS 2,5 Oct-23
33. Consumer confidence, unemployment > 12 months EUR 1,4 Feb-24
34. Construction confidence, employment > next 3 months EUR 1,4 Feb-24
35. Construction confidence, limiting factors, shortage of labour EUR 1,4 Feb-24
36. Industrial confidence, employment > 3 months EUR 1,4 Feb-24
37. Retail confidence, employment expectations > 3 months EUR 1,4 Feb-24
3. Consumption
38. Consumer confidence, headline EUR 1,4 Feb-24
39. Consumer confidence, financial situation < 12 months EUR 1,4 Feb-24
40. Consumer confidence, financial situation > 12 months EUR 1,4 Feb-24
41. Consumer confidence, general economic situation < 12 months EUR 1,4 Feb-24
42. Consumer confidence, general economic situation > 12 months EUR 1,4 Feb-24
43. Consumer confidence, major purchase > 12 months EUR 1,4 Feb-24
44. Consumer confidence, major purchases, current EUR 1,4 Feb-24
45. Consumer confidence, statement on financial situation of household EUR 1,4 Feb-24
46. Consumer confidence, savings > 12 months EUR 1,4 Feb-24
47. Consumer confidence, current ec. situation is adequate for savings EUR 1,4 Feb-24
48. Retail confidence, headline EUR 1,4 Feb-24
49. Retail confidence, volume of stocks currently held EUR 1,4 Feb-24
50. New passenger car ECB 2,5 Jan-24
51. Retail trade ECB 2,5 Jan-24
4. Orders & Inventories
52. Industrial confidence, assessment of the current level of stocks EUR 1,4 Feb-24
53. Construction confidence, limiting factors, none EUR 1,4 Feb-24
54. Construction confidence, limiting factors, insufficient dem& EUR 1,4 Feb-24
55. Construction confidence, limiting factors, weather conditions EUR 1,4 Feb-24
56. Construction confidence, limiting factors, material/equipment EUR 1,4 Feb-24
57. Construction confidence, limiting factors, other EUR 1,4 Feb-24
5. Money & Credit
58. Loans, excl. government (EUR) ECB 3,6 Jan-24

Continued on next page . . .
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Table A.1 – Continued from previous page
Nr. Description Source Transf. Last
59. External assets (EUR) ECB 3,6 Jan-24
60. External liabilities (EUR) ECB 3,6 Jan-24
61. Overnight deposits (EUR) ECB 3,6 Jan-24
62. Deposits <2 years, redeemable at notice < 3 months (EUR) ECB 3,6 Jan-24
63. Repo’s, debt securities, shares < 2 years (EUR) ECB 3,6 Jan-24
64. M1 (EUR) ECB 3,6 Jan-24
65. M2 (EUR) ECB 3,6 Jan-24
66. M3 (EUR) ECB 3,6 Jan-24
6. Interest & Exchange Rates
67. Real effective exchange rate, deflator consumer price index ECB 2,5 Feb-24
68. Real effective exchange rate, deflator producer price index ECB 2,5 Feb-24
69. Nominal effective exchange rate euro ECB 2,5 Feb-24
70. 10–year government bond interest rate (%) ECB 1,4 Feb-24
71. 3–month interbank interest rate (%) ECB 1,4 Feb-24
72. 3–month deposits interest rate (%) ECB 1,4 Feb-24
73. Loans non-financial corporations, new, total (%) ECB 1,4 Jan-24
74. Loans non-financial corporations, new, ≤ EUR 1 million (%) ECB 1,4 Jan-24
75. Loans non-financial corporations, new, > EUR 1 million (%) ECB 1,4 Jan-24
76. Loans consumption, new, total (%) ECB 1,4 Jan-24
77. Loans house purchases, new, total (%) ECB 1,4 Jan-24
78. UK pound sterling/EUR exchange rate (%) EUR 2,5 Feb-24
79. Japenese yen/EUR exchange rate EUR 2,5 Feb-24
80. US dollar/EUR exchange rate EUR 2,5 Feb-24
7. Commodity Prices
81. Harmonized index of consumer prices, energy ECB 2,7 Jan-24
82. Europe brent spot price, USD (barrel) ECB 2,5 Feb-24
83. Food commodities ECB 2,5 Feb-24
84. Non-energy commodities ECB 2,5 Feb-24
85. Terms of trade CBS 2,5 Dec-23
86. Import prices CBS 2,5 Dec-23
87. Export prices CBS 2,5 Dec-23
8. Producer Prices
88. Producer price index, headline EUR 2,5 Dec-23
89. Producer price index, mining & quarrying EUR 2,5 Dec-23
90. Producer price index, food products, beverages & tobacco products EUR 2,5 Dec-23
91. Producer price index, textiles EUR 2,5 Dec-23
92. Producer price index, wearing apparel EUR 2,5 Dec-23
93. Producer price index, leather & related products EUR 2,5 Dec-23
94. Producer price index, wood & of products of wood & cork EUR 2,5 Dec-23
95. Producer price index, paper & paper products EUR 2,5 Dec-23
96. Producer price index, printing & reproduction of recorded media EUR 2,5 Dec-23
97. Producer price index, coke & refined petroleum products EUR 2,5 Dec-23
98. Producer price index, chemicals & chemical products EUR 2,5 Dec-23
99. Producer price index, rubber & plastic products EUR 2,5 Dec-23
100. Producer price index, other non-metallic mineral products EUR 2,5 Dec-23
101. Producer price index, basic metals EUR 2,5 Dec-23
102. Producer price index, fabricated metal products EUR 2,5 Dec-23
103. Producer price index, computer, electronic & optical products EUR 2,5 Dec-23
104. Producer price index, machinery & equipment EUR 2,5 Dec-23
105. Producer price index, motor vehicles & trailers EUR 2,5 Dec-23
106. Producer price index, electricity, gas, steam & air conditioning supply EUR 2,5 Dec-23
107. Producer price index, water collection, treatment & supply EUR 2,5 Dec-23
9. Domestic Prices

Continued on next page . . .
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Table A.1 – Continued from previous page
Nr. Description Source Transf. Last
108. Harmonized index of consumer prices, headline ECB 2,7 Jan-24
109. Harmonized index of consumer prices, headline excl. energy & food ECB 2,7 Jan-24
110. Harmonized index of consumer prices, headline excl. energy ECB 2,7 Jan-24
111. Harmonized index of consumer prices, unprocessed food ECB 2,7 Jan-24
112. Harmonized index of consumer prices, food ECB 2,7 Jan-24
113. Harmonized index of consumer prices, services ECB 2,7 Jan-24
114. Harmonized index of consumer prices, industrial goods excl. energy ECB 2,7 Jan-24
115. Harmonized index of consumer prices, processed food ECB 2,7 Jan-24
116. Consumer price index, all items ECB 2,5 Jan-24
117. Construction costs, material prices, residential CBS 2,5 Jan-24
118. Housing prices CBS 2,5 Dec-23
119. Price materials new construction home CBS 2,5 Jan-24
120. Consumer confidence, price trend < 12 months EUR 1,4 Feb-24
10. Price Expectations
121. Consumer confidence, price trend > 12 months EUR 1,4 Feb-24
122. Construction confidence, price expectations > 3 months EUR 1,4 Feb-24
123. Consensus forecast consumer price index > 12 months CF 1,4 Feb-24
11. Stock Market
124. Amsterdam exchange index (AEX) ECB 2,5 Feb-24
125. Amsterdam midkap index DS 2,5 Feb-24
126. Dow Jones euro stoxx 50 index ECB 2,5 Feb-24
127. Financial stability index, Germany ECB 1,4 Jan-24
128. Financial stability index, United Kingdom ECB 1,4 Jan-24
129. Financial stability index, Netherlands ECB 1,4 Jan-24
Notes: Nr.: Number of indicator; Description: Indicator description; Source: CBS: Statistics Netherlands, CF: Consensus Forecasts, DS: Refinitiv
datastream, ECB: European Central Bank, EUR: Eurostat; Transf. = x,y: Transformation of variable in path average (x) and direct (y) forecast
database, respectively, 0 = level, 1 = first difference, 2 = log difference, 3 = difference of log difference, 4 = annual difference, 5 = annual log
difference, 6 = difference of annual log difference, 7 = annual percentage change; Last: Last monthly observation.
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B Additional OOS.R2 results

Figure B.1: Test of direct versus path average forecast, pre-pandemic sample (2010M1-2019M12)
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Figure B.2: Test of factor versus no factor forecast, pre-pandemic sample (2010M1-2019M12)
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Figure B.3: Test of of targeting versus no targeting of predictors, pre-pandemic sample (2010M1-
2019M12)
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Figure B.4: Gain in OOS.R2 of path average forecast over direct forecast, pre-pandemic sample
(2010M1-2019M12)

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

2 4 6 8 10 12

HICP

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

2 4 6 8 10 12

HICPMEF

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

2 4 6 8 10 12

HICPNEIG

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

2 4 6 8 10 12

HICPS

all ensemble factor shrinkage tree

Figure B.5: Gain in OOS.R2 of factor versus no factor forecast, pre-pandemic sample (2010M1-
2019M12)
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Figure B.6: Gain in OOS.R2 of targeting versus no targeting of predictors, pre-pandemic sample
(2010M1-2019M12)
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