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Abstract

We examine how simple statistical techniques for capturing critical transitions used in

natural sciences, do not capture economic regime shifts. This implies that we need to use

model-based approaches to identify critical transitions. We apply a heterogenous agents

models in a standard housing market model to show that these family of models generate

non-linear responses that can capture such transitions. We estimate this model for the

US and the Netherlands and find that first, the data does capture the heterogeneity in

expectations and second that the qualitative predictions of such non-linear models are

very different to standard linear benchmarks. This is not surprising as the underlying

behavior assumed is very different. It would be important to identify which approach

can be serve best as an early warning indicator.
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1 Introduction

The magnitude of the recent financial crisis and the fact that it has caught most of the

economics profession by surprise is an indication that tools that we have in our hands do not

necessarily help us identify the weaknesses in the system. This implies that to the extent that

we have early warning systems, they do not work well in terms of predicting abrupt changes.
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Figure 1: Number of sea urchins per m2 (left panel) and the percentage of algal cover (right
panel). Reproduced from Scheffer (2009).

These tools are typically linear in nature, and recently efforts have concentrated in borrowing

techniques from the natural sciences which acknowledge the complexity, non-linearities, of the

underlying systems.1 Complex methods capture such abrupt changes which are identified with

critical transitions in natural sciences. One example given by Scheffer (2009) is the 1983/1984

Caribbean coral reef collapse. This was associated with a sudden collapse in the number of

sea urchins on the sea floor, which caused a sudden increase of algal cover. This is illustrated

in figure 1.

A second example of a critical transition mentioned by Scheffer (2009) is the birth of the

Sahara desert. The sudden desertification of the Sahara desert, around 5,500 years ago, is

believed to be the result of slowly changing insolation, which in turn was due to slow changes

in the angle of the Earth’s axis of rotation with respect to the sun. As depicted in figure 2,

this gradual change in insolation drove the system to a tipping point, resulting in an abrupt

shift in climate and vegetation cover over the Sahara.

The question that arises from this is whether the series themselves exhibit properties

around the time these transitions happen and therefore pre-announce their occurrence. Schef-

fer (2009) and Scheffer et al (2009) argue that around these moments, time series are charac-

terized by a critical slowing down, in terms of pace. This implies that the system’s memory

increases, in that at any given moment it becomes more and more like its past. An important

advantage of such a technique would be its a-theoretical nature. No views about what drives

the state of the variable would have to be imposed in order to identify this critical slow down.

We will see however, that the conditions that capture this are very stringent and that when

applied to either stock market data (high frequency) or more traditional macro series (low

frequency), they do not appear to work well. (quote literature here that is critical of Scheffer).

This implies that a-theoretical methods do not work very well in terms of identifying points

1See the opening address to the ECB Central Banking Conference on 18 November 2010, by the ECB
President, Jean-Claude Trichet where said that “in the face of the crisis, we felt abandoned by conventional
tools”, and called for the development of complex systems based approaches to augment existing ways of
understanding the economy.
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Figure 2: Summer insolation (top panel) and desert dust sedimentation in the ocean in front
of the west-African coast (bottom panel). Reproduced from Scheffer (2009).

in time around which the system is about to acquire very different properties. We then need to

turn to methods that allow for the existence of multiple equilibria and identify the conditions

under which they prevail. Figure 3 shows how a system can move from single to multiple

equilibria as conditions (z axis) change, but it also shows how equilibria can be both stable

or unstable. In what follows, we will show how these dynamics can be illustrative of the

market for housing in the US and the Netherlands. In order to this, we have to abandon

the a-theoretical methods and make some assumptions about key variables in the markets.

Heterogenous agents models (HAMs) are one way of imposing behavioral assumptions on a

specific market, that will allow for non-linear responses and which can lead to the types of

dynamics described in figure 3.

Our paper is organized as follows. Section 2 briefly describes the shortcomings of existing

early warning indicators. It then outlines the a-theoretical criteria that Scheffer et al (2009)

describe to capture critical transitions in the natural sciences. We then show a number of

examples with applications to stock market data where, although visible to the naked eye,

critical transitions cannot be captured by these techniques. Sections 3 then turns to a model-

based approach, based on heterogenous agents models (HAMs), to capturing these dynamics.

We describe first a traditional housing price model. We then use a traditional example of the

HAMs methodology, borrowed from Boswijk et al (2007), and apply it on the housing market.

In section four we then take the implied model to the data and discuss the results for the US

and the Netherlands. Section 5 summarizes the conclusions and how this methodology can

contribute to policy making.
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Figure 3: Bifurcation diagram. Reproduced from Scheffer (2009).

2 Early Warning Systems for financial crises

The clean-up cost of the financial crisis was estimated by the IMF to be 11.9 trillion US

dollars ($1800,- per every adult and child on the planet). Academics from Central Banks, the

IMF have already spent substantial efforts into development of systems to detect underlying

instabilities in the economic system, commonly referred to as Early Warning Systems (EWSs).

Traditionally, the approach to developing EWSs consists of a number of steps. First, provide

an operational definition of a crisis (banking, currency, sovereign debt, liquidity). Second, one

identifies one or more key economic and/or financial variables to monitor over time. An alarm

is raised either when these variables exceed certain threshold values or when measures that

capture the probability of a certain event happening in a given horizon exceeds permissible

levels. Several approaches exist in the literature to do that: the signal approach (Kaminsky et

al., 1998), binomial/multinomial logit/probit models (e.g. Demirgüç-Kunt and Detragiache,

2005), binary recursive trees (e.g. Davis and Karim, 2008) or Markov switching models for

currency crises (Abiad 1999; Arias and Erlandsson, 2005). Although these models provide

significant in-sample explanatory power, and some or more of their parameters are significant,

they have poor out-of-sample predictive ability (Berg et al., 1999, 2005; Davis and Karim,

2008). A possible explanation for this might be that a linear logit/probit type of regression

approach ignores several important issues. These range from ignoring nonlinear effects, (Berg

and Patillo, 1999; Kaminsky et al., 1998) failing to acknowledge that a panel data approach

can only be valid when different crises (across countries and time) are universally caused by
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identical factors Van den Berg et al. (2008) or have identical dynamics, neither of which is

true in practice. Last, crises incorporate important self-fulfilling elements implying that they

can occur very quickly and before there is a significant long-term deterioration in economic

fundamentals (Oh et al., 2006).

A complex systems approach put forward by Scheffer et al in the Sept 2009 issue of Nature,

summarizes the statistical properties of the system prior to transitions as follows: around that

point, the system exhibits slower recovery from perturbations. As the system slows down

before it changes equilibrium, the intrinsic rates of change decrease and the state of the system

becomes more similar to its past. This implies an increase in the ’memory’ and they show to

be captured with both an increase in the variance of the variable as well as its autocorrelation.

We have estimated time-varying autocorrelation and variance for a number of stock market

data (figures 17-18 in the Appendix). These figures plot the original series (stock market

index), the log return and then the time-varying standard deviations as well as the AR (1)

coefficient, calculated for two different windows (20 and 60 days). The picture that emerges

is similar in most series that we have tried. Take figure 17 (upper panel) which refers to the

S&P 500 index. The series shows the 1987 crash when the index has a clear break in its value.

The value of the standard deviation is indeed increasing for a period before the crisis but it

is not higher than previous peaks At the same time, the AR (1) coefficient is very far from

the value of one associated with the assumed high autocorrelation. The same can bee seen

for the dot.com bubble burst (figure 17, lower panel), the Hang Sen index during the Asian

crisis (figure 18, upper panel) or the S&P500 after the collapse of Lehman Bros (figure 18,

lower panel). There maybe a number of reasons why these techniques are not successful in

capturing important changes. First they are designed for smooth differential equations that

are deterministic in nature. Economic series are government by stochastic movements that

may blur the power of these measures. Second, there is an important role of self-fulfillment

in economic series unlike series in the natural sciences. Both of these, would imply that series

would already tip from one state to the other some time before the statistics were allowed the

take the values indicated by the techniques.

3 Heterogeneous beliefs and the Housing Market

As purely statistical measures do not identify critical transitions, we turn next to a model-

based approach. We will apply a model, based on Brock and Hommes (1997, 1998), in which

agents have heterogenous beliefs . In this class of models, agents are bounded rational and

have different views about the future values of key variables. At same time their beliefs are

allowed to switch between the strategies available from one period to the next, based on how

well they have done in the past (forecast error). The advantage of such techniques is that

5



they allow for endogenous dynamics to be at play, and do not preclude the fact that even

if systems are globally stable, they maybe locally unstable for values of parameters that are

economically meaningful. Such models have been widely used in the finance literature (see

Boswijk, Hommes and Manzan 2007 for an application but also a comprehensive summary of

the literature) and are only beginning to enter the macro field, which has been very reluctant

to allow for bounded rational agents. In what follows we will apply heterogeneity of agents

on a traditional housing price model. The housing market is of particular relevance as it is an

important contributor to growth and acts as a leading indicator for the business cycle (Leamer

2007). Also, since housing markets are known to be subject to boom and busts, allowing for

non-linear responses is of particular relevance. Based on a standard model for housing prices,

we will begin with identifying what affects the annual cost of housing, also known the imputed

rent, Ht. This is the sum of a number of variables, based on Himmelberg et al, (2005) shown

below:

Ht = Ptr
rf
t + Ptωt − Ptqt+1 − Ptγt (1)

Let Pt denote the price for one unit of housing at time t. The first component is the

cost of foregone interest that the homeowner would have earned by investing in something

other than a house, calculated as the price of housing Pt times the risk-free interest rate rrf
t .

The second term represents the one-year cost of such things as property taxes minus tax

deductability, and maintenance costs. The third term, Ptqt+1, is the expected capital gain

(or loss) during the year, and the fourth term, Ptγh,t, represents an additional risk premium

to compensate homeowners for the higher risk of owning versus renting. Following the no

arbitrage condition, one year rent must equal the sum of the annual cost of renting (Qt). We

can therefore substitute Ht for Qt, the actual cost of renting, where the capital gain is now

calculated as this period’s realization, vis-á-vis last period.

3.1 The housing market model

Boswijk, Hommes and Manzan (2007) (BHM hereafter) proposed an agent-based model for

stock prices, which we apply here in the context of the housing market. The only other

exercise we know which allows for heterogenous agents in the housing market is by Burnside

et al (2011). Their approach has two important differences. First, agents disagree about the

fundamental value of housing, whereas we are going to assume that agents agree about the

fundamental value of houses but disagree about how to return to it. Second, their model is

epidemiological in nature, in that agents infect each other. In our approach, agents are simple

optimizers who rely on past performance to evaluate and revise their beliefs. We assume

two types of agents h ∈ {1, 2}. Assume that the demand for housing of individuals can be
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represented by a continuous variable, measuring the number of units of housing demanded.

Based on the equation for imputed rents, actual rents are equal to:

Qt = Pt

(
rrf
t + ωt

)
− Ptqt − Ptγt. (2)

where qt = Pt

Pt−1
− 1 is the actual capital gain. As already mentioned, variable Ptγt represents

the additional risk premium to compensate houseowners for the higher risk of owning versus

renting. We interpret γt to be the excess return on housing, γt = Rt such that by rearranging

(2) and leading one period, we then have the definition of R (see also Ambrose et al 2011,

Campbell et al, 2009):

Rt+1 =
Pt+1 + Qt+1

Pt

− (1 + rt+1),

where rt+1 = rrf
t+1 + ωt+1 assumed here to be constant (r) for simplicity. The demand, zh,t, of

agents of belief type h is determined by maximizing one-period-ahead excess returns adjusted

for risk:

Eh,t (Rt+1zh,t)− aVarh,t (Rt+1zh,t) , (3)

where a is a measure of risk aversion.

Agents are assumed to be homogeneous with respect to their expectations regarding the

variance, that is, Varh,t ((Pt+1 + Qt+1)/Pt − (1 + r)) = Vt, while they are heterogeneous con-

cerning their expectations regarding the expected excess return Eh,t ((Pt+1 + Qt+1)/Pt − (1 + r)).

For simplicity, we also assume Vt to be constant over time: Vt = V . Maximising Eq. (3) leads

to the demand for housing:

zh,t =
Eh,t (Pt+1 + Qt+1) /Pt − (1 + r)

aV
,

of agents of type h.

Upon aggregation of the demand across these two types of agents, the market clearing

condition is
2∑

h=1

nh,t (Eh,t (Pt+1 + Qt+1) /Pt − (1 + r))

aV
= S, (4)

where S is the stock of housing, assumed to be a constant, and nh,t is the fraction of agents

in every period that have expectations of type h.

Solution 1 Solving the market clearing condition for the price leads to the following price

equation:

(1 + r + α)Pt =
2∑

h=1

nh,tEh,t (Pt+1 + Qt+1) , (5)

where α = aV × S.
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Following BHM, we assume that the fundamental process underlying the model, i.e. Qt,

follows a geometric Brownian motion with drift, i.e.:

log Qt+1 = µ + log Qt + υt+1, υt
i.i.d.∼ N(0, σ2

υ),

from which we obtain:
Qt+1

Qt

= (1 + g)εt+1,

with g = eµ+ 1
2
σ2

υ − 1 and εt+1 = eυt+1− 1
2
σ2

υ , such that Et(εt+1) = 1.

We define the fundamental price as the price that would prevail under rational expecta-

tions Et(Rt+1) about the conditional mean of Rt, while expectations regarding the conditional

variance are again constant: Varh,t(Rt+1) = V . Note that V may, but need not, correspond

to the actual conditional variance. The present definition is convenient, as it is the equilib-

rium price around which the market prices will fluctuate; it is the market price that would

prevail if the agents’ happen to have correct expectations about the first conditional moment,

regardless of whether their beliefs regarding the conditional variance are also correct. Under

rational expectations on the first conditional moment, we can re-write the price equations (5):

(1 + r + α)Pt = Et (Pt+1 + Qt+1) .

Solution 2 By applying the law of iterated expectations and imposing the transversality con-

dition, we obtain the fundamental price solution:

P̃t = Et

[ ∞∑
i=1

Qt+i

(1 + r + α)i

]
=

∞∑
i=1

(1 + g)iQt

(1 + r + α)i
=

1 + g

r + α− g
Qt, r + α > g.

Definition 3 We define, Xt = Pt

P̃t
− 1, the price relative to its fundamental.

Solution 4 It follows that the price equation (5) simplifies to:

Xt =
1

Υ

2∑

h=1

nh,tEh,t (Xt+1) ,

where Υ = (1+r+α)/(1+g) is the discount factor, which depends on the underlying parameters

of the model.
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3.2 Two types of agents

Following Boswijk, Hommes and Manzan (2007) we assume that each of the two types of

agents have AR(1) type beliefs, Et (Xt+1) = φ1Xt about Xt+1, but with different values of φ:

E1,t (Xt+1) = θ + φ1Xt−1,

E2,t (Xt+1) = θ + φ2Xt−1,

where φ1 6= φ2. Parameter θ represents a bias in the individuals ’expectations and for simplicity

we assume it to be the same for both types of agents.

Note that homogeneous beliefs, φ1 = φ2 < Υ, would lead to the price converging to

the fundamental price, whereas homogeneous beliefs φ1 = φ2 > Υ would imply a bubble,

where prices would deviate more and more from the fundamental price.2 If one of the belief

parameters, φ1 say, is smaller than Υ, and the other, φ2, larger than Υ, the fractions of

agents being of belief type 1 or 2, determine whether prices are temporarily converging to

the fundamental price or diverging. Since agents are allowed to switch between the two

different types of beliefs, the fractions themselves are changing over time. This in turn implies

that the system may temporarily be in a bubble regime, where prices deviate further from

fundamentals, or in a correction regime, with prices converging back to the fundamental.

The switching between the two types of beliefs is based on the recent past performance of

the strategies, measured in terms of realised profits, πh,t−1.

Definition 5 We define realised profits as follows:

πh,t−1 = (Xt−1 −ΥXt−2)zh,t−2

= cnst.× (Xt−1 −ΥXt−2)(φ1Xt−3 −ΥXt−2).
(6)

The fractions are determined by a logistic switching model with a-synchronous updating:

n1,t = (1− δ)n1,t−1 + δ
eβπ1,t−1

eβπ1,t−1 + eβπ2,t−1

= (1− δ)n1,t−1 + δ
1

1 + e−β(Xt−1−ΥXt−2)(φ1−φ2)Xt−3

n2,t = 1− n1,t.

(7)

The term a-synchronous updating refers to the fact that only a fraction δ of agents re-

evaluates and updates beliefs according to the logit model in each given period.3 Parameter

2A house price bubble occurs when agents have unreasonably high expectations about future capital gains,
leading them to perceive their user cost to be lower than it actually is and thus pay “too much” to purchase
a house today.

3The results reported are for δ = 1, but we will also include later these results in which δ is estimated
freely.
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Figure 4: Bifurcation diagram. Belief parameters: φ1 = 0.94, φ2 = 1.14 (left panel) φ1 = 0.96,
φ2 = 1.16 (right panel).

β, referred to as the intensity of choice, represents the sensitivity of agents’ way of updating

with respect to small changes in past performance πh,t−1.

We estimate the model in two steps: first we estimate the deviations of prices from from

their fundamental value, {Xt}, using housing prices, and rents, Second we use the estimated

deviations to estimate the agent-based model, through minimizing the sum of squared in-

sample forecast errors:

SSE =
T∑

t=1

(Xt − φ1n1,tXt−2 − φ2n2,tXt−2 − θ)2, (8)

where nh,t depends on past prices, and parameters φ1, φ2, β, δ and Υ, as described above. As

the dependence of nh,t on the model parameters is nonlinear, the estimation is performed using

nonlinear OLS.

3.3 Local stability result

Before turning to the results we present a simulation, by means of an example, in which we

show how our model can generate a possible bifurcation around values of parameters that are

economically meaningful. We consider the example where θ = 0, i.e. there is no bias in the

individuals’ expectations. The system is locally stable is the following condition holds:

∣∣∣∣
φ1 + φ2

2Υ

∣∣∣∣ < 1 (9)

We assume that Υ = 1.05, β = 500. Figure 4 plots variable X against very small deviations

of values for θ from zero. We plot this for two different sets of values for parameters φ1 and

φ2. The left-hand side panel shows that if parameter θ moves away from the value of zero
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then there is no abrupt change in the deviation of house prices from its fundamental value.

However, for a slightly different parameterization for φ1 and φ2, shown in the right-hand side

panel, we see that a similarly small deviation of θ from zero (around the -0.0005 and 0.0005

values) can lead to a sudden change in the relevant deviation. In the next section we will

estimate the model for the US and the Netherlands. In both cases we will see that the values

assumed for φ1 and φ2 here are not very different to what the data justifies. It is therefore

possible that small shocks in the way people form expectations can lead to locally unstable

systems of house prices.

4 Empirical results

In what follows we estimate the two-type heterogenous beliefs BHM model and present the

results for the housing market of the US and the Netherlands. We use an OECD housing

dataset as described in Rousová and Van den Noord (2011), which contains quarterly data

for nominal and real house prices as well as price-to-rent ratios from 1970.1 to 2010.4 (see

Appendix for more details).

4.1 The US Housing Market

Figure 5 presents the log of US house prices, the fundamental price estimated (left panel) and

the deviation from each other (right panel). We see that house prices have been increasing

rapidly since the mid-1990s and have peaked around 2008. For the period starting around

2001 till today, the model shows that house prices, even though on a declining path, have

remained above the fundamental value.

We then ask whether the Scheffer model of critical transitions presented in section 2 could

identify abrupt shifts. Figure 6 presents the same pictures as in figures 17-18 for US house

prices. We see that both the standard deviation as well as the AR(1) coefficient are increasing
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Figure 6: Results for US: Scheffer method

prior to the start of the house price decline but the measures do not capture a pattern that is

identifiably different than other occurrences in the sample.

Parameter estimates for heterogenous agents model

Table 1 shows the estimated results for the period considered. The values for φ1 and φ2 are

estimated to be 0.892 and 1.130, and more importantly are significantly different from each

other. The data therefore does not reject the assumption of heterogeneity in the way that

agents form expectations.

Table 1: Estimates for the US housing market, 1970-2010

Estimate Standard Error t value Pr(> |t|)
φ1 0.892 0.059 15.071 < 2e− 16 ***
φ2 1.130 0.069 16.308 < 2e− 16 ***
β 2716 3463 0.784 0.434
θ 0.0012 0.0009 1.318 0.189
Υ 1.010 0.015 68.453 < 2e− 16 ***

Note: Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’; Residual standard error: 0.01104 (156 degrees of freedom)

We also find that θ is not significantly different than zero. The stability condition from

(9) is estimated to be
∣∣∣ φ̂1+φ̂2

2Υ

∣∣∣ = 1.0010, which implies that the system is borderline stable.
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Estimated time-dependent fractions (US)

Figure 7 plots the log of the ratio of price to the fundamental (upper panel), the proportion

n1 of agents forming expectations of type 1 associated with φ1 < 1 (middle panel), in other

words, those agents who expect a return to the fundamentals and finally the AR(1) coefficient

(lower panel).

We see that there is volatility in the way that agents form expectations. Around 2007,

n1 is estimated to be very small, implying that most agents agreed that house prices would

continue to deviate from the fundamental value. This contributed to actual house prices

being persistently above the fundamental price, a fact that we associate with the existence of

a bubble. Around 2009, n1 is very close to one; in other words, agents agree that prices will

return to their fundamental price.

Fancharts for the US

We examine next how the heterogenous agents model forecasts, by comparison to a linear AR

benchmark model.

Figure 8 provides quantiles of density forecasts constructed for both models. The dashed
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Figure 8: Fancharts for US data: estimates of the 5, 15, 50, 85 and 95 % quantiles of the
density forecasts (dashed lines) based on the BHM model (top panels) and an AR(5) model
(lower panels). The deviation from the fundamental, is represented by the red solid lines.

lines correspond to estimates of the 5, 15, 50, 85 and 95 % quantiles of the density forecasts,

based on the BHM model (top panels) and an AR(5) model (lower panels). The AR order of

5 was used to ensure that both models have the same number of parameters. The variable of

interest, the deviation from the fundamental, is represented by the red solid lines. The left

hand side panels shows in-sample forecasts for the last 10 years of data. The right-hand-side

panels correspond to 5-year ahead out-of sample forecasts starting at the end of the data-set

(2010:Q4). We observe that the density forecasts are qualitatively different. In particular,

we see that the BHM model predicts the over-valuation to resume, even after the peak of a

bubble, while the AR(5) model predicts a progressive convergence of prices to its fundamental.

Multiple equilibria

Based on the estimated values of the model and assuming very small stochastic shocks

(σ = 0.1σ̂) we then examine whether small variations around the values for θ and Υ pro-

duce bifurcations.

The left graph of figure 9 assumes no shocks and shows simulations on how a slowly

varying θ can induce critical transitions between two attractors. When we allow for small

shocks (the size of which is a 10th of the estimated noise), we see that indeed the actual

noise overwhelms the dynamics, such that we have early transitions and/or repetitive jumps

between two stochastic attractors (right graph). We also repeat the simulations this time
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Figure 9: Results for US: multiple equilibria, noise and bifurcation
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Figure 10: Results for US: Pitchfork bifurcation

around variable Υ. The results are shown in figure 10. The simulations produce what is

known as a pitchfork bifurcation. For the estimated value of Υ = 1.010 the system has two

stable equilibria, which diverge as this value decreases. If however, it increases slightly above

this value it produces a stable system with one equilibrium.

4.2 The Dutch housing market

We repeat the same exercise for the Dutch housing market.

Figure 11 shows the evolution of house prices and the fundamental (in logs) as well as

their difference. We see that since the end of the 1990s, housing prices have been above the

fundamental and it is only very recently that they have started going back. They do remain

however a long way away from what would be identified with equilibrium prices. This follows

however a period of almost 20 years, starting in the early 1980s when prices were below the

fundamental value.

We examine then whether the Scheffer et al’s method captures these transitions, shown in

figure 12. We see that again the neither the standard deviation nor the AR(1) coefficient are

unequivocal in terms of capturing these transitions.
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Figure 12: Results for NL: Scheffer method
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Parameter estimates for heterogenous agents model

Table refNL-estim shows the estimated results for the period considered. The values for φ1 and

φ2 are estimated to be 0.9849 and 1.040, and more importantly are significantly different from

each other. Just like in the US case, the data does not reject the assumption of heterogeneity

in the way that agents form expectations.

Table 2: Estimates for the NL housing market, 1970-2010

Estimate Standard Error t value Pr(> |t|)
φ1 0.9849 0.01495 65.865 2e− 16 ***
φ2 1.040 0.01576 65.996 2e− 16 ***
β 12420 21050 0.590 0.556
θ 0.00299 0.002071 1.444 0.151
Υ 1.01 - - -

Note: Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’; Residual standard error: 0.0259 (157 degrees of freedom)

The value of Υ is fixed to 1.01 because when we estimate it freely we get unrealistically

large values (1.51). We estimate the bias in expectations (θ) not be statistically different than

zero. The stability condition for the system is then identified with
∣∣∣ φ̂1+φ̂2

2Υ

∣∣∣ = 1.0024, which

implies that the system is borderline stable.

Estimated time-dependent fractions (NL)

Figure 13 plots the log of the ratio of price to the fundamental (upper panel), the proportion

n1 of agents forming expectations of type 1 associated with φ1 < 1 (middle panel), the agents

expecting a return to the fundamentals and finally the AR(1) coefficient (lower panel).

We see that there is considerable more volatility in the way that agents form expectations

by comparison to the US. Agents appear to be more keen to change the way they form

expectations. It is not easy to see which period we could identify with a bubble, although we

see that at the start of the period when prices started being above the fundamental price, at

the end of the 1990s, almost all agents were predicting that this will continue to remain so

(n1 very close to zero).

Fancharts for the Netherlands

We examine next how the heterogenous agents model forecasts, by comparison to a linear AR

benchmark model.

Figure 14 provides quantiles of density forecasts constructed for both models. The dashed

lines correspond to estimates of the 5, 15, 50, 85 and 95 % quantiles of the density forecasts,
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Figure 14: Fancharts for NL data: estimates of the 5, 15, 50, 85 and 95 % quantiles of the
density forecasts (dashed lines) based on the BHM model (top panels) and an AR(5) model
(lower panels). The deviation from the fundamental, is represented by the red solid lines.
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Figure 15: Results for NL: multiple equilibria, noise and bifurcation

based on the BHM model (top panels) and an AR(5) model (lower panels). The AR order of

5 was used to ensure that both models have the same number of parameters. The variable of

interest, the deviation from the fundamental, is represented by the red solid lines. The left

hand side panels shows in-sample forecasts for the last 10 years of data. The right-hand-side

panels correspond to 5-year ahead out-of sample forecasts starting at the end of the data-set

(2010:Q4). For the in-sample forecasts we see that the BHM model predicts that house prices

will not be below fundamental prices. The AR model on the hand does predict that prices

can potentially be below the fundamental value. Similarly in the outsample forecasts, the

BHM model has again an upward bias, but more importantly, its mean forecast predicts an

divergence in prices from the fundamental, whereas the AR model predicts a return to the

fundamental price.

Multiple equilibria

Based on the estimated values of the model and assuming very small stochastic shocks (σ =

0.1σ̂) we then examine whether small variations around the values for θ. The left graph of

figure 15 shows simulations on how a slowly varying θ can induce critical transitions, absent of

shocks. When we introduce shocks (even very small ones, a 10th of the estimated noise), we

see that indeed the actual noise overwhelms the dynamics such that we have early transitions

and/or repetitive jumps between two stochastic attractors (right graph).

Similarly we repeat the exercise for the discount factor Υ shown in figure 16. The value

for the discount factor is set equal to that estimated for the US at 1.01. We see the same

pitchfork bifurcation as in the US.

5 Summary/conclusions

In this paper we ask whether we can use statistical, a-theoretical models to to foresee abrupt

changes in economic series. We borrow from the critical transitions literature, and in particular
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Figure 16: Results for NL: Pitchfork bifurcation

from the technique put forward by Scheffer et al (2009). In our estimations, we observe no

discernible critical slowdown as soon as critical points are approached, in any way that it

could provide an early warning. Our intuition tells us that the stochastic nature of economic

systems is the reason for this. Noise plays a very important role, in that it induces shifts when

multiple attractors exist, before these statistical methods are allowed to take the threshold

values mentioned. In this respect, the attractors found play the role of sticky’ states, where

the system tends to spend more time. Due to this, we then turned to a model-based approach

to predict regime shifts. To this end we have applied a heterogenous agents model, where

agents have varied and varying beliefs about future state variables. This approach falls in

the category of bounded rational models but it does require that the form of agents’ beliefs

is specified. The important feature that such an approach is that does allow for multiple

equilibria and we can experiment with the conditions which cause the shift. Our estimations

do not capture our regimes shifts in a clear cut way.

Nevertheless, we believe that these models help us make the following case. First, the

data does justify the existence of multiple beliefs. It is true that the form of expectations is

assumed but the data does capture significant (statistically and economically) differences in

the way that people believe prices will revert to fundamentals. This is qualitatively a very

different model than the traditional RE models where agents are both homogenous and are

bound by the steady state. Second, the exact parameterization of these beliefs can make a

difference between having a stable or unstable system. It would be important then to can

precise estimates of these values. Third, using these non-linear models to forecast does lead

to very different predictions by comparison to the benchmark linear model. It would therefore

be very important to identify reliable criteria with which to rank these models.
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Appendix

5.1 Graphs: Examples of potential regime shifts in finance
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Figure 17: Price, log-return, time-varying standard deviation and AR(1)-coefficient; upper
panel: 1987 crash, S&P 500 index; lower panel: dot.com bubble burst, NASDAQ index
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Figure 18: Price, log-return, time-varying standard deviation and AR(1)-coefficient; upper
panel: Asian crisis, HangSeng index; lower panel: Collapse Lehman Bros, S&P 500 index
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5.2 Data

We use an OECD housing dataset as described in Rousová and Van den Noord (2011). For

20 countries (including the US and the Netherlands) this dataset contains quarterly data for

nominal and real house prices from 1970.1 to 2010.4 (see Rousová and Van den Noord (2011),

OECD Economics Department Working Papers No. 882, Appendix 1-2, page 22-23, for the list

of countries and corresponding data sources). The nominal house price is indexed using 2005 as

base year. The real house price index is derived by deflating with the private final consumption

expenditure deflator, available from the OECD Economic Outlook 89 database. The price-

to-rent ratio is defined as the nominal house price index divided by the rent component of

the consumer price index, made available by the OECD. Long term interest rates are also

retrieved from the OECD Economic Outlook 89 database.
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