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Abstract 

We analyse shock and parameter uncertainty in a Dynamic Stochastic General 

Equilibrium (DSGE) model by exploratory modelling and analysis (EMA). This 

method evaluates in a novel way the performance of monetary policy under deep 

uncertainty about the shock and model parameters. Scenarios are designed based on 

the outcomes of interest for the policymaker. We assess the performance of different 

policies on their objectives in the scenarios. This maps out the policy trade-offs and 

supports the central bank in making robust policy decisions. We find that in response 

to a negative supply shock, policies with low interest rate smoothing and a strong 

response to inflation most obviously contribute to price stability under deep 

uncertainty. 
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1. Introduction 

We contribute to the growing literature on monetary policy under deep uncertainty 

by applying exploratory modelling and analysis (EMA) to a dynamic stochastic 

general equilibrium (DSGE) model. DSGE models are a common tool for central 

banks to explain economic dynamics and forecast them. EMA is commonly used for 

policy problems in environmental sciences when deep uncertainty plays a role. It 

differs from existing methods that deal with uncertainty in structural macroeconomic 

models, like DSGE models, in several ways. Exploratory modelling assumes that 

existing information is insufficient to specify a single model that accurately describes 

system behaviour. Instead, it generates a set or ensemble of models or model-based 

inferences that are plausible or interesting in the context of the analysis (Bankes, 

1993; Bankes et al, 2013). Selecting a particular model out of an ensemble of 

plausible ones requires making suppositions about factors that are uncertain or 

unknown. EMA considers continuous ranges for the model parameters and shock 

values, identifies combinations of them in scenarios that are of interest to the 

policymaker, and applies a distinct way of evaluating the performance and robustness 

of different policy strategies. Multiple extensions of this EMA approach have been 

developed in recent years (see Bartholomew and Kwakkel, 2020). To the best of our 

knowledge, EMA has not yet applied to DSGE models before. 

 

With regard to uncertainties in DSGE models, the literature usually considers 

uncertainty in only one or a few features of the model. Xiao et al. (2018), for example, 

incorporate predefined uncertainties, such as technology uncertainty and fiscal policy 

uncertainty, as a set of discrete values for each uncertainty. To deal with parameter 

uncertainty, a Bayesian econometric approach (which can be applied in a limited 

information setting) and Markov-Chain Monte Carlo analysis have been applied to 

DSGE models, for instance by Boivin and Giannoni (2006) and Christiano et al. 

(2010). Some studies apply a sensitivity analysis to DSGE models, such as Čapek et 

al. (2023) and Ratto (2008). 

 

Next to parametric uncertainty, the central bank has to deal with shock uncertainty. 

Giannoni (2007) simulates the effects of a variety of exogenous shocks, instead of a 

single exogenous innovation, with a New Keynesian DSGE model. He considers the 

uncertainty of the relative importance of each shock, as well as uncertainty about the 
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persistence in the shock processes. In a related study, Grassi et al. (2016) select 

shocks in a DSGE model to avoid the estimation bias arising from imposing non-

observable shocks. These are generated by non-existing exogenous processes. 

Carceller and Van den End (2023) assess the robustness of monetary policy assuming 

deep uncertainty about the relative contribution of demand and supply shocks to 

inflation. 

 

Also under deep uncertainty, policymakers have to design policies to achieve the 

desired policy goal. Kwakkel et al. (2016) state that deep uncertainty means that the 

various decision makers do not know or cannot agree on the system and its 

boundaries, the outcomes of interest and their relative importance. Moreover, the 

prior probability distribution for uncertain inputs to the system is unknown (Lempert 

et al., 2003; Walker et al., 2013), Moreover, under deep uncertainty, decisions are 

made over time in dynamic interaction with the system and cannot be assessed 

independently (Haasnoot et al., 2013; Hallegatte et al., 2012). This calls for robust 

policies that achieve desired outcomes also under deep uncertainty. Maier et al. 

(2016) states that robustness can be thought of as a measure of the insensitivity of 

the performance of a given policy strategy to future uncertain states of the world. 

 

A well-known strategy for dealing with deep uncertainty in economic models is 

robust control. Dennis et al. (2019) and Olalla and Gómez (2011) apply robust control 

to a New Keynesian model to study the effect of model uncertainty in monetary 

policy. Another way to assess this uncertainty is info-gap theory, which aims at 

satisficing instead of optimising the outcome (Ben-Haim et al., 2018). Several studies 

investigate the design of robust policies based on DSGE models, such as Górajski et 

al. (2023). Robustness of policies is quantified on the basis of their average or 

maximum welfare loss for different assumed states of the world. Based on observed 

data they estimate distributions within which the parametric uncertainties can be 

located. 

 

We apply EMA methods to address parametric and shock uncertainty in a DSGE 

model. The basic idea of exploratory modelling is to run a model that describes the 

policy problem a large number of times with different input values (i.e. values of 

model parameters and/or shocks that represent the uncertainties). The sampled input 
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values span the range of the uncertainties. Thereby the model is used as a device to 

capture relevant uncertainties by enumerating a range of possible assumptions and 

systematically exploring the implications of them via large numbers of computational 

experiments (Moallemi et al., 2020). Subsequently, the set of model outcomes is 

analysed by various statistical techniques. This helps to understand the effects of 

specific uncertainties on the outcomes (following Kwakkel and Jaxa-Rozen, 2016). 

 

As it is the first attempt to apply EMA to DSGE models, our study is exploratory by 

nature. We investigate what can be learned by applying EMA methods to DSGE 

models and how the central bank can implement EMA in its interest rate policy. We 

illustrate this by applying EMA to specific policy problems for which the central 

bank uses a DSGE model. In our framework the central bank steers the policy levers 

in order to robustly meet the policy objectives. This is done by a many-objective 

optimisation approach, which searches through the range of values of the policy 

levers (i.e., the parameters in the Taylor rule) and by examining potential trade-offs 

between different policy objectives.  

 

An important feature of robust decision making is that the policy performance is 

evaluated in different states of the world (Homaei and Hamdy, 2020; Lempert et al., 

2006). EMA provides for this by directed search. This method investigates the 

policies and sets of actions that the policymaker can take to achieve certain objectives 

under deep uncertainty (Kwakkel, 2017).This is useful because the policy that has 

the most desirable performance on a specific objective in one scenario is not 

necessarily the best policy. It may be possible that this policy underperforms in many 

of the other scenarios and hence is not robust optimal. We assess the performance of 

different policies by several metrics for robustness to deep uncertainty. The uncertain 

future states of the world are driven by scenarios that capture the uncertainty about 

the model parameters and shock values. In our case, we assume that the shock values 

relate to a negative supply shock. We investigate how the central bank should set the 

interest rate under those conditions to achieve its objectives. So, we find the robust 

optimal values for the policy levers: the smoothing parameter and inflation response 

parameter in the Taylor rule. 
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Based on EMA open exploration, we find that states with low price flexibility and 

high shock persistence determine the outcomes that are of interest to the central bank. 

Such states are associated with relatively large deviations of the output gap and 

inflation from steady state and thus with a failure to achieve the policy target. Based 

on EMA directed search, we find the values for the policy levers (i.e., the input 

parameters that the central bank can influence) that effectively influence the 

economic dynamics following a negative supply shock. Under deep uncertainty, a 

rather strong response to inflation contributes to the inflation objectives, while low 

interest rate smoothing contributes to both the inflation and output gap objectives. 

Both policies are also robust to uncertain states of the world. 

 

The remainder of this paper is structured as follows. In section 2 we explain the 

DSGE models and the EMA framework, as well as the policy objectives of the central 

bank. In section 3 we apply the EMA open exploration methods and in section 4 the 

directed search methods to the monetary policy problem in the context of the DSGE 

model. In section 5 we discuss our approach in a broader context. Section 6 

concludes. 

 

2. Methodology 

2.1 DSGE model 

DSGE models are a common tool for central banks to explain economic dynamics 

and forecast them. The models are also used for storytelling and policy simulations 

(Del Negro and Schorfheide, 2013). The basic New Keynesian DSGE model consists 

of three equations: one for demand, supply, and the policy rule (Galı́, 2015). Many 

extensions of DSGE models have been developed, featuring different economic 

structures and additional variables such as investment, employment, and real wages 

(Smets and Wouters, 2003). For specifying a DSGE model, the policymaker has to 

make assumptions about the economic state and the behaviour of economic agents 

and translate those into model parameters. It is common for policymakers to take the 

economic model with certainty, considering fixed values of the parameters and the 

median or mean of a posterior distribution (Górajski et al., 2023; Taylor and 

Williams, 2010).  
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The basic three equations DSGE model describes the behaviour of households, firms, 

and the central bank in setting the interest rate. The model is calibrated around a 

steady state with 2% inflation, and, after deviating from this steady state following a 

shock, it will return to this equilibrium. We assume that the main goals of the central 

bank are price stability and balanced economic conditions. These are operationalized 

by policy objectives, like the objective to minimise the deviation of inflation from 

the steady-state level. The central bank aims at these objectives by setting the interest 

rate, which follows a conventional Taylor rule. The parameters of the Taylor rule are 

the policy levers in the model. 

 

As benchmark model we take the simple New Keynesian DSGE model described by 

Galı́ (2015). It comprises three equations that model the output gap, inflation, and 

interest rate in a dynamic fashion.  

 

�̃�𝑡 =  𝐸(�̃�𝑡+1) −
1

𝜎
(𝑖𝑡 − 𝐸(𝜋𝑡+1) − 𝑟𝑡

𝑛) − (𝜌𝑑 − 1)𝑑   (1) 

𝜋𝑡 =  𝛽 𝐸 (𝜋𝑡+1) + 𝜅 𝛾 �̃�𝑡 +  𝜇      (2) 

𝑖𝑡 =  𝜌𝑟𝑖𝑡−1 + (1 − 𝜌𝑟)(𝜑𝜋𝜋𝑡 + 𝜑𝑦 �̃�𝑡) + 𝑣𝑡    (3) 

 

Where �̃�𝑡 and 𝜋𝑡 represent output and inflation as deviations from their steady state 

values and 𝑖𝑡 the nominal policy interest rate. Furthermore, 𝑑 represents a preference 

(demand) shock and 𝜇 a mark-up (supply) shock, which both follow an AR(1) process 

with persistence parameters 𝜌𝑢 and 𝜌𝑑. E(·) is the expectations operator, assuming 

agents have rational expectations. Parameter σ is the inverse intertemporal elasticity 

of substitution, 𝛾 a time preference parameter, and 𝑟𝑡
𝑛 the equilibrium interest rate. Κ 

is the degree of price stickiness, with 𝜅 = (1 − 𝜔)(1 − 𝜔)𝛽/𝜔 and 𝜔 the Calvo 

parameter. The latter reflects the share of firms that does not adjust their price (prices 

are sticky), implying that a low value of 𝜔 is associated with more flexible prices. 

 

The central bank reacts with full and credible commitment according to a standard 

Taylor rule, with smoothing parameter 𝜌𝑟 and with 𝜑𝜋 and 𝜑𝑦 being the policy 

response parameters for inflation and the output gap (i.e., the weight the central bank 

puts on inflation and the output gap respectively in the reaction function). These 

parameters are set by the central bank and represent the policy levers in the model. 
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We assume that the economy is hit by a negative supply shock 𝜇 (e.g. a cost-push 

shock), which leads to higher costs of production. This decreases the aggregate 

supply of goods. If aggregate demand remains constant while supply falls, the price 

level rises, and the economy experiences stagflation (falling output and rising prices). 

This is a policy problem, since the combination of falling output and rising prices 

confronts the central bank with a potential trade-off between the objectives of price 

stability and balanced economic conditions. Applying EMA to this problem reveals 

which uncertainties are associated with this trade-off and which stance of the policy 

levers is most effective to address it. 

 

2.2. EMA framework 

We explore the use of EMA for DSGE models and identify steps that a central bank 

has to take to incorporate EMA into the policy practice. Two methods can be 

distinguished in EMA: open exploration and directed search. In open exploration, the 

model is run for a large number of different combinations of uncertainties (the 

scenarios) and, optionally, policies. Directed search investigates the policies and sets 

of actions that the policymaker can take to achieve certain objectives (Kwakkel, 

2017). 

 

2.2.1. Open exploration 

EMA dissects the model and the policy problem into different components: 

uncertainties, scenarios, levers, policies, outcomes, objectives, and robustness 

metrics. The uncertainties are the uncertain model parameters and shock values 

(which we both assign ranges of values to) and their distribution. We take the 

parametric uncertainties and the shock uncertainties of the DSGE model into account. 

The different uncertainties together form the uncertainty space, as shown in Figure 1. 

A scenario is a point in this uncertainty space: it comprises a combination of values 

for the different uncertainties.  

 

The (policy) levers are parameters or components of the model that the policymaker 

can influence. We also assign a range and a distribution to these parameters. The 

levers form a decision space (comparable to the uncertainty space), and a policy is 

represented by a point in this decision space. In our case, the central bank controls 
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the interest rate by the policy levers in the Taylor rule and the different policies thus 

refer to the interest rate strategies of the central bank. 

 

Running the model for one scenario and one policy is referred to as an experiment, 

and for each experiment, a set of model outcomes is obtained. When designing a 

policy, it is important to identify the interests of the central bank. These are translated 

into objectives, i.e., outcomes of the model the policymaker wants to minimise or 

maximise, and robustness metrics; the criteria on which we assess the robustness. 

Like the policy levers and uncertainties, the outcomes and objectives form their own 

spaces: the outcome space and the objective space. 

 

 

Figure 1. Uncertainty space formed by three theoretical continuous uncertainties u1 

(range (0,3)), u2 (range (0,3.5)), and u3 (range (0,4)). Two possible scenarios are 

shown: S1(u1= u2= u3= 1), and S2 (u1=1.5; u2=2.5; u3=2). 

 

In theory, the whole uncertainty and/or decision space can be explored. This can be 

conducted by picking scenarios and policies at random, for instance, by Latin 

Hypercube sampling (McKay et al., 1979).1 This method first divides the ranges of 

each parameter into separate segments, thus dividing the uncertainty and decision 

space into separate spaces, or cells, all having the same probability of being chosen 

(McKay et al., 2000). The latter implies that a uniform distribution is imposed on the 

parameter and shock values, which fits with deep uncertainty in the sense that 

simulated values are equally likely in a uniform distribution. The sampler then picks 

a random value in a randomly chosen cell.2 

 
1 The number of experiments (or samples) in Latin Hypercube sampling varies based on the 

complexity of the problem and the dimensionality of the parameter space. The number should balance 

computational efficiency with the need for accurate statistical estimation. 
2 Latin Hypercube sampling can also be used with non-uniform distributions. Each grid cell will then 

keep the same probability, but the grid cell size/volume will differ. We assume a uniform distribution 
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By open exploration, we conduct experiments that span the range of the uncertainties 

in the uncertainty space (Kwakkel and Pruyt, 2015). For this, we assign a range and 

a uniform distribution to the uncertain parameters, based on their expected true value. 

Then, we analyse the outcome space to see how the outcomes behave for different 

combinations of parameter and policy lever values. To understand the effect of 

uncertainties on the outcome space, scenario discovery is applied (Bryant and 

Lempert, 2010; Kwakkel and Jaxa-Rozen, 2016). Scenario discovery defines a 

subspace of the uncertainty space that illuminates the vulnerabilities of a proposed 

policy (Dalal et al., 2013). In other words, with scenario discovery, common input 

space properties are identified across ensembles of exploratory model runs 

(Steinmann et al., 2020). 

 

From the outcome space, a specific feature is selected that the policymaker wants to 

explore because this feature is of interest to him. Such a feature can be an outcome 

that exceeds a certain critical value and thereby conflicts with a policy objective. 

Experiments that share this feature can be compared. To illustrate this, in Figure 2, 

the dots in the uncertainty space (right) represent scenarios (combinations of 

uncertain parameters in the absence of policies), and the dots in the outcome space 

have their corresponding outcomes. The area of the outcome space of interest for the 

policymaker is marked by the red dashed rectangle. In this area, including the larger 

yellow dots, there are 11 experiments (the larger blue dots in the uncertainty space.) 

with o1 being greater than 3. So the policymaker can identify regions in the 

uncertainty space that are of interest in terms of the outcome (Bryant and Lempert, 

2010; Kwakkel et al., 2013). This means that a certain feature of the outcomes forms 

the basis of scenario discovery. 

 

 
since we first want to know what could happen and what the impact of is before we deal with the 

likelihood of this. 
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Figure 2. Uncertainty space and outcome space of a model with 2 uncertainties, 2 

outcomes and no policy levers. For illustration, 100 scenarios (experiments) (dots in 

the uncertainty space) and their corresponding results (dots) in the outcome space 

are visualized. Our region of interest in the outcome space (red, dashed rectangle) 

consists of the results (yellow-filled larger dots) of 11 experiments (blue-filled dots in 

uncertainty space). These experiments lie in the blue, dashed area, but not all 

experiments in this area result in o1 > 3. 

 

A method to find scenarios (i.e., combinations of the uncertainties) with common 

characteristics of the outcome variables is behaviour-based scenario discovery. This 

method identifies clusters of the inflation and output gap that have common 

characteristics. The clusters are formed by time series clustering methods that use 

similarity metrics, as described by Steinmann et al. (2020), which clusters time series 

based on their behaviour across time.3 The patient rule induction method (PRIM) 

then identifies the ranges of the parameter and shock values that distinguish the 

outcome dynamics in each cluster (see Friedman and Fisher, 1999 and Kwakkel et 

al., 2016). PRIM identifies the range of parameter values of the uncertainties that 

determine the outcome clusters. It does so by searching for a set of subspaces (boxes) 

within the uncertainty space with an outcome value that significantly differs from its 

average outcome value in the domain (Kwakkel and Jaxa-Rozen, 2016). The 

subspaces of the uncertainty space provide a range of the parameter values that form 

a box of an outcome cluster that is significantly different from parameter ranges of 

other outcome clusters. 

 

So, scenario discovery by time series clustering and PRIM identify the combination 

of parameters and shock values (i.e., the scenarios) that are of interest to the 

policymaker. It reveals clusters of the outcome variables that may conflict with the 

 
3 Clustering on the full time series rather than individual time points ensures that each cluster 

represents coherent temporal patterns, reflecting the time-dependent nature of the data and retaining 

the meaningful structure of how the series changes over time. 
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policy objectives. Thereby, these methods provide useful information for designing 

policies to prevent such outcomes. 

 

2.2.2 Directed search 

Directed search investigates the uncertainty space to find policy strategies that satisfy 

the objectives (Kwakkel and Pruyt, 2015). The same scenario can, under different 

policies, result in different outcomes. In Figure 3, the uncertainty space of two 

uncertainties (u1 and u2) results in three different outcome spaces (o1 and o2) due to 

three different policies (p1, p2, and p3). For instance, policy 1 creates an outcome 

space that spans over a relatively large range of outcome 1 and has relatively high 

values for outcome 2. Note that, whereas we know the distributions of the 

uncertainties (we assume a uniform distribution), we do not know the distributions 

of the outcomes in the different outcome spaces. This distribution of outcomes can 

differ per policy. 

 

 

Figure 3. Three outcome spaces associated with the same uncertainty space under 

different policies (P1, P2, and P3). 

 

An optimal policy can be designed by searching for combinations of policy levers 

that optimise the objectives. The outcomes of these Pareto optimal policies in the 

objective space is the Pareto front. Each point on this front is an outcome from which 

the policymaker cannot deviate to improve the performance of one outcome without 

reducing the performance of another outcome. The exact Pareto front is unknown but 

can be approximated by optimisation methods. We refer to these approximations as 

Pareto optimal solutions. Finding these optimal policies is a multi-objective 

optimisation problem (Statnikov and Matusov, 2012). 
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It is important to assess policies on their robustness in different states of the world. 

To evaluate the robustness, we use the taxonomy of robustness frameworks of 

Herman et al. (2015). It first generates the optimal combinations of the policy levers 

by many-objective search. Then, it generates states of the world and conducts a 

vulnerability analysis. We base the comparison of the different policies in terms of 

their robustness on three robustness metrics: regret, satisficing and descriptive 

metrics (Kwakkel et al., 2016). 

 

2.3 Application to DSGE model 

We apply both open exploration and directed search to a monetary policy problem in 

the context of the DSGE model specified in section 2.1. EMA allows us to assess the 

DSGE model under deep uncertainty in different ways compared to existing 

approaches. For instance, EMA does not use a welfare-loss function, which is a 

common approach in DSGE models to quantify losses in terms of deviations of 

inflation and the output gap from target (as the canonical loss function in Galı́, 2015). 

Instead, EMA considers specific policy objectives that are of interest to the 

policymaker and compares the policy performance and robustness for each objective. 

Robustness metrics reflect the sensitivity of the policy performance to future 

uncertain states of the world (McPhail et al., 2018). In addition, exploratory 

modelling analyses the (combined) input parameters, i.e., the scenarios, based on 

their outcome. This allows for selecting scenarios based on outcomes that are policy 

relevant. This differs from common ways to select scenarios for simulating policy 

problems in macroeconomic models, which usually start from choosing input 

parameters and then analyse the outcomes. 

 

We assume that policy objectives of interest to the central bank are price stability and 

balanced economic conditions. A central bank with a price stability objective will 

aim at inflation reverting back to steady state following the shock, in the medium-

term (assumed to be the policy horizon of three years). In addition, we assume that 

the central bank wants to avoid deflation (Krugman and Wells, 2021). Moreover, in 

our approach, the central bank tries to keep inflation and output close to their steady 

state levels over the entire policy horizon and to limit deviations across time. This 

should contribute to keeping inflation expectations anchored. Lastly, for the benefit 
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of trust in the central bank, it aims at a monetary policy response that achieves the 

policy target in different states of the world. The latter is typically assessed by 

robustness metrics (to be discussed in section 4.2).  

 

The policy objectives are summarized as follows: 

1. Annual inflation rate around 2% at the end of the policy horizon (12 quarters); 

2. Limit deviations of inflation from steady state level; 

3. Limit period-to-period changes in inflation; 

4. Limit output gap deviations; 

5. Limit period-to-period changes in the output gap; 

6. Avoid deflation (minimise periods with deflation); 

7. Similar performance of the policy response, irrespective of state of the world 

(robustness). 

 

The policy objectives are analysed by directed search in section 4.1, based on the 

model outcomes the central bank wants to minimise or maximise. Finding optimal 

policies is pursued by optimising the objectives through a many-objective 

optimisation approach. The robustness of these optimal policies is assessed by 

robustness metrics in section 4.2. 

 

The stylized framework in Figure 4 connects the DSGE model to EMA. It 

distinguishes the exogenous uncertainties (X), policy levers (L), the relations I, and 

the measures (M) in an XLRM framework. 

 

 

Figure 4. XLRM framework of the problem. X represents the exogenous uncertainties, 

L the policy levers, R the internal relations, and M the measures (or objectives) of 

the model. 
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All parameters, excluding policy levers, are considered uncertainties. We assume that 

according to the central bank’s preferences, only the interest rate smoothing 

parameter and the policy response to inflation are used as policy levers. 

 

3. Results open exploration 

This section presents the results of the open exploration of the DSGE model. We 

analyse the effects of a negative supply shock, as an example of how EMA can be 

applied in monetary policy analysis. A negative supply shock is an interesting case 

to analyse, as this shock implies a trade-off for monetary policy between the inflation 

and output objectives. We take the uncertainties into account by simulating 15,000 

experiments of the parameter and shock values. Latin Hypercube is used for the 

randomization of the values. This method requires a large number of experiments to 

cover the whole uncertainty space. We balance covering the whole uncertainty space 

with the computational time by conducting 15,000 experiments by Latin Hypercube 

sampling. 

 

The uncertainties and their ranges included in the open exploration are shown in Table 

1. The simulation of the values is based on uniform distributions, with mean values 

based on values commonly used in (calibrated) DSGE models. 

 

Table 1. Model uncertainties for open exploration. 

 
 

 

Taking into account the uncertainties, the paths of the output gap �̃�𝑡 and inflation 𝜋𝑡 

shows a large dispersion following a negative supply shock (Figure 1). Whereas most 

experiments result in paths of the output gap that approach the steady state from 

below (associated with a negative deviation in line with economic intuition), the 

initial responses of the output gap to the shock differ a lot. There are also many 
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scenarios in which the output gap shows a positive response initially. This is in line 

with the common finding in the literature that output gap estimates are subject to a 

wide range of uncertainty owing to data revisions and the difficulty of distinguishing 

between cycle and trend in real-time (Grigoli et al., 2015). In contrast to the results 

for the output gap, the responses of inflation to the negative supply shock show 

almost no negative deviations, while the positive deviations have a much wider 

range. The positive response of inflation to the negative supply shock is in line with 

economic intuition. 

 

  
Figure 1. Output gap (left panel) and inflation (right panel) after negative supply 

shock, including uncertainty. 

 

Behaviour based scenario discovery identifies clusters of inflation and the output gap 

that have common characteristics. The clusters are formed by time series clustering 

methods, as explained in the previous section. A certain minimal set of scenarios is 

needed in each cluster to provide reliable information, and hence, we only take into 

account clusters that contain at least 500 experiments to ensure that the results are 

significant. This results in two clusters for both the output gap and inflation. The 

clustering of the output gap reveals that the outcomes in cluster 1 are characterised 

by relatively small deviations from steady state, while the outcomes in cluster 2 

display somewhat larger deviations (Figure 2). Although there is not much difference 

between the behaviour of the output gap in both clusters, the central bank would be 

most interested in cluster 2, taking into account the objective of limiting output gap 

deviations. 

 

In the case of inflation, the behaviour in the clusters is more distinct (Figure 2). 

Inflation in cluster 2 displays more positive deviations from steady state than in 

cluster 1. Inflation in cluster 2 is also more persistent, as it takes more time for 
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inflation to revert to the steady state. Hence, the central bank would be most 

interested in cluster 2, taking into account the objectives of limiting deviations of 

inflation from steady state and limiting period-to-period changes in inflation. 

  

 

 
 

Figure 2. Two clusters for the output gap (left panel) and inflation (right panel) 

following a negative supply shock. Cluster 1 is coloured blue and cluster 2 red. 

 

We apply PRIM to identify the parameter ranges that distinguish the clusters of the 

output gap and inflation dynamics. Each subspace, or box, in the uncertainty space, 

is uniquely formed by the parameters that best describe this subspace. The subspaces 

are bounded by a parameter range, of which the quasi-p-value indicates whether the 

restriction to describe the box (i.e., the number of uncertain parameters imposed) is 

statistically significant. 

  

Applying PRIM to the two clusters of the output gap results in the parameter ranges 

shown in Table 2. With the exception of the Calvo parameter, the parameter ranges in 

clusters 1 and 2 are almost similar to the whole range of uncertainties. It implies that 

the parameter ranges in the different clusters largely overlap, which limits the use of 

this exercise for the output gap. From the Calvo parameter in cluster 1 (which is 

characterised by small output gap deviations), we infer that output gap deviations are 

likely small if prices are more flexible (which is the case when the Calvo parameter 

is low). 
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Table 2. Uncertainty ranges for the output gap clusters (the quasi-p-value indicates 

whether the restriction to describe the box is statistically significant). 

 

 

Applying PRIM to the inflation clusters results in the parameter ranges shown in 

Table 3. Like for the output gap, several of the parameter ranges are largely similar to 

the full range of uncertainties. The most obvious distinctions between the two clusters 

show up in the Calvo parameter and the persistence of the supply shock. In cluster 1, 

prices are more flexible (lower Calvo parameter) than in cluster 2. Figure 2 shows 

that in cluster 1, inflation more likely has smaller deviations from steady state than 

in cluster 2. Combining this with the PRIM results implies that larger price flexibility 

limits upward risks to inflation in case of a negative supply shock. Inflation risks are 

also contained if the shock persistence is lower. This conclusion is drawn from the 

inflation outcomes in cluster 1 (in which the deviations from steady state are 

contained) and the PRIM outcome in Table 3, which shows that the value of the 

autoregressive term in the supply shock equation is lower in cluster 1. 

 

Table 3. Uncertainty ranges for the inflation clusters (the quasi-p-value indicates 

whether the restriction to describe the box is statistically significant). 
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To conclude, the scenario discovery indicates that the outcomes of interest for the 

central bank are located in inflation and output gap clusters 2. In those clusters, the 

output gap and inflation deviate relatively more from steady state, which may conflict 

with the policy objectives. The PRIM exercise shows that cluster 2 outcomes are 

associated with relatively low price flexibility and (with regard to inflation) high 

shock persistence. This suggests that under deep uncertainty, the central bank should 

focus its interest rate policy on states of the world that comprise low price flexibility 

and high shock persistence to prevent outcomes that conflict with the policy 

objectives. 

 

4. Results directed search 

4.1 Optimal policies 

This section discusses the results of the directed search, which is the search for Pareto 

optimal policies after a supply shock. The search is first conducted in the baseline 

scenario (assuming no uncertainty), for the policy objectives specified in section 2.3. 

We search over the range of the policy levers embedded in the Taylor rule: i.c. the 

response to inflation 𝜑𝜋 and the interest rate smoothing parameter 𝜌𝑟 (these levers 

are no uncertainties but values chosen by the central bank). Then, we introduce deep 

uncertainty by examining how the policies perform in the 15,000 scenarios for the 

uncertainties in the parameter and shock values. Finally, we assess the robustness of 

chosen policy strategies. 

 

The performance of the different policies under the baseline scenario assuming no 

uncertainty is visualised in Figure 3 (the coloured curves connecting the vertical lines 

represent different policies). The Figure shows the trade-off between optimising the 

inflation-related objectives and optimising the output gap-related objectives. This 

comes to the fore in the crossing of the curves between ’largest change inflation’ and 

’y max’. It shows that the objective of minimising the period-to-period change in 

inflation conflicts with aiming at limiting output gap deviations. This reflects the 

typical trade-off for monetary policy when it faces a negative supply shock. 
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Figure 3. The vertical line of each policy objective represents the range of all 

outcomes for that objective, for all policies. The objecties are: inflation rate around 

2% at end of policy horizon (pi_12), limit deviations of inflation from steady state 

level (pi_max), minimise periods with deflation (deflation_quarters), maximise 

quarters with inflation being between 2% and 4% 

(quarters_inside_inflation_domain), limit changes in inflation 

(largest_change_inflation), limit output gap deviations (y_max), limit changes in the 

output gap (y_std). The coloured curves connecting the vertical lines represent 

different policies, which cross the vertical lines at the value of the policy outcome for 

that objective. The crossing of the curves at the vertical lines indicate the 

performance of the optimal policies. For an objective that is minimised (maximised), 

the lower (upper) boundary of the outcome range is at the bottom (top) of the vertical 

line. The range of the vertical line is adjusted if there is a certain minimum or 

maximum value, such as the number of quarters in which deflation occurs and 

quarters in which inflation lies within a certain domain (both have a range of [0,12]). 

 

For different combinations of policy levers (𝜑𝜋 and 𝜌𝑟) the performance on an 

objective can be compared.  

Figure 4 plots the performance on an inflation objective (i.e. limiting deviations of 

inflation from steady state, in the left panel) and an output gap objective (i.e. limiting 

deviations of the output gap, in the right panel) for different optimal policies. The 

larger and darker the dots, the better the policy performance. The trade-off clearly 

shows up, as the preferred policies for one objective are the least preferred policies 

for the other objective. In addition, the optimal policies form a triangle, implying that 

there are no Pareto optimal policies that combine a relatively high 𝜑𝜋 (ie a strong 
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policy response to inflation which is desirable for the inflation objective) and low 𝜌𝑟 

(ie low interest rate smoothing which is desirable for the output gap objective). 

 

 

 
 

Figure 4. Policy levers (on the x and y axes) and policy performance (on the z-axis). 

Inflation objective (limiting deviations of inflation from steady state) in the left panel. 

Output gap objective (limiting output gap deviations) in the right panel. The 

policymaker prefers a small value for both objectives. The policy outcome for the 

objective is reflected in the size of the dot (bigger dot is preferred option) and colour 

(darker colour is preferred). The trade-off emerges as the colours and sizes in both 

panels are almost inverted. 

 

Based on their performance on the objectives, we end up with four policies that are 

optimal for a specific objective. Table 4 summarizes the values of the policy levers 

𝜑𝜋 and 𝜌𝑟 that distinguish the four policies, next to the baseline (policy 0). As shown 

in  

Figure 4, the policies that optimise inflation objectives have a higher value of 𝜑𝜋, 

while the objective of limiting output gap deviations requires a lower value of 𝜌𝑟. 

 

 

Table 4. Selected policies and the values of their levers. Policy 3(4) aims at limiting 

the deviations of inflation (output gap) from steady state. 
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Table 4 shows that policies 1 and 3 have comparable values for 𝜑𝜋 and 𝜌𝑟. Policies 

1, 2, and 3, which are optimised for inflation objectives, are most responsive to 

inflation (high 𝜑𝜋). Policy 4, which is optimised for the output gap objective, has a 

substantially lower inflation response parameter. Both policies 3 and 4 have a 

relatively low level of interest rate smoothing (𝜌𝑟), which – according to the finding 

in  

Figure 4 – serves the output gap objective.  

 

Figure 5 shows what the different values of the policy levers imply for the interest 

rate paths. The rate paths of policies 1 and 3 largely overlap. The interest rate path 

under policy 4 – the output gap optimising policy – is markedly higher than under 

the other policies. This is explained by the effect of 𝜑𝜋 and 𝜌𝑟 on inflation in the 

DSGE model. A low value of these parameters, as in policy 4, causes large deviations 

of inflation from the steady state, because low values of both policy levers imply that 

the interest rate initially is set too low to stabilise inflation after a negative supply 

shock. As a consequence, the central bank has to raise the interest rate quite 

aggressively to stabilise inflation over the policy horizon. 

 

 

 
Figure 5. Interest rate paths under different policies that are optimised for a specific 

objective. 

 

Next, we assess how the four policies perform under deep uncertainty, i.e., in the 

15,000 scenarios for the parameter and shock values. Figure 6 shows the areas of the 

outcomes for inflation (right-hand panels) and the output gap (left-hand panels). The 

blue areas reflect the outcomes of the baseline policy, and the red areas reflect the 
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outcomes of the other four policies. The dashed lines capture the outer boundaries of 

90% of the results.4 

 

The results show that policies 1, 2 and 3 (that are optimal for the inflation objectives) 

generally yield a lower inflation level than the baseline policy. Compared to the 

baseline, inflation is clearly higher with policy 4. This indicates that a low response 

to inflation (𝜑𝜋), as in policy 4, is not desirable for a central bank focusing on price 

stability under deep uncertainty. Important to note is that inflation at the end of the 

policy horizon (t=12) is within an acceptable range for all policies. 

 

Policy lever 𝜌𝑟  (interest rate smoothing) is low in case of policies 1, 3 and 4. Policy 

2 has a higher 𝜌𝑟 than policies 1 and 3, but a similar value of 𝜑𝜋. Since the inflation 

deviations under policies 1 and 3 are somewhat smaller than under policy 2, the 

outcomes suggest that low interest rate smoothing contributes to the price stability 

objectives. This result differs from the finding of Orphanides and Williams (2007), 

who conclude that a more aggressive response to inflation and higher degree of 

interest rate smoothing would be optimal for price stability in a situation with 

imperfect knowledge about certain model parameters. 

 

With regard to the output gap, policy 4 results in lower deviations from steady state 

compared to the baseline policy. Also, compared to policies 1, 2 and 3, policy 4 is 

more effective in limiting output gap deviations. This indicates that monetary policy 

characterised by a low response to inflation and low interest rate smoothing 

contributes to the output gap objectives. 

 

 
4 Because the distributions of the uncertainties are not validated, the this 90% statistic is less 

meaningful than in case of a known underlying distribution. 
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Figure 6. Ranges for inflation (left panels) and the output gap (right panels), for 

different policies under 15,000 scenarios. 

 

4.2 Robustness 

In this section, we assess the robustness of the four policies introduced in the previous 

section. The policies were optimised conditional on the absence of uncertainty. 

However, assuming deep uncertainty makes it imperative to evaluate the robustness 

of the policies in different states of the world. This assessment is based on various 

robustness metrics. For objectives with a continuous range, a regret metric is used. 

This metric measures how well the policy performs compared to best performing 

policy for each scenario. For objectives with a discrete range or that include a 

threshold, we use a satisficing metric. This metric reflects how many experiments 

have a desired performance. Lastly, we use some descriptive measures to assess the 

robustness of the policies. 

 

The overall finding based on the robustness metrics is that no policy clearly 

outperforms the others on the different objectives. Even though policy 3 (high 

response to inflation, low interest rate smoothing) has the least regret for the inflation 

objectives, it has the largest regret on output gap objectives (Table 5). If the central 

bank focuses mainly on the inflation rate at the end of the policy horizon (t=12), then 



24 

 

policy 2 (relative high interest rate smoothing) has the lowest regret for this objective. 

However, policy 2 has a higher regret than other policies for the objectives limiting 

deviations of inflation (i.e., maximum inflation) and period-to-period change in 

inflation. 

 

Table 5. Regret metrics for different policies. Least regret per metric in italics. The 

objective maximum inflation (output) refers to limiting the deviation of inflation 

(output gap) from the steady state level. 
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Table 6 shows the outcomes of the satisficing metrics, which are the fractions of cases 

out of 15,000 scenarios that satisfy certain thresholds. The metrics are all inflation-

oriented, since the output gap objectives were not formulated in terms of a threshold. 

Policy 3, which responds strongly to inflation and has low interest rate smoothing, 

scores best on the satisficing metrics. Policy 1 scores second best. Interestingly, 

policy 4, which optimises the output gap objectives, has a high satisficing score for 

the objective of price stability at the end of the horizon (inflation at t=12). This 

suggests that, although policy 4 does not perform well on this objective (according 

to Figure 6 in the previous section), it is quite robust for achieving price stability at 

t=12 in different states of the world. 
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Table 6. Satisficing metrics (fraction of cases out of 15,000 scenarios that satisfy the 

threshold) for different policies. Highest outcomes in italics. For quarters without 

deflation, the threshold is 0 quarters; for 12 quarters in the inflation domain, the 

threshold is 12 quarters; and for inflation at time t=12, the threshold is whether 

inflation is between 2% and 4% annually. 

 
 

The descriptive statistics display some more variation among the policies.5 Robust 

policies are associated with a low standard deviation. According to this criterion, 

policy 2 (relative high interest rate smoothing) is most robust with regard to the 

objective to limit the deviation of inflation at the end of the horizon (t=12). Policy 3 

(high inflation response, low smoothing) is most robust concerning the objective to 

limit large inflation deviations over time. Policy 4 is most robust with regard to the 

output gap objectives (cf., Table 7 and  

Table 8). 

 

Table 7. Descriptive statistics for two inflation objectives. Preferred values in italics. 

The objective Largest change inflation aims at limiting changes in inflation, as 

measured by the mean change (pi_change_means) and the standard deviation of the 

change in inflation (pi_change_std). The statistics are based on the 15,000 scenarios. 

 
 

Table 8. Descriptive statistics for output gap objectives, based on the 15,000 

scenarios. Preferred values in italics. 

 
 

 
5 We note that the distributions of the uncertainties are not validated. Hence, the descriptive metrics 

are only valid if the uncertainties follow the uniform distribution that we have assigned to them. 
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5. Discussion 

DSGE models differ from models to which EMA methods are usually applied. Such 

models mostly describe environmental problems, which may include dis-equilibrium 

dynamics and do not necessarily revert to a steady state following a shock. Also in 

economics, large and unprecedented shocks, such as the Global Financial Crisis of 

2008, may cause output and inflation to deviate from the steady state for a longer 

period of time than the horizon of monetary policy (Cerra et al., 2021). Moreover, 

DSGE models tend to converge to the steady state that is known ex-ante. Maier et al. 

(2016) show that a large part of the uncertainty in the models they discuss relates to 

the existence of uncertain futures. Also for these reasons EMA is a useful tool to 

analyse economic policy problems. 

 

Moreover, while policy trade-offs can show up in simulations with a DSGE model, 

such as the trade-off between inflation and output objectives, these do not present a 

wicked problem, as is sometimes the case in environmental sciences (Rittel and 

Webber, 1973). A wicked problem is characterised by complex interactions between 

interacting agents, bounded rationality and network effects linked to complex 

interconnectedness and systemic risks. Wicked problems can be addressed by 

complex adaptive systems approaches. DSGE models, like most structural macro 

models, take stylised assumptions that improve tractability, but do so at the expense 

of sacrificing some of the richness of the behaviour of the modelled systems (Kirman 

et al., 2020). 

 

Our application of EMA can also contribute to the expanding research on enhancing 

DSGE models with complexities which capture uncertainties. For instance, recent 

research on HANK type DSGE models combine heterogeneous agent models 

(macroeconomists’ workhorse framework for studying income and wealth 

distributions) with New Keynesian models (the basic framework for studying 

monetary policy and movements in aggregate demand, as we have used in our 

approach), see Kaplan et al. (2023). 
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Furthermore, economic agents will adjust their behaviour over time, also in response 

to policy measures (Lucas critique). For instance, in a situation where the central 

bank is very responsive to inflation with interest rate measures, agents may behave 

differently than in a situation where the central bank is more reluctant in changing 

the interest rate. This could imply that for each policy strategy a different distribution 

or range of uncertain parameters might have to be considered. This could be 

considered a priori, by changing the distribution for each policy when evaluating its 

performance and robustness, or a posteriori by including this in the interpretation of 

the results. 

 

Another criticism on structural macro models like DSGE models, is the assumption 

of time invariant parameters, also in the Taylor rule. Hurtado (2014) shows that the 

parameters in the DSGE models, including those assumed to be structural, change 

over time. From this, Storm (2021) concludes that users of DSGE models should be 

aware of the dynamics and be cautious about the effect of them on the outcomes. Our 

approach partly fills this awareness gap by assuming that - although the model 

parameters are time-invariant - they differ in each experiment. 

 

6. Conclusion 

We introduce EMA into economics and provide a novel way to address deep 

uncertainty in structural economic models, like DSGE models used by central banks. 

They usually make assumptions about the values of the parameters and shocks when 

applying those models. This introduces parametric and shock uncertainty. We show 

how EMA is useful to analyse how the model outcomes are affected by these 

uncertainties and we show the use of EMA to design policies that are robust to future 

unknown states of the world. Under those conditions, it is important to know the 

scenarios that are policy relevant; in other words, which combinations of parameters 

drive these outcomes of interest. Open exploration by EMA enables such a scenario 

discovery, by identifying which parameters and shock values are associated with the 

model outcome of interest. 

 

Applied to a negative supply shock in a basic DSGE model, the EMA open 

exploration shows that states of the world with low price flexibility and high shock 
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persistence drive model outcomes that are of interest to the central bank. Such states 

are associated with relatively large deviations of the output gap and inflation from 

steady state, by which the scenarios may lead to outcomes that conflict with the 

policy objectives. Moreover, a directed search finds that the policy levers, the 

parameters in the Taylor rule that the central bank can influence, also have a large 

influence on the economic dynamics following a negative supply shock. We find that, 

under deep uncertainty, a rather strong response to inflation contributes to the price 

stability objectives, while low interest rate smoothing contributes to both the inflation 

and output gap objectives. Both policies are also robust to uncertain states of the 

world. 

 

The results show that EMA can provide useful insights into DSGE models and 

support the central bank in designing robust policies. However, more steps are needed 

before the central bank can incorporate EMA in its toolkit and policy process. Our 

approach is based on a theoretical case and uses the most basic and stylized DSGE 

model. In practice, central banks use more complex DSGE models and/or have other 

policy interests than we have explored. That may require other objectives and 

robustness metrics.  

 

To apply EMA in the policy practice of central banks, collaborative research is 

needed to combine economic insights about the (practical) use of DSGE models with 

the EMA modeler’s experience to find the best suitable algorithms and methods to 

solve actual monetary policy problems. Future research is recommended to optimise 

the EMA methods and algorithms, such as adjusting the clustering algorithm for the 

time series after a supply shock, that best serve DSGE models and their 

functionalities in a situation of deep uncertainty. 

 

 

Literature 

 

Bankes, S. C. (1993), Exploratory Modeling for Policy Analysis, Operations 

Research, 41(3), 435-449. 

Bankes, S. C., Walker, W. E. and Kwakkel, J. H. (2013). Exploratory Modeling and 

Analysis. In G. S. and M. C. Fu (Eds.), Encyclopedia of Operations Research 

and Management Science (3rd ed.). Berlin, Germany: Springer. 

Bartholomew, E. and J.H. Kwakkel (2020), On considering robustness in the search 

phase of Robust Decision Making: A comparison of Many-Objective Robust 



30 

 

Decision Making, multi-scenario Many-Objective Robust Decision Making, and 

Many Objective Robust Optimisation, Environmental Modelling & Software, 

127. 

Ben-Haim, Y., M. Demertzis and J.W. van den End (2018), Evaluating monetary 

policy rules under fundamental uncertainty: an info-gap approach, Economic 

Modelling 73, 55-70. 

Boivin, J. and M. P. Giannoni (2006), Has Monetary Policy Become More Effective?, 

The Review of Economics and Statistics, 88(3), p. 445-462. 

Bryant, B. P. and R. J. Lempert (2010), Thinking Inside the Box: a participatory 

computer-assisted approach to scenario discovery, Technological Forecasting 

and Social Change, 77(1), 34-49. 

Čapek, J., J. Crespo Cuaresma, N. Hauzenberger and V. Reichel (2023), 

Macroeconomic forecasting in the euro area using predictive combinations of 

DSGE models, International Journal of Forecasting, 39(4), p. 1820-1838. 

Carceller del Arco, M. and J. W. van den End (2023), Robust monetary policy under 

shock uncertainty, DNB working paper, 793. 

Cerra, V., M. Hakamada and R. Lama (2021), Financial Crises, Investment Slumps, 

and Slow Recoveries, IMF working papers, 2021/170. 

Christiano, L. J., M. Trabandt and K. Walentin (2010), DSGE Models for Monetary 

Policy Analysis, NBER working paper, 16074. 

Dalal, S., B. Han, R. Lempert, A. Jaycocks and A. Hackbarth (2013), Improving 

scenario discovery using orthogonal rotations, Environmental Modelling & 

Software, 48, 49–64. 

Del Negro, M. and F. Schorfheide (2013), DSGE Model-Based Forecasting, Chapter 

2 in Handbook of Economic Forecasting, 2, p. 57-140, Elsevier. 

Dennis, R., K. Leitemo and U. Söderström (2009), Methods for robust control, 

Journal of Economic Dynamics and Control, 33(8), p. 1604-1616. 

Friedman, J. H. and N.I. Fisher (1999), Bump hunting in high-dimensional data, 

Statistics and computing, 9(2), 123–143. 

Galí, J. (2015), Monetary Policy, Inflation, and the Business Cycle: An Introduction 

to the New Keynesian Framework and Its Applications, Economics Books, 

Princeton University Press, edition 2. 

Giannoni, M.P. (2007), Robust Optimal Monetary Policy in a Forward-Looking 

Model with Parameter and Shock Uncertainty, Journal of Applied Econometrics 

, 22(1), 179-213. 

Górajski, M, Z. Kuchta and A. Leszczyńska-Paczesna (2023), Price-setting 

heterogeneity and robust monetary policy in a two-sector DSGE model of a 

small open economy, Economic Modelling, 122(C). 

Grassi, S., M. Leon-Ledesma and F. Ferroni (2016), Fundamental shock selection in 

DSGE models, Meeting Papers 47, Society for Economic Dynamics. 

Grigoli, F. (2015), A Hybrid Approach to Estimating the Efficiency of Public 

Spending on Education in Emerging and Developing Economies, Applied 

Economics and Finance, 2(1), 19-32. 

Haasnoot, M., J. H. Kwakkel, W. E. Walker and J. Ter Maat (2013), Dynamic 

adaptive policy pathways: A method for crafting robust decisions for a deeply 

uncertain world. Global environmental change, 23(2), 485–498. 

Hallegatte, S., A, Shah, C. Brown, R. Lempert and S. Gill (2012). Investment 

decision making under deep uncertainty–application to climate change. World 

Bank, Working paper, 6193. 



31 

 

Herman, J. D., P. M. Reed, H. B. Zeff and G. W. Characklis (2015), How should 

robustness be defined for water systems planning under change? Journal of 

Water Resources Planning and Management, 141(10), 04015012. 

Homaei, S. and M. Hamdy (2020). A robustness-based decision making approach for 

multi-target high performance buildings under uncertain scenarios. Applied 

Energy, 267, 114868. 

Hurtado, S. (2014), DSGE models and the Lucas critique, Economic Modelling, 44, 

S12–S19. 

Kaplan, G., B. Moll and G.L. Violante (2023), The very model of modern monetary 

policy, IMF Finance and developments, March 2023. 

Kirman, A., Dellink, R., Chateau, J., Barnes, S., Rovenskaya, E. , Dieckmann, U., 

van Ruijven, B. and K. Riahi (2020), Methodologies and Tools for Integrated 

Systems Modelling. In: Systemic Thinking for Policy Making: The Potential of 

Systems Analysis for Addressing Global Policy Challenges in the 21st Century, 

p. 29-38, Paris, France: New Approaches to Economic Challenges, OECD. 

Krugman, P. and R. Wells (2021), Macroeconomics. Worth Publishers, Macmillan 

Learning. 

Kwakkel, J. H., W.L. Auping and E. Pruyt (2013), Dynamic scenario discovery under 

deep uncertainty: The future of copper, Technological Forecasting and Social 

Change, 80(4), 789–800. 

Kwakkel, J. H. and E. Pruyt (2015), Using system dynamics for grand challenges: 

The esdma approach, Systems Research and Behavioural Science, 32(3), 358–

375. 

Kwakkel, J. H., M. Haasnoot and W. E. Walker (2016), Comparing robust decision-

making and dynamic adaptive policy pathways for model-based decision support 

under deep uncertainty. Environmental Modelling & Software, 86, p. 168-183. 

Kwakkel, J. H. and M. Jaxa-Rozen (2016), Improving scenario discovery for 

handling heterogeneous uncertainties and multinomial classified outcomes, 

Environmental Modelling & Software, 79, 311–321. 

Kwakkel, J. H. (2017), The exploratory modeling workbench: An open source toolkit 

for exploratory modeling, scenario discovery, and (multi-objective) robust 

decision making, Environmental Modelling & Software, 96, 239–250. 

Lempert, R. J., S.W. Popper and S.C. Bankes (2003), Shaping the Next One Hundred 

Years: New Methods for Quantitative, Long-Term Policy Analysis, 

Technological Forecasting and Social Change, RAND. 

Lempert, R. J., D. G. Groves, S. W. Popper and S. C. Bankes (2006), A General, 

Analytic Method for Generating Robust Strategies and Narrative Scenarios. 

Management Science, 52(4), 514-528. 

Maier, H. R., J. H. Guillaume, H. van Delden, G.A. Riddell, M. Haasnoot and J. H. 

Kwakkel (2016), An uncertain future, deep uncertainty, scenarios, robustness 

and adaptation: How do they fit together? Environmental modelling & software, 

81, p. 154 -164. 

McKay, M. D., R.J. Beckman and W.J. Conover (1979), A Comparison of Three 

Methods for Selecting Values of Input Variables in the Analysis of Output from 

a Computer Code, Technometrics, 21(2), 239-245. 

McPhail, C., H. R. Maier, J. H. Kwakkel, E. Giuliani, A. Castelletti and S. Westra 

(2018), Robustness metrics: How are they calculated, when should they be used 

and why do they give different results? Earth's Future. 

Moallemi, E.A., J. Kwakkel, J. Fjalar, J. de Haan and B. A. Bryan (2020), Exploratory 

modeling for analysing coupled human-natural systems under uncertainty, 

Global Environmental Change, 65. 



32 

 

Olalla, M. G. and A. R. Gómez (2011), Robust control and central banking behaviour, 

Economic Modelling, 28(3), 1265-1278. 

Orphanides, A. and J. C. Williams (2007), Robust monetary policy with imperfect 

knowledge, Journal of Monetary Economics, 54(5), 1406-1435. 

Ratto, M. (2008), Analysing DSGE Models with Global Sensitivity Analysis, 

Computational Economics, 31(2), p. 115-139. 

Rittel, H. W. J. and M. W. Webber (1973), Dilemmas in a General Theory of Planning, 

Policy Sciences, 4(2), 155-169. 

Smets, F. and R. Wouters (2003), An Estimated Dynamic Stochastic General 

Equilibrium Model of the Euro Area, Journal of the European Economic 

Association, MIT Press, 1(5), p. 1123-1175. 

Statnikov, R. B. and J. B. Matusov (2012). Multicriteria optimisation and 

engineering. Springer Science & Business Media. 

Steinmann, P., W.L. Auping, and J.H. Kwakkel (2020). Behaviour-based scenario 

discovery using time series clustering. Technological Forecasting and Social 

Change, 156, 120052. 

Storm, S. (2021), Cordon of conformity: Why DSGE models are not the future of 

macroeconomics, International Journal of Political Economy, 50(2), 77–98. 

Taylor, J.B. and J. C. Williams (2010), Simple and robust rules for monetary policy, 

Working Paper 2010-10, Federal Reserve Bank of San Francisco. 

Xiao B., Y. Fan and X. Guo (2018), Exploring the macroeconomic fluctuations under 

different environmental policies in China: a DSGE approach, Energy 

Economics, 76, p. 439–456. 

Walker, W., V. Marchau and J. Kwakkel (2013), Uncertainty in the framework of 

policy analysis, in W. Walker and W. Thissen (Eds.), Public policy analysis : 

New developments, p. 215–261, Springer. 

 



De Nederlandsche Bank N.V.  

Postbus 98, 1000 AB Amsterdam 

020 524 91 11 

dnb.nl


