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Motivation and aims
I Density of the residuals from a recursive VAR(13)
(1960m1-2015m6)



Motivation and aims

I Describe a BVAR model that features non-normal disturbances
I The non-normality is introduced in the model through a finite
mixture of normals

I Consider if this specification can improve point and density
forecasting performance

I Application to yield curve forecasting.



Related papers

I Closely related to Chiu et al. (2014).
I Kalliovirta et al. (2016) explore a similar model in a
frequentist setting. Related to multivariate STAR model of
Dueker et al. (2011).

I Non-normality explored in Curdia et al. (2013) for DSGE
models.

I Villani et al. (2009) describe regression models with Gaussian
mixtures.

I Econometric background in Koop (2003), Geweke (2005).
I Canova (1993), Sims (1992) explore the causes/implications
of non-normality.



BVAR model with Non-normal disturbances

The BVAR model is defined as follows

yt = B1yt−1 + · · ·+ Bpyt−p + ut t = 1, . . . ,T . (1)

The covariance matrix of the residuals is defined as

cov(ut ) = Σ = A−1HA−1
′

(2)

The orthogonalised residuals are given by

et = Aut



BVAR model with Non-normal disturbances
The shock to the ith equation is assumed to follow:

eit = αi ,Sit + σi ,Sit εit , εit˜N(0, 1) (3)

where Sit = 1, 2, ...M denotes the unobserved components or
regimes.

I The formulation in equation 3, describes a mixture of M
distributions where each component is N

(
αi , σ

2
i

)
. The state

variable S determines the component that is active at a
particular point in time.

I The law of motion for Sit is chosen to be first order Markov
process with transition probabilities

Pi (Si ,t = J |Si ,t−1 = I ) = pi ,IJ (4)

I pi ,IJ can depend on a vector of unobserved variables
Pi (Si ,t = J |Si ,t−1 = I ) = pi ,IJ (zt )



BVAR model with Non-normal disturbances

I The orthogonal shocks are described by a finite mixture of
normals.

I If αi ,Sit are the same across components, the distribution is
symmmetric but can have fat tails

I If αi ,Sit vary, the distribution can be skewed and have a
kurtosis less than 3.



BVAR model with Non-normal disturbances

I The VAR model proposed above can also be interpreted as a
Markov Switching VAR model (see Hamilton (1994)).(

Yt
Xt

)
=

(
b11 b12
b21 b22

)(
Yt−1
Xt−1

)
+

(
u1t
u2t

)
(5)(

e1t
e2t

)
=

(
1 0
A21 1

)(
u1t
u2t

)
(6)

where e1t = α1,S1t + σ1,S1t ε1t and e2t = α2,S2t + σ2,S2t ε2t



BVAR model with Non-normal disturbances

Combining these equations we get:(
Yt
Xt

)
=(

b11 b12
b21 b22

)(
Yt−1
Xt−1

)
+

(
1 0
A21 1

)−1 (
α1,S1t
α2,S2t

)
+(

1 0
A21 1

)−1 (
σ1,S1t 0
0 σ2,S2t

)(
ε1t
ε2t

)
Intercepts:

(
α1,S1t

α2,S2t − A21α1,S1t

)
Covariance:

(
σ21,S1t −A21σ21,S1t

−A21σ21,S1t σ21,StA
2
21 + σ22,S2t

)
I n different Markov chains govern the regime switches of the
reduced form



Estimation

We adopt a Bayesian approach to estimation. This has two
advantages

I The marginal likelihood can be used to select the number of
components

I A small extension of the MCMC algorithm provides the
predictive density.



Estimation

Given B,A the model can be written as

eit = αi ,Sit + σi ,Sit εit

I Given Sit , this is sequence of linear regressions and the draws
from the conditional posterior of α and σ2 are standard.
Impose αi ,Sit=1 < αi ,Sit=2 < ... < αi ,Sit=M

I Given α and σ2, Sit can be drawn using the Hamilton filter and
the backward recursion described in Kim and Nelson (1999)
and transition probabilities from the Dirichlet distribution.

I Given α and σ, the remaining parameters involve VARs,
regressions with heteroscedasticity and standard methods
apply after a GLS transformation



Model Selection

I We carry out model selection by comparing the marginal
likelihood across models with a different number of
components. The marginal likelihood is defined as:

f (ỹ) =
∫
f (ỹ |Ξ) p (Ξ) dΞ (7)

where ỹ = [y1, y2, .., yT ], Ξ denotes the unknown parameters
of the model, f (ỹ |Ξ) is the likelihood and p (Ξ) is the proper
prior distribution.

I As is well known, the integration problem in equation 7 is
non-trivial and several numerical methods have been proposed
for this

I We use two methods Gelfand and Dey (1994) estimator and
the bridge estimator Meng and Wong (1996)

I We also consider AIC, BIC and DIC.



Estimation on Artificial data

I The paper presents a Monte-Carlo experiment which shows
some evidence that:

1. The MCMC algorithm displays a reasonable performance
2. ML estimators select the correct model almost 100% of the
time

3. AIC and SIC perform well, but DIC tends to select the more
complex model.



Empirical Application: Modelling and Forecasting the yield
curve

I The Yield curve and the economy are closely related and thus
it is interesting to forecast yields ( Diebold et al. (2006))

I Note, however, that some recent papers have pointed out that
the dynamics of the yield curve are subject to structural shifts.
(For example, Mumtaz and Surico (2009) and Bianchi et al.
(2009))

I In addition, it is well known that yields at longer maturities
have been trending downwards in recent years (i.e.
‘Greenspan’s conundrum’).



Empirical Application: Modelling and Forecasting the yield
curve

I Following Diebold and Li (2006) we use the Nelson and Siegel
(1987) specification.

I Letting yt (τ) denote zero coupon government bond yields at
maturity τ, the Nelson and Siegel (1987) model is defined as:

yt (τ) = β1t + β2t

(
1− e−λtτ

λtτ

)
+ β3t

(
1− e−λtτ

λtτ
− e−λtτ

)
(8)

where λt controls the exponential decay rate.
I The level, slope and the curvature of the yield curve are
captured by β1t , β2t and β3t , respectively which can be
estimated via OLS.



Empirical Application: Modelling and Forecasting the yield
curve

I The dynamics of the factors can be modelled as a VAR
process which is used in Diebold and Li (2006) to produce out
of sample forecasts. In this section, we compare this VAR
specification with the following extended model:

Zt =
L

∑
l=1

BlZt−l + ut

where Zt = {β1t , β2t , β3t} and et = Aut . The orthogonal
shock to the ith equation of the VAR is a Markov mixture of
normals:

eit = αi ,Sit + σi ,Sit εit , εit ∼ N(0, 1) (9)



Empirical Application: Modelling and Forecasting the yield
curve

I ML suggests a model with 2 components



Empirical Application: Modelling and Forecasting the yield
curve



Empirical Application: Modelling and Forecasting the yield
curve



Forecasting performance

I Estimate up to December 1979. Then each model is
estimated recursively adding one month of data at a time
until January 2015. At each recursion, we produce a 12
month density forecast for the three factors from

1. Proposed model with 2 and 3 components (M2-VAR and
M3-VAR)

2. A BVAR with T errors
3. A BVAR with SVOL

I We assess the point forecasts using root mean squared errors
(RMSE) and the density forecasts using the continuous rank
probability score (CRPS) as it is less sensitive to outlier
outcomes (see Gneiting and Raftery (2007)). We consider the
performance over the full sample and over the



Forecasting performance

I Over the full sample, the performance of these models is very
similar and deliver a gain of about 10% over the BVAR.

I The proposed model with two components delivers point and
density forecasts for the level of the yield curve that are more
accurate than those obtained from the competing models.

I Over the post-1990 forecast sample, the improvement in
forecasting performance over the BVAR is substantially larger.
The M2-VAR delivers RMSEs in forecasting the level factor
which are more than 20% lower than those obtained from the
BVAR model.

I The performance of the SVOl-VAR is similar at short horizons.
The proposed model does better at the one year horizon.



Summary

I We introduce Non-Gaussian disturbances in a BVAR model
and provide the Gibbs algorithm.

I Provide evidence of non-normality in shocks using a US BVAR
model.

I The proposed model may be useful in forecasting variables
over more tranquil periods

I Forecasting Macroeconomic variables
I Looking at a wider range of countries
I Asymmetric number of components
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