Discussion of the paper "Sustainable Financial Obligations and Crisis Cycles"

presented by Mikael Juselius

Cees Diks

CeNDEF, University of Amsterdam

DNB, October 3rd, 2011

Summary

- Idea: sustainable debt (economic stability) versus excessive debt (economic instability)
- Authors propose to distinghuish these based on financial obligations ratios (measure of aggregate liquidity constraints)
- Smooth transition regression model
- Above threshold, interaction between credit loss and the business cycle intensifies
- Empirical results: threshold exceedances 1–2 years prior to recession (3/3 for business loans, 2/3 for household loans)

(ロ) (同) (E) (E) (E)

Main lessons

- Leverage ratios may not be the most suitable variables to signal impending crises
- Confirmed empirically to the extent that measures of leverage lead to poor fits and/or threshold estimates outside data range
- *Financial obligations ratios* seem more relevant, as they appear to be associated with regime shifts in the dynamics in the credit loss rates accompanying financial distress
- Role of nonlinearity pointing towards *bounded rationality* and *heterogeneity*

(ロ) (同) (E) (E) (E)

• Possible basis for Early Warning Systems (EWSs)

Data mining?

Tests of linearity vs. regime shifts											
1985Q1-2006Q2											
$\tilde{cl}_t^j \setminus \tau_t$	\tilde{i}_t^T	\tilde{i}_t^S	p_t^R	l_t^{HT}	l_t^{HR}	l_t^{BT}	l_t^{BR}	f_t^{HT}	f_t^{HR}	f_t^{BT}	f_t^{BR}
\tilde{cl}_t^T	0.244	0.170	0.918	0.828	0.719	0.535	0.419	0.963	0.406	0.780	0.570
\tilde{cl}_t^R	0.330	0.085	0.187	0.363	0.597	0.489	0.688	0.108	0.085	0.221	0.583
\tilde{cl}_t^B	0.559	0.582	0.249	0.370	0.408	0.072	0.256	0.132	0.929	0.141	0.420
1985Q1-2010Q2											
$\tilde{cl}_t^j \setminus \tau_t$	\tilde{i}_t^T	\tilde{i}_t^S	p_t^R	l_t^{HT}	l_t^{HR}	l_t^{BT}	l_t^{BR}	f_t^{HT}	f_t^{HR}	f_t^{BT}	f_t^{BR}
\tilde{cl}_t^T	0.819	0.021	0.034	0.016	0.013	0.011	0.012	0.181	0.041	0.411	0.037
\tilde{cl}_t^R	0.617	0.015	0.168	0.059	0.042	0.052	0.021	0.738	0.018	0.940	0.054
\tilde{cl}_t^B	0.784	0.338	0.068	0.048	0.049	0.006	0.029	0.058	0.151	0.021	0.064

Table 2: Tests of linearity against a STR alternative. Boldface values indicate rejection of the null hypothesis at the 5% significance level.

Model estimates presented are selected based on

- Significance of test for linearity against a smooth transition regression (STR) alternative (Table 2)
- Estimated threshold variable being within data range
- Higher likelihood (better fit)

Combining indicators?

The authors sequentially try different financial obligations ratio's as threshold variables

Why not model the threshold variable as a linear combination of (some of) the available obligation ratio's?

Threshold model parameter estimates

STR estimates										
		Transition	n parameters	Regir	ne 1	Regime 2				
$\tilde{cl}_{\underline{t}}^{i}$	$ au_t$	κ_1	κ_2	$\gamma_{\tilde{i}^S}$	$\gamma_{ ilde{y}}$	$\gamma_{\tilde{i}^S}$	$\gamma_{ ilde{y}}$			
\tilde{cl}_t^T	f_t^{HR}	$\underset{\scriptscriptstyle(5.630)}{12.678}$	$\underset{\scriptscriptstyle(0.056)}{\textbf{10.192}}$	-0.063 $_{(0.034)}$	$\begin{array}{c} 0.002 \\ (0.045) \end{array}$	$-0.276 \atop (0.094)$	-0.224 $_{(0.051)}$			
\tilde{cl}_t^R	f_t^{HR}	$\underset{(1.128)}{\textbf{3.609}}$	$\underset{\scriptscriptstyle(0.106)}{\textbf{10.079}}$	-0.023 (0.041)	-0.051 (0.038)	-0.267	-0.243 (0.049)			
\tilde{cl}_t^B	f_t^{BT}	$\underset{\left(0.968\right)}{\textbf{2.318}}$	$\underset{(0.199)}{\textbf{10.44}}$	$-0.249 \atop (0.085)$	_	$\underset{\scriptscriptstyle(0.119)}{-0.619}$	_			

Table 3: Estimated transition parameters and regime coefficients from STR-models of the adjusted credit loss rates. Boldface values indicate significance at the 5% level (standard errors in parenthesis).

- Why are the estimates for κ₂ in Table 3 so close? Is there some universal principle underlying these values?
- The transitions between regimes are claimed to be 'rather fast'. But how can we judge that just from κ₁? This would depend on the range of the threshold variable.
- A scatterplot of (τ_t, φ(τ_t)) might be helpful to judge how fast the regime transition is relative to the spread in τ_t.

イロン 不良 とくほう 不良 とうほ

The estimated transition functions

A = A = A = A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A = A
 A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< ∃→

æ

Where are we now?

ĝ

A D > A B > A 3 × < ∃→

8/10

How to construct an operational Early Warning System based on the results?

- Most of the threshold exceedances discussed are in-sample
- What would be the out-of-sample performance of an Early Warning System based on the proposed methodology, i.e. using only info available at the time?
- One tentative test of the out-of-sample performance is mentioned (prediction of the deep recession of the early 80's)
- However, no details are given regarding e.g. how to deal with the (non-causal) Hodrick-Prescott filtering in a real out-of-sample setting
- Timing: even if a build-up of tension can be detected, it may be hard to predict when the system will collapse

イロト 不良 とく ヨト イヨト 二日

Conclusions/policy implications

- *Financial obligations ratios* may be more suited to monitoring the build-up of instabilities than leverage ratios
- Empirical evidence for *nonlinearity* in the interaction between credit loss and the business cycle (different dynamic regimes)
- Recurrent nature of debt accumulation inconsistent with most theoretical models
- Models explicitly taking into account *bounded rationality* and *heterogeneity* are promising
- Financial obligations ratios may be used as Early Warning indicators, but implementation requires further work, in particular regarding out-of-sample evaluation

