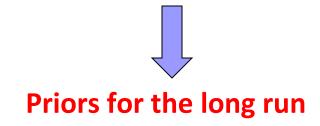
Domenico Giannone New York Fed Michele Lenza European Central Bank

Giorgio Primiceri Northwestern University

19th Annual DNB Research Conference September 30, 2016 Propose a class of prior distributions for VARs that discipline the long-run implications of the model

Propose a class of prior distributions for VARs that discipline the long-run implications of the model



- Properties
 - Based on macroeconomic theory
 - \succ Conjugate \rightarrow Easy to implement and combine with existing priors

- Perform well in applications
 - Good (long-run) forecasting performance

Outline

- A specific pathology of (flat-prior) VARs
 - > Too much explanatory power of initial conditions and deterministic trends
 - Sims (1996 and 2000)

- Priors for the long run
 - > Intuition
 - Specification and implementation

Alternative interpretations and relation with the literature

Application: macroeconomic forecasting

• AR(1): $y_t = c + \rho y_{t-1} + \varepsilon_t$

• AR(1):
$$y_t = c + \rho y_{t-1} + \varepsilon_t$$

Iterate backwards:

$$y_{t} = \rho^{t} y_{0} + \sum_{j=0}^{t-1} \rho^{j} c + \sum_{j=0}^{t-1} \rho^{j} \varepsilon_{t-j}$$

• AR(1):
$$y_t = c + \rho y_{t-1} + \varepsilon_t$$

Iterate backwards:

$$y_{t} = \rho^{t} y_{0} + \sum_{j=0}^{t-1} \rho^{j} c + \sum_{j=0}^{t-1} \rho^{j} \varepsilon_{t-j}$$
DC SC

- Model separates observed variation of the data into
 - DC: deterministic component, predictable from data at time 0
 - SC: unpredictable/stochastic component

• AR(1):
$$y_t = c + \rho y_{t-1} + \varepsilon_t$$

Iterate backwards:

$$y_{t} = \rho^{t} y_{0} + \sum_{j=0}^{t-1} \rho^{j} c + \sum_{j=0}^{t-1} \rho^{j} \varepsilon_{t-j}$$
DC SC

- Model separates observed variation of the data into
 - DC: deterministic component, predictable from data at time 0
 - SC: unpredictable/stochastic component
- If $\rho = 1$, DC is a simple linear trend: $DC = y_0 + c \cdot t$

• AR(1):
$$y_t = c + \rho y_{t-1} + \varepsilon_t$$

Iterate backwards:

$$y_{t} = \rho^{t} y_{0} + \sum_{j=0}^{t-1} \rho^{j} c + \sum_{j=0}^{t-1} \rho^{j} \varepsilon_{t-j}$$
DC SC

- Model separates observed variation of the data into
 - DC: deterministic component, predictable from data at time 0
 - SC: unpredictable/stochastic component
- If *ρ* = 1, DC is a simple linear trend:

$$DC = y_0 + c \cdot t$$

• Otherwise more complex:

$$DC = \frac{c}{1-\rho} + \rho^t \left(y_0 - \frac{c}{1-\rho} \right)$$

Pathology of (flat-prior) VARs (Sims, 1996 and 2000)

- OLS/MLE has a tendency to "use" the complexity of deterministic components to fit the low frequency variation in the data
- Possible because inference is typically conditional on **y**₀
 - No penalization for parameter estimates of implying steady states or trends far away from initial conditions

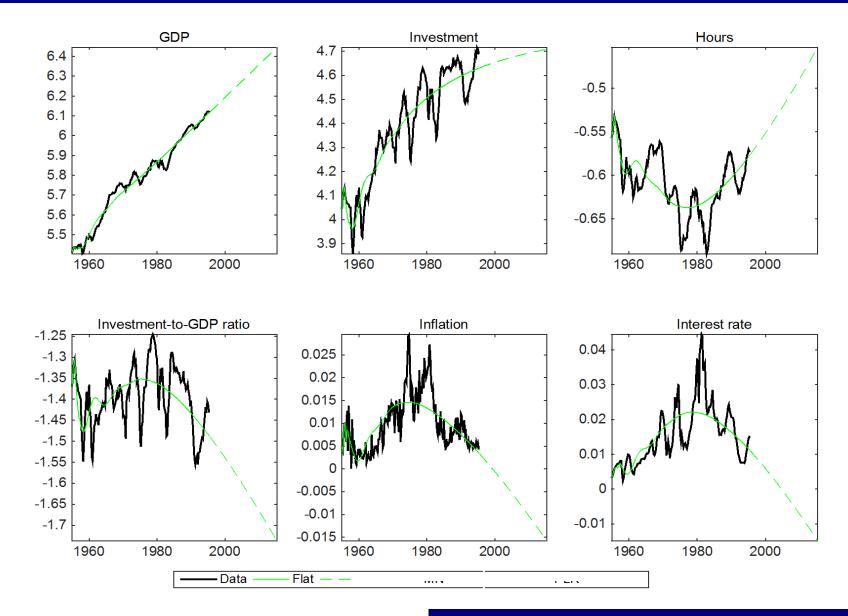
Deterministic components in VARs

- Problem more severe with VARs
 - implied deterministic component is much more complex than in AR(1) case

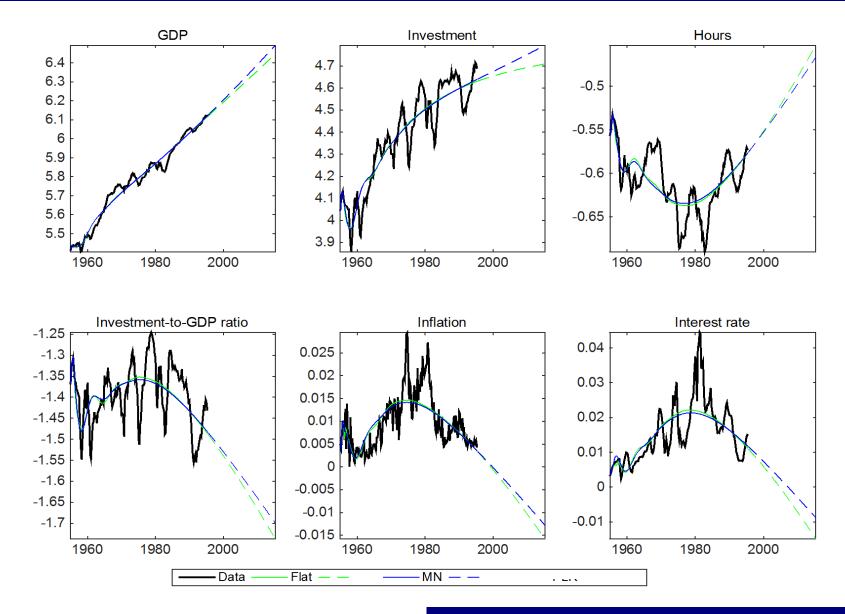
Deterministic components in VARs

- Problem more severe with VARs
 - implied deterministic component is much more complex than in AR(1) case
- Example: 7-variable VAR(5) with quarterly data on
 - GDP
 - Consumption
 - Investment
 - Real Wages
 - Hours
 - Inflation
 - Federal funds rate
- Sample: 1955:I 1994:IV
- Flat or Minnesota prior

"Over-fitting" of deterministic components in VARs



"Over-fitting" of deterministic components in VARs



Pathology of (flat-prior) VARs (Sims, 1996 and 2000)

- OLS/MLE has a tendency to "use" the complexity of deterministic components to fit the low frequency variation in the data
- Possible because inference is typically conditional on **y**₀
 - No penalization for parameter estimates of implying steady states or trends far away from initial conditions
- Flat-prior VARs attribute an (implausibly) large share of the low frequency variation in the data to deterministic components

Pathology of (flat-prior) VARs (Sims, 1996 and 2000)

- OLS/MLE has a tendency to "use" the complexity of deterministic components to fit the low frequency variation in the data
- Possible because inference is typically conditional on **y**₀
 - No penalization for parameter estimates of implying steady states or trends far away from initial conditions
- Flat-prior VARs attribute an (implausibly) large share of the low frequency variation in the data to deterministic components

- Need a prior that downplays excessive explanatory power of initial conditions and deterministic component
- One solution: center prior on "non-stationarity"

Outline

- A specific pathology of (flat-prior) VARs
 - Too much explanatory power of initial conditions and deterministic trends
 - > Sims (1996 and 2000)

Priors for the long run

- Intuition
- Specification and implementation

Alternative interpretations and relation with the literature

Application: macroeconomic forecasting

$$VAR(1): \quad y_t = c + By_{t-1} + \varepsilon_t, \qquad \varepsilon_t \sim N(0, \Sigma)$$

$$VAR(1): y_t = c + By_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim N(0, \Sigma)$$

Rewrite the VAR in terms of levels and differences:

$$\Delta y_t = c + \Pi y_{t-1} + \varepsilon_t$$
$$\Pi = B - I$$

$$VAR(1): y_t = c + By_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim N(0, \Sigma)$$

Rewrite the VAR in terms of levels and differences:

$$\Delta y_t = c + \Pi y_{t-1} + \varepsilon_t$$
$$\Pi = B - I$$

Prior for the long run

prior on \prod centered at 0

$$VAR(1): y_t = c + By_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim N(0, \Sigma)$$

Rewrite the VAR in terms of levels and differences:

$$\Delta y_t = c + \Pi y_{t-1} + \varepsilon_t$$
$$\Pi = B - I$$

• Prior for the long run \square prior on \prod centered at 0

Standard approach (DLS, SZ, and many followers)

> Push coefficients towards all variables being independent random walks

$$\Delta y_t = c + \Pi y_{t-1} + \varepsilon_t$$

Rewrite as

$$\Delta y_t = c + \underbrace{\prod_{\Lambda} H^{-1}}_{\Lambda} \underbrace{Hy_{t-1}}_{\tilde{y}_{t-1}} + \varepsilon_t$$

$$\Delta y_t = c + \Pi y_{t-1} + \varepsilon_t$$

Rewrite as

$$\Delta y_t = c + \underbrace{\prod_{\Lambda} H^{-1}}_{\Lambda} \underbrace{Hy_{t-1}}_{\tilde{y}_{t-1}} + \varepsilon_t$$

• Choose *H* and put prior on *A* conditional on *H*

$$\Delta y_t = c + \Pi y_{t-1} + \varepsilon_t$$

Rewrite as

$$\Delta y_t = c + \underbrace{\prod_{\Lambda} H^{-1}}_{\Lambda} \underbrace{Hy_{t-1}}_{\tilde{y}_{t-1}} + \varepsilon_t$$

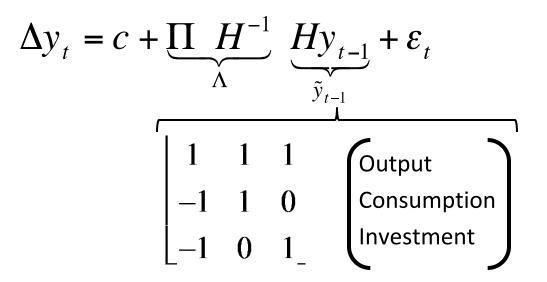
- Choose *H* and put prior on *A* conditional on *H*
- Economic theory suggests that some linear combinations of y are less(more) likely to exhibit long-run trends

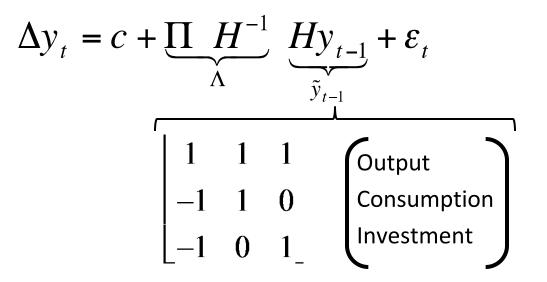
$$\Delta y_t = c + \Pi y_{t-1} + \varepsilon_t$$

Rewrite as

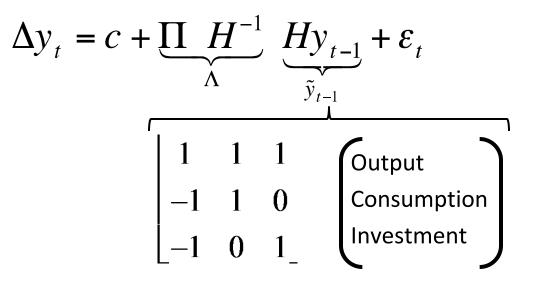
$$\Delta y_t = c + \underbrace{\prod H^{-1}}_{\Lambda} \underbrace{Hy_{t-1}}_{\tilde{y}_{t-1}} + \varepsilon_t$$

- Choose *H* and put prior on *A* conditional on *H*
- Economic theory suggests that some linear combinations of y are less(more) likely to exhibit long-run trends
- Loadings associated with these combinations are less(more) likely to be 0





$$\begin{bmatrix} \Delta x_t \\ \Delta c_t \\ \Delta i_t \end{bmatrix} = c + \begin{bmatrix} \Lambda_{11} & \Lambda_{12} & \Lambda_{13} \\ \Lambda_{21} & \Lambda_{22} & \Lambda_{23} \\ \Lambda_{31} & \Lambda_{32} & \Lambda_{33} \end{bmatrix} \begin{bmatrix} x_{t-1} + c_{t-1} + i_{t-1} \\ c_{t-1} - x_{t-1} \\ i_{t-1} - x_{t-1} \end{bmatrix} + \varepsilon_t$$



$$\begin{bmatrix} \Delta x_t \\ \Delta c_t \\ \Delta i_t \end{bmatrix} = c + \begin{bmatrix} \Lambda_{11} & \Lambda_{12} & \Lambda_{13} \\ \Lambda_{21} & \Lambda_{22} & \Lambda_{23} \\ \Lambda_{31} & \Lambda_{32} & \Lambda_{33} \end{bmatrix} \begin{bmatrix} x_{t-1} + c_{t-1} + i_{t-1} \\ c_{t-1} - x_{t-1} \\ i_{t-1} - x_{t-1} \end{bmatrix} + \varepsilon_t$$

Possibly stationary linear combinations

$$\Delta y_{t} = c + \prod_{\Lambda} H^{-1} H^{-1} H^{-1} + \varepsilon_{t}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \xrightarrow{V_{t-1}} Common trend$$

$$\begin{bmatrix} \Delta x_{t} \\ \Delta c_{t} \\ \Delta i_{t} \end{bmatrix} = c + \begin{bmatrix} \Lambda_{11} & \Lambda_{12} & \Lambda_{13} \\ \Lambda_{21} & \Lambda_{22} & \Lambda_{23} \\ \Lambda_{31} & \Lambda_{32} & \Lambda_{33} \end{bmatrix} \begin{bmatrix} x_{t-1} + c_{t-1} + i_{t-1} \\ c_{t-1} - x_{t-1} \\ i_{t-1} - x_{t-1} \end{bmatrix} + \varepsilon_{t}$$
Possibly stationary linear combinations

$$\Delta y_{t} = c + \prod_{\Lambda} H^{-1} H^{-1} H^{-1} + \varepsilon_{t}$$

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} \xrightarrow{\text{Output}} \text{Consumption}$$

$$\begin{bmatrix} \Delta x_{t} \\ \Delta c_{t} \\ \Delta i_{t} \end{bmatrix} = c + \begin{bmatrix} \Lambda_{11} \\ \Lambda_{21} \\ \Lambda_{31} \end{bmatrix} \xrightarrow{\Lambda_{12} \Lambda_{13}} \begin{bmatrix} \Lambda_{12} & \Lambda_{13} \\ \Lambda_{22} & \Lambda_{23} \\ \Lambda_{32} & \Lambda_{33} \end{bmatrix} \xrightarrow{x_{t-1} + c_{t-1} + i_{t-1}} \\ \xrightarrow{c_{t-1} - x_{t-1}} \\ \xrightarrow{c_{t-1} - x_{t-1}} \end{bmatrix} + \varepsilon_{t}$$
Possibly stationary linear combinations

$$\Delta y_{t} = c + \underbrace{\prod_{\Lambda} H^{-1}}_{\Lambda} \underbrace{Hy_{t-1}}_{\tilde{y}_{t-1}} + \varepsilon_{t}$$

•
$$\Lambda_{\cdot i} \mid H, \Sigma \sim N \left(0, \phi_i^2 \frac{\Sigma}{\left(H_i y_0\right)^2} \right), \qquad i=1,...,n$$

$$\Delta y_{t} = c + \underbrace{\prod_{\Lambda} H^{-1}}_{\Lambda} \underbrace{Hy_{t-1}}_{\tilde{y}_{t-1}} + \varepsilon_{t}$$

$$\Lambda_{\cdot i} \mid H, \Sigma \sim N \left(0, \phi_{i}^{2} \frac{\Sigma}{\left(H_{i}, y_{0}\right)^{2}} \right), \qquad i = 1, ..., n$$

Conjugate

Can implement it with Theil mixed estimation in the VAR in levels

$$\Delta y_{t} = c + \underbrace{\prod H^{-1}}_{\Lambda} \underbrace{Hy_{t-1}}_{\tilde{y}_{t-1}} + \varepsilon_{t}$$

$$= \Lambda_{\cdot i} \mid H, \Sigma \sim N \left(0, \phi_{i}^{2} \frac{\Sigma}{\left(H_{i}, y_{0}\right)^{2}} \right), \qquad i = 1, ..., n$$

Conjugate

- Can implement it with Theil mixed estimation in the <u>VAR in levels</u>
- Can be easily combined with existing priors

$$\Delta y_{t} = c + \underbrace{\prod H^{-1}}_{\Lambda} \underbrace{Hy_{t-1}}_{\tilde{y}_{t-1}} + \varepsilon_{t}$$
$$\Lambda_{\cdot i} \mid H, \Sigma \sim N \left(0, \phi_{i}^{2} \frac{\Sigma}{\left(H_{i} y_{0}\right)^{2}} \right), \qquad i = 1, ..., n$$

Conjugate

- Can implement it with Theil mixed estimation in the VAR in levels
- Can be easily combined with existing priors
- Can compute the ML in closed form
 - Useful for hierarchical modeling and setting of hyperparameters ϕ (GLP, 2013)

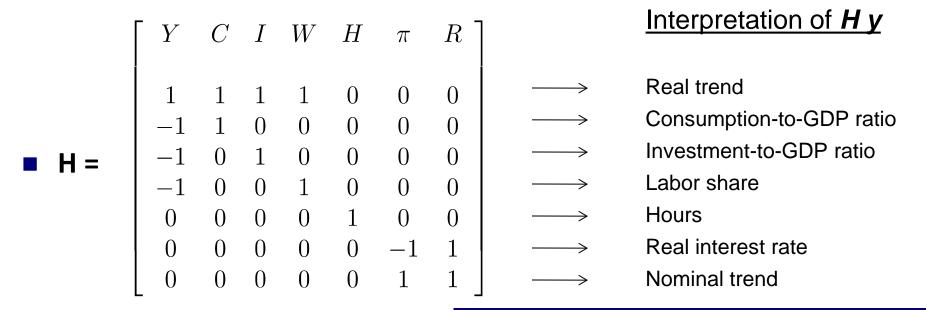
Empirical results

- Deterministic component in 7-variable VAR
- Forecasting
 - 3-variable VAR
 - 5-variable VAR
 - 7-variable VAR

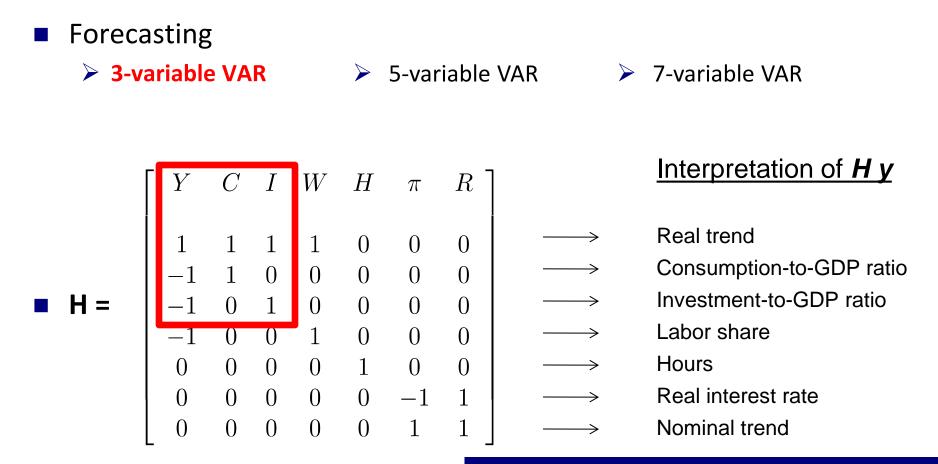
Deterministic component in 7-variable VAR

- Deterministic component in 7-variable VAR
 - GDP, Consumption, Investment, Real Wages, Hours, Inflation, Interest Rate

- Deterministic component in 7-variable VAR
 - GDP, Consumption, Investment, Real Wages, Hours, Inflation, Interest Rate



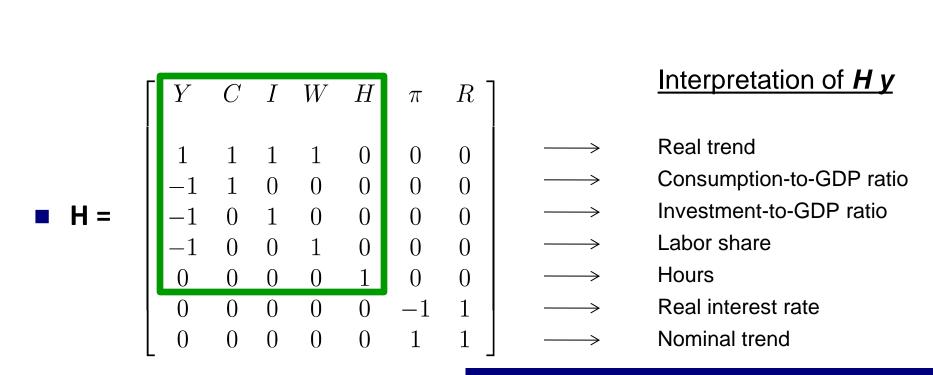
- Deterministic component in 7-variable VAR
 - GDP, Consumption, Investment, Real Wages, Hours, Inflation, Interest Rate



Forecasting

3-variable VAR

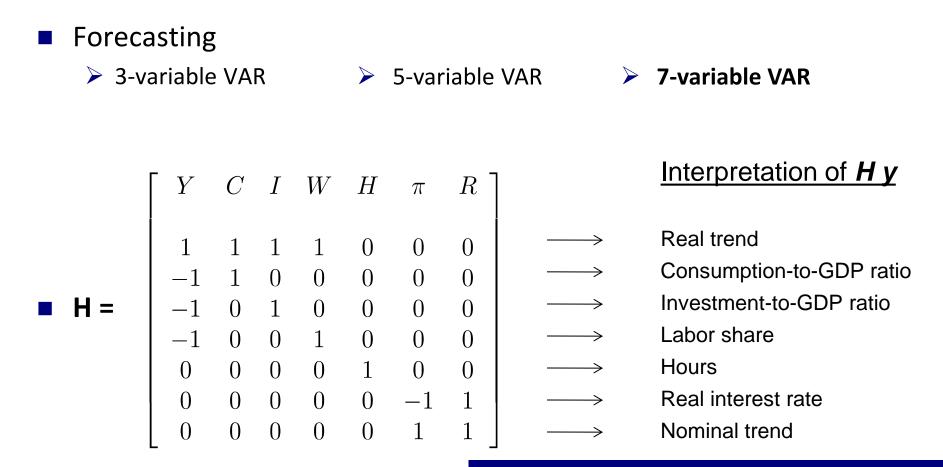
- Deterministic component in 7-variable VAR
 - GDP, Consumption, Investment, Real Wages, Hours, Inflation, Interest Rate



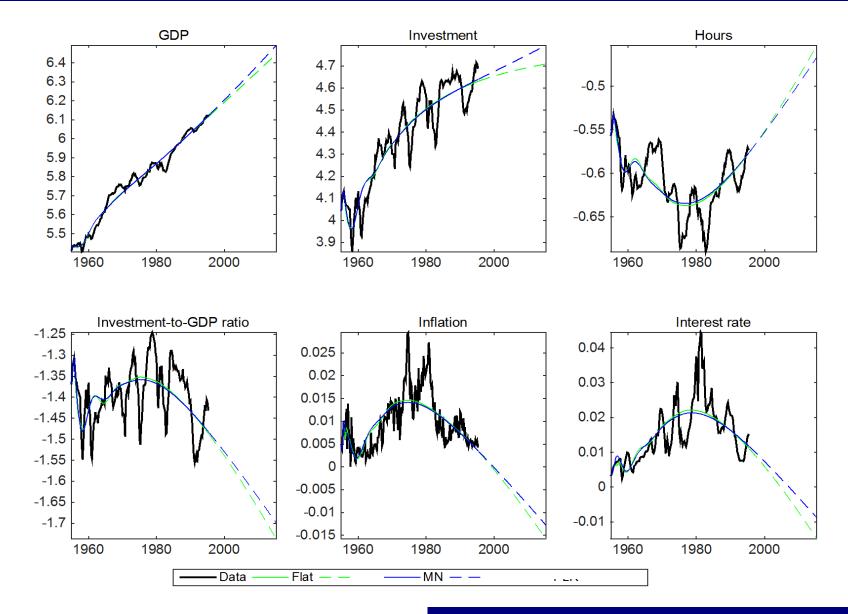
5-variable VAR

7-variable VAR

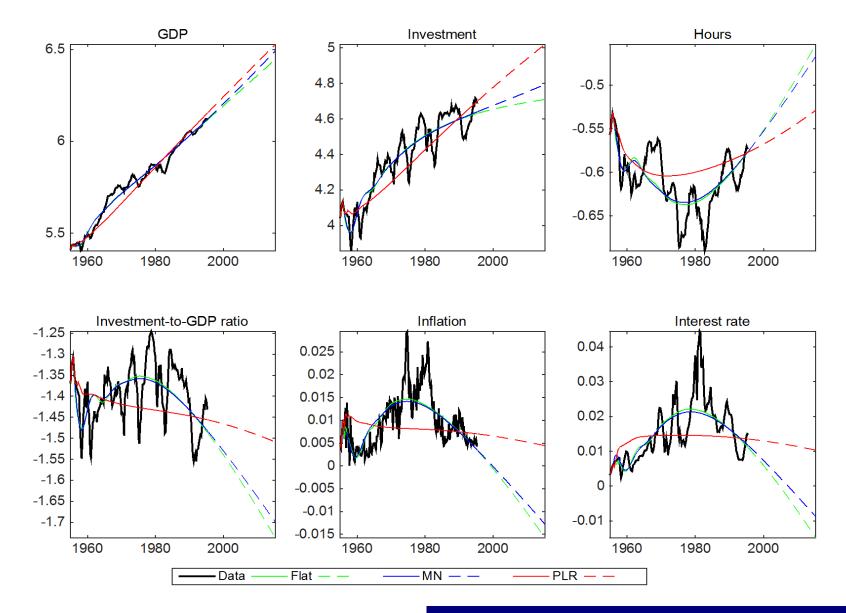
- Deterministic component in 7-variable VAR
 - GDP, Consumption, Investment, Real Wages, Hours, Inflation, Interest Rate



Deterministic components in VARs



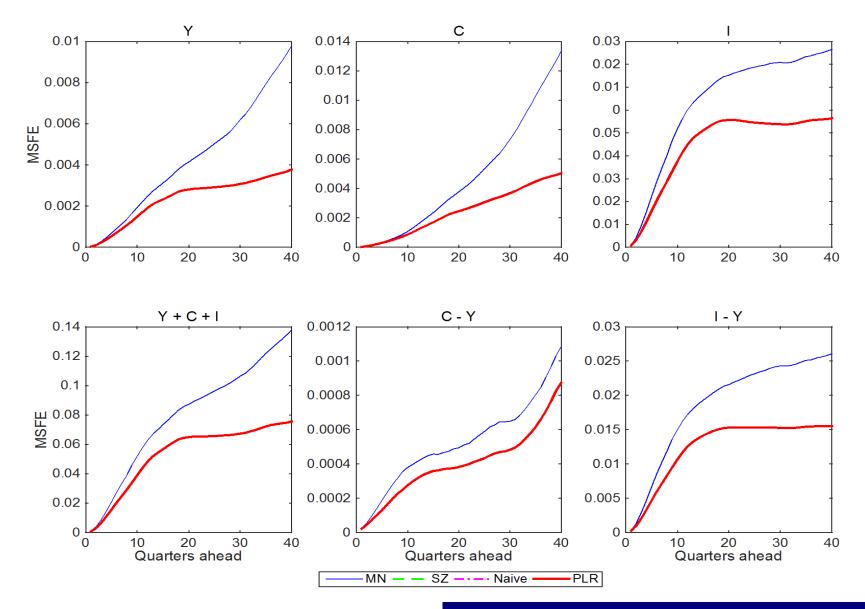
Deterministic components in VARs with Prior for the Long Run



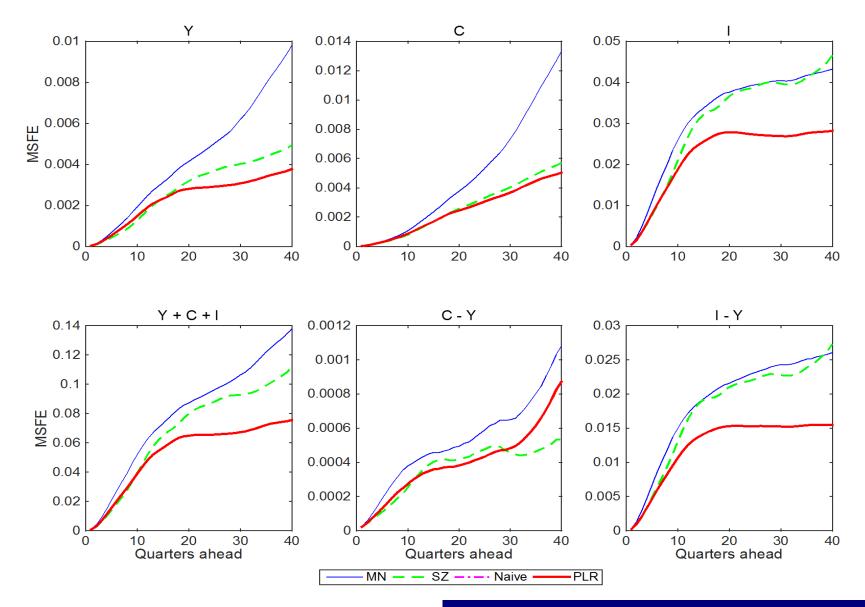
Forecasting results with 3-, 5- and 7-variable VARs

- Recursive estimation starts in 1955:
- Forecast-evaluation sample: 1985:I 2013:I

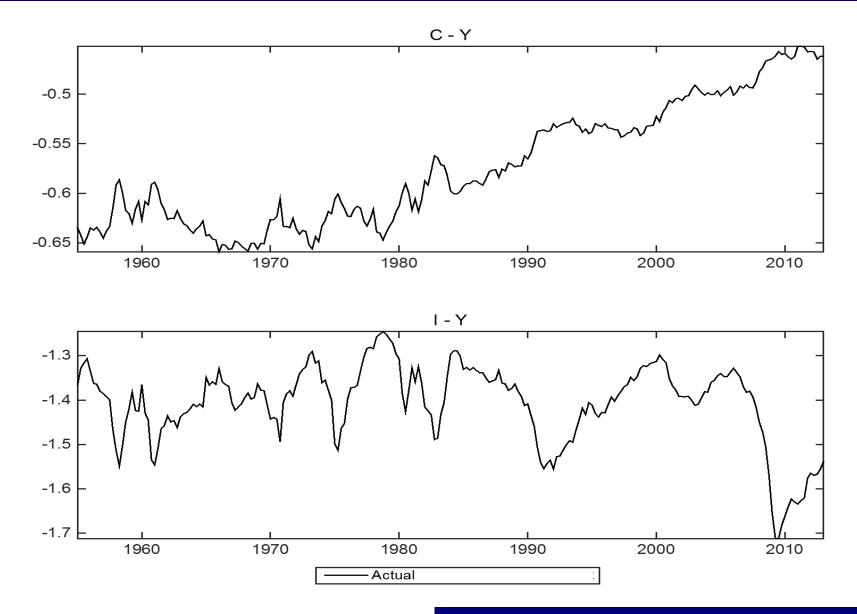
3-variable VAR: MSFE (1985-2013)



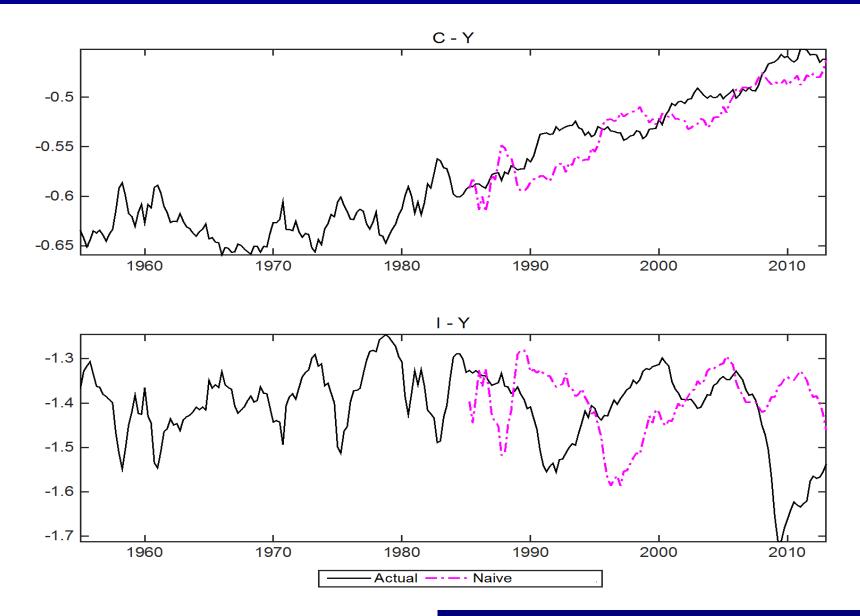
3-variable VAR: MSFE (1985-2013)



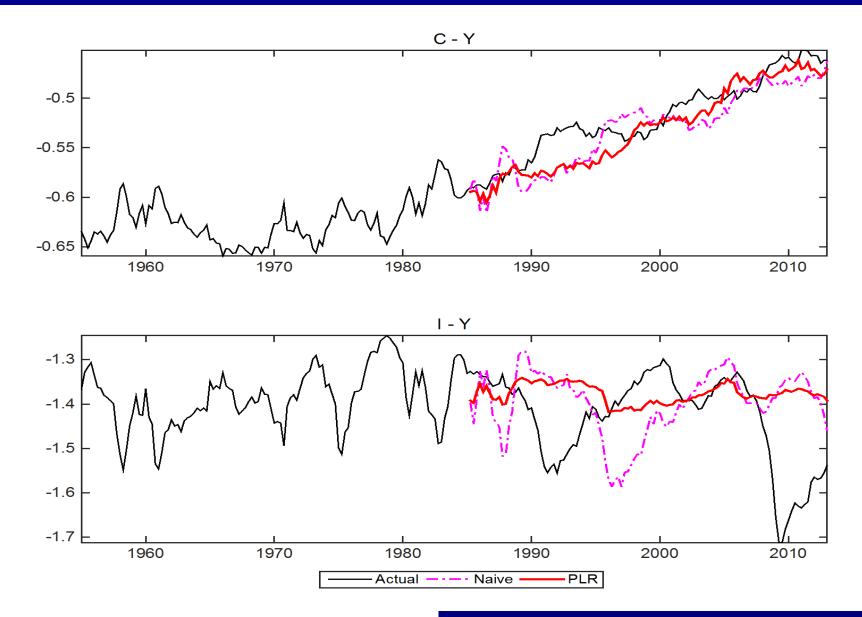
Consumption- and Investment-to-GDP ratios



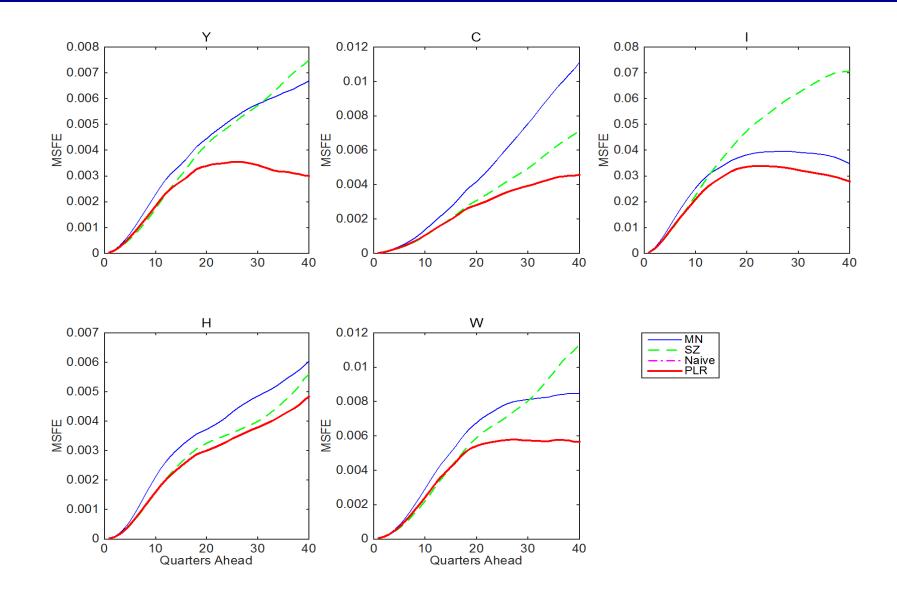
Forecasts (5 years ahead)



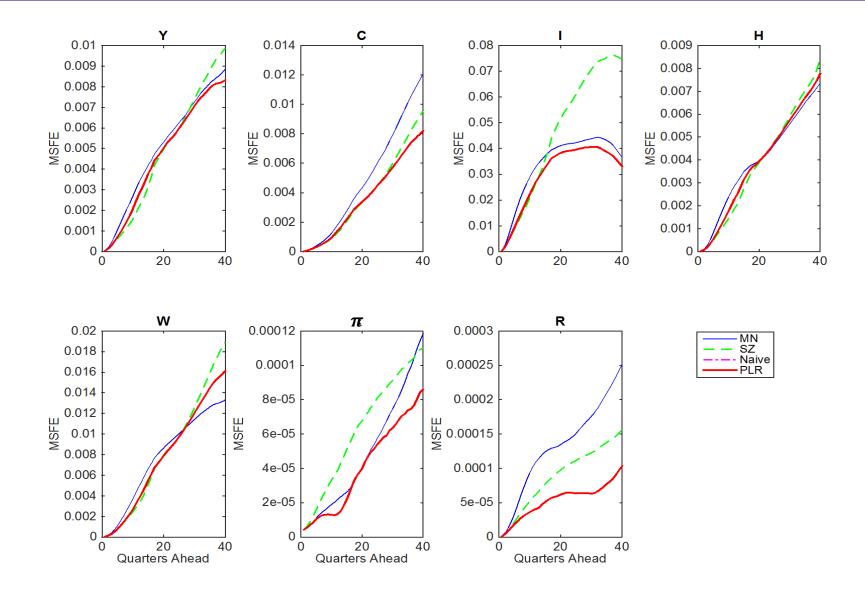
Forecasts (5 years ahead)



5-variable VAR: MSFE (1985-2013)



7-variable VAR: MSFE (1985-2013)



• Our baseline prior depends on the choice of a specific **H** matrix $H = \begin{bmatrix} \beta'_{\perp} \\ \beta' \end{bmatrix}$

- Our baseline prior depends on the choice of a specific **H** matrix $H = \begin{bmatrix} \beta'_{\perp} \\ \beta' \end{bmatrix}$
- Economic theory is useful, but not sufficient to uniquely pin down H
 - > Macro models are typically informative about $m{eta}_{\perp}$ and $sm{p}(m{eta})$

- Our baseline prior depends on the choice of a specific **H** matrix $H = \begin{bmatrix} \beta'_{\perp} \\ \beta' \end{bmatrix}$
- Economic theory is useful, but not sufficient to uniquely pin down H
 Macro models are typically informative about β_⊥ and sp(β)
- \blacksquare Extension of our PLR that is invariant to rotations of β

- Our baseline prior depends on the choice of a specific **H** matrix $H = \begin{bmatrix} \beta'_{\perp} \\ \beta' \end{bmatrix}$
- Economic theory is useful, but not sufficient to uniquely pin down H
 Macro models are typically informative about β_⊥ and sp(β)
- \blacksquare Extension of our PLR that is invariant to rotations of β

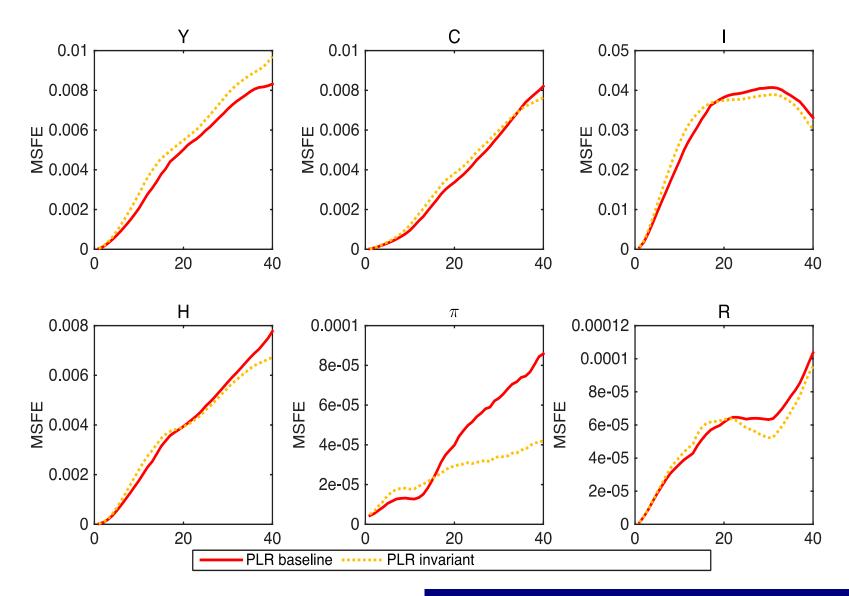
Baseline PLR: $\Lambda_{i} \cdot (H_{i} \cdot \overline{y}_{0}) | H, \Sigma \sim N(0, \phi_{i}^{2} \Sigma), \quad i = 1, ..., n$

- Our baseline prior depends on the choice of a specific **H** matrix $H = \begin{bmatrix} \beta'_{\perp} \\ \beta' \end{bmatrix}$
- Economic theory is useful, but not sufficient to uniquely pin down H
 Macro models are typically informative about β_⊥ and sp(β)
- \blacksquare Extension of our PLR that is invariant to rotations of β

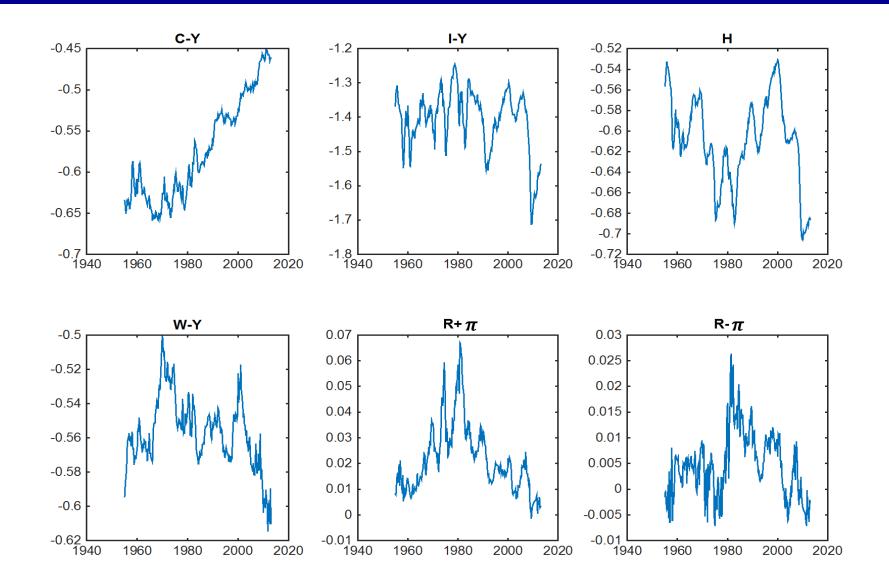
Baseline PLR:
$$\Lambda_{\cdot i} \cdot (H_i \cdot \bar{y}_0) | H, \Sigma \sim N(0, \phi_i^2 \Sigma), \quad i = 1, ..., n$$

Invariant PLR:
$$\begin{cases} \Lambda_{\cdot i} \cdot (H_i \cdot \bar{y}_0) | H, \Sigma \sim N(0, \phi_i^2 \Sigma), & i = 1, ..., n - r \\ \sum_{i=n-r+1}^n \Lambda_{\cdot i} \cdot (H_i \cdot \bar{y}_0) | H, \Sigma \sim N(0, \phi_{n-r+1}^2 \Sigma) \end{cases}$$

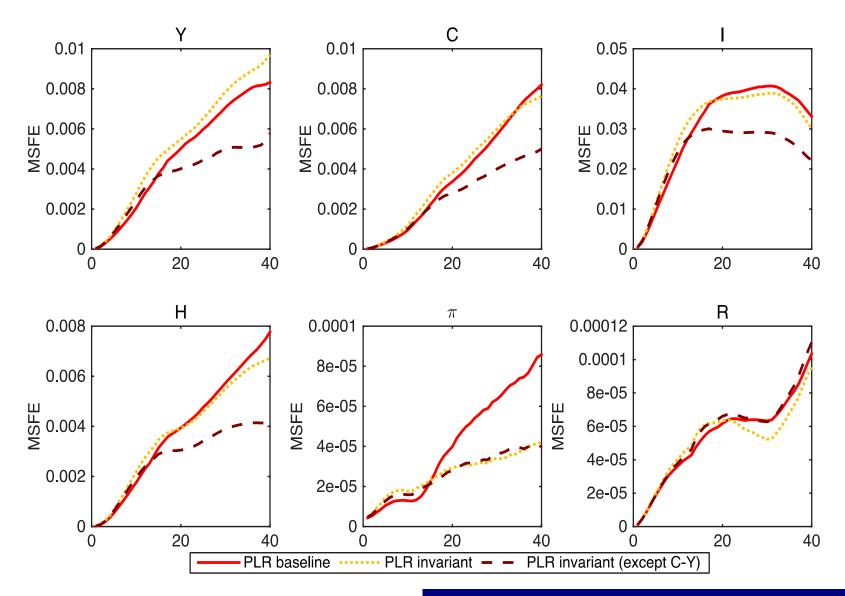
7-variable VAR: Forecasting results with "invariant" PLR



Hy in the data



7-variable VAR: Forecasting results with "invariant" PLR



Strengths and weaknesses

Strengths

- Imposes discipline on long-run behavior of the model
- Based on robust lessons of theoretical macro models
- Performs well in forecasting (especially at longer horizons)
- Very easy to implement

Strengths and weaknesses

Strengths

- Imposes discipline on long-run behavior of the model
- Based on robust lessons of theoretical macro models
- Performs well in forecasting (especially at longer horizons)
- Very easy to implement

"Weak" points

- \succ Non-automatic procedure \rightarrow need to think about it

$$\Delta y_t = c + \underbrace{\prod_{\Lambda} H^{-1}}_{\Lambda} \underbrace{Hy_{t-1}}_{\tilde{y}_{t-1}} + \varepsilon_t$$

Rewrite as $\Delta y_{t} = c + \begin{bmatrix} \Lambda_{1} & \Lambda_{2} \end{bmatrix} \begin{bmatrix} \beta_{\perp} \\ \beta' \end{bmatrix} y_{t-1} + \varepsilon_{t}$

$$\Delta y_t = c + \underbrace{\prod_{\Lambda} H^{-1}}_{\Lambda} \underbrace{Hy_{t-1}}_{\tilde{y}_{t-1}} + \varepsilon_t$$

• Rewrite as $\Delta y_{t} = c + \begin{bmatrix} \Lambda_{1} & \Lambda_{2} \end{bmatrix} \begin{bmatrix} \beta_{\perp} \\ \beta' \end{bmatrix} y_{t-1} + \varepsilon_{t}$

$$\Delta y_t = c + \Lambda_1 \beta_{\perp} y_{t-1} + \Lambda_2 \beta' y_{t-1} + \varepsilon_t$$

$$\Delta y_t = c + \Lambda_1 \beta_1' y_{t-1} + \Lambda_2 \beta' y_{t-1} + \varepsilon_t$$

$$\Delta y_t = c + \Lambda_1 \beta_{\!\!\perp}' y_{t-1} + \Lambda_2 \beta' y_{t-1} + \varepsilon_t$$

• Error Correction Model: dogmatic prior on $\Lambda_1 = 0$

$$\Delta y_t = c + \Lambda_1 \beta_{\!\!\perp}' y_{t-1} + \Lambda_2 \beta' y_{t-1} + \varepsilon_t$$

- Error Correction Model: dogmatic prior on $\Lambda_1 = 0$
- > KPSW, CEE
 - fix β based on theory
 - flat prior on A₂

$$\Delta y_t = c + \Lambda_1 \beta_1' y_{t-1} + \Lambda_2 \beta' y_{t-1} + \varepsilon_t$$

• Error Correction Model: dogmatic prior on $\Lambda_1 = 0$

- > KPSW, CEE
 - fix β based on theory
 - flat prior on A₂

- Cointegration
 - estimate β
 - flat prior on Λ₂
 - **EG (1987)**

$$\Delta y_t = c + \Lambda_1 \beta_1 y_{t-1} + \Lambda_2 \beta' y_{t-1} + \varepsilon_t$$

• Error Correction Model: dogmatic prior on $\Lambda_1 = 0$

- KPSW, CEE
 - fix β based on theory
 - flat prior on A₂

- Cointegration
 - estimate β
 - flat prior on A₂
 - EG (1987)

- Bayesian cointegration
 - uniform prior on sp(β)
 - KSvDV (2006)

$$\Delta y_t = c + \Lambda_1 \beta_1' y_{t-1} + \Lambda_2 \beta' y_{t-1} + \varepsilon_t$$

• Error Correction Model: dogmatic prior on $\Lambda_1 = 0$

- > KPSW, CEE
 - fix β based on theory
 - flat prior on A₂

- Cointegration
 - estimate $\boldsymbol{\beta}$
 - flat prior on A₂
 - **EG (1987)**

- Bayesian cointegration
 - uniform prior on sp(β)
 - KSvDV (2006)

• VAR in first differences: dogmatic prior on $\Lambda_1 = \Lambda_2 = 0$

$$\Delta y_t = c + \Lambda_1 \beta_1' y_{t-1} + \Lambda_2 \beta' y_{t-1} + \varepsilon_t$$

• Error Correction Model: dogmatic prior on $\Lambda_1 = 0$

- > KPSW, CEE
 - fix β based on theory
 - flat prior on Λ₂

- Cointegration
 - estimate β
 - flat prior on A₂
 - **EG** (1987)

- Bayesian cointegration
 - uniform prior on sp(β)
 - KSvDV (2006)

• VAR in first differences: dogmatic prior on $\Lambda_1 = \Lambda_2 = 0$

- Sum-of-coefficients prior (DLS, SZ)
 - [β'β']' = H = I
 - \succ shrink Λ_1 and Λ_2 to 0

3-var VAR: Mean Squared Forecast Errors (1985-2013)

