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What we do 

 Propose a class of prior distributions for VARs that discipline the 
long-run implications of the model 
 
 

    Priors for the long run 
 

 Properties  
 Based on macroeconomic theory 
 Conjugate      Easy to implement and combine with existing priors 

 

 
 Perform well in applications 

 Good (long-run) forecasting performance 
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Outline 

 A specific pathology of (flat-prior) VARs 
 Too much explanatory power of initial conditions and deterministic trends 
 Sims (1996 and 2000) 

 
 

 Priors for the long run 
 Intuition 
 Specification and implementation 

 
 

 Alternative interpretations and relation with the literature 
 

 

 Application: macroeconomic forecasting 
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Simple example 

 AR(1): 
 
 

 Iterate backwards: 
 
 
  Model separates observed variation of the data into  

 DC: deterministic component, predictable from data at time 0 
 SC: unpredictable/stochastic component 

 
 

 If ρ = 1, DC is a simple linear trend: 
 

 

 Otherwise more complex: 

SC DC 
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Pathology of (flat-prior) VARs (Sims, 1996 and 2000)  

 
 

 OLS/MLE has a tendency to “use” the complexity of deterministic 
components to fit the low frequency variation in the data 

 

 Possible because inference is typically conditional on  y0 
 No penalization for parameter estimates of implying steady states or trends far 

away from initial conditions 
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Deterministic components in VARs 

 Problem more severe with VARs  
 implied deterministic component is much more complex than in AR(1) case 

 

 Example: 7-variable VAR(5) with quarterly data on  
 GDP 
 Consumption 
 Investment 
 Real Wages 
 Hours 
 Inflation 
 Federal funds rate 

 

 Sample: 1955:I – 1994:IV 
 

 Flat or Minnesota prior 
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Pathology of (flat-prior) VARs (Sims, 1996 and 2000)  

 OLS/MLE has a tendency to “use” the complexity of deterministic 
components to fit the low frequency variation in the data 

 

 Possible because inference is typically conditional on  y0 
 No penalization for parameter estimates of implying steady states or trends far 

away from initial conditions 
 

➠Flat-prior VARs attribute an (implausibly) large share of the low  
 frequency variation in the data to deterministic components 

 

 
 Need a prior that downplays excessive explanatory power of initial 

conditions and deterministic component 
 

 One solution: center prior on “non-stationarity” 
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Outline 

 A specific pathology of (flat-prior) VARs 
 Too much explanatory power of initial conditions and deterministic trends 
 Sims (1996 and 2000) 
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Prior for the long run 

 Rewrite the VAR in terms of levels and differences: 
 
 
 
 
 

 Prior for the long run                            prior on         centered at 0 
 
 

 Standard approach (DLS, SZ, and many followers) 
 Push coefficients towards all variables being independent random walks 
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Prior for the long run 

 Rewrite as    
 
 
 

 

 Choose H and put prior on Λ conditional on H 
 

 Economic theory suggests that some linear combinations of y are 
less(more) likely to exhibit long-run trends 
 

 Loadings associated with these combinations are less(more) likely 
to be 0 
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Prior for the long run: specification and implementation 

 
 
  
   
 
  

 

 

 Conjugate  
 Can implement it with Theil mixed estimation in the VAR in levels 
 Can be easily combined with existing priors 
 Can compute the ML in closed form 

 Useful for hierarchical modeling and setting of hyperparameters ϕ (GLP, 2013) 
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Empirical results 

 Deterministic component in 7-variable VAR 
 

 Forecasting 
 3-variable VAR 
 5-variable VAR 
 7-variable VAR 
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Deterministic components in VARs 
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Deterministic components in VARs with Prior for the Long Run 
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Forecasting results with 3-, 5- and 7-variable VARs 

 

 Recursive estimation starts in 1955:I 
 

 Forecast-evaluation sample: 1985:I – 2013:I 
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3-variable VAR: MSFE (1985-2013) 
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Consumption- and Investment-to-GDP ratios 
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Forecasts (5 years ahead) 
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5-variable VAR: MSFE (1985-2013) 
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7-variable VAR: MSFE (1985-2013) 

𝝅 
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Invariance to rotations of the “stationary” space 

 Our baseline prior depends on the choice of a specific H matrix 

𝐻 = 𝛽⊥′
𝛽′  
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➠  Extension of our PLR that is invariant to rotations of 𝜷 

 

Baseline PLR:    Λ∙𝑖 ∙ 𝐻𝑖∙𝑦�0 |𝐻, Σ ~ 𝑁 0, 𝜙𝑖2Σ ,    𝑖 = 1, … , 𝑛    

Invariant PLR:  �
Λ∙𝑖 ∙ 𝐻𝑖∙𝑦�0 |𝐻, Σ ~ 𝑁 0, 𝜙𝑖2Σ ,    𝑖 = 1, … , 𝑛 − 𝑟

 
∑ Λ∙𝑖 ∙ 𝐻𝑖∙𝑦�0 |𝐻, Σ ~ 𝑁 0, 𝜙𝑛−𝑟+12 Σ𝑛
𝑖=𝑛−𝑟+1  
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7-variable VAR: Forecasting results with “invariant” PLR 
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H y  in the data 

𝝅 𝝅 
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7-variable VAR: Forecasting results with “invariant” PLR 
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 Strengths 
 Imposes discipline on long-run behavior of the model 
 Based on robust lessons of theoretical macro models 
 Performs well in forecasting (especially at longer horizons) 
 Very easy to implement 
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Strengths and weaknesses 

 Strengths 
 Imposes discipline on long-run behavior of the model 
 Based on robust lessons of theoretical macro models 
 Performs well in forecasting (especially at longer horizons) 
 Very easy to implement 

 
 

 “Weak” points 
 Non-automatic procedure    need to think about it 
 Might prove difficult to set up in large-scale models    might require too 

much thinking 
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Connections and extreme cases 
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 KPSW, CEE 
 fix β based on theory 
 flat prior on Λ2 

 

 Cointegration 
 estimate β 
 flat prior on Λ2 
 EG (1987) 
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 Error Correction Model: dogmatic prior on Λ1 = 0 

 
 
 
 
 

 VAR in first differences: dogmatic prior on Λ1 = Λ2 = 0 
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Connections and extreme cases 

 
 Error Correction Model: dogmatic prior on Λ1 = 0 

 
 
 
 
 

 VAR in first differences: dogmatic prior on Λ1 = Λ2 = 0 
 

 

 Sum-of-coefficients prior (DLS, SZ) 
 [ β’  β’ ]’ = H = I 
 shrink Λ1 and Λ2 to 0 

 
 

 KPSW, CEE 
 fix β based on theory 
 flat prior on Λ2 

 

 Cointegration 
 estimate β 
 flat prior on Λ2 
 EG (1987) 

 

 Bayesian cointegration 
 uniform prior on sp(β) 
 KSvDV (2006) 
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3-var VAR: Mean Squared Forecast Errors (1985-2013) 
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