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Abstract

We investigate the predictive ability of machine learning methods to produce weekly
inflation nowcasts using high-frequency macro-financial indicators and a survey of pro-
fessional forecasters. Within an unrestricted mixed-frequency ML framework, we pro-
vide clear guidelines to improve inflation nowcasts upon forecasts made by specialists.
First, we find that variable selection performed via the LASSO is fundamental for
crafting an effective ML model for inflation nowcasting. Second, we underscore the rel-
evance of timely data on price indicators and SPF expectations to better discipline our
model-based nowcasts, especially during the inflationary surge following the COVID-19
crisis. Third, we show that predictive accuracy substantially increases when the model
specification is free of ragged edges and guided by the real-time data release of price
indicators. Finally, incorporating the most recent high-frequency signal is already suf-
ficient for real-time updates of the nowcast, eliminating the need to account for lagged
high-frequency information.
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1 Introduction

The inflationary shock that reverberated through global markets following the COVID-
19 pandemic highlighted the importance of accurate and timely inflation nowcasts for better-
informed monetary policy, business pricing strategies, and portfolio allocation decisions.
While official price statistics are only measured at the monthly frequency and released
with a significant delay, high-frequency (e.g., weekly or daily) and quickly released data
have become particularly useful for anticipating the current state of the inflation process.1

The relevance of updating inflation nowcasts in a timely fashion extends beyond disruptive
environments, such as those witnessed in the aftermath of the pandemic, offering a means
to anticipate swift inflationary shocks, as well as inflationary trends that may escalate or
dwindle. Moreover, short- and medium-term inflation forecasts highly benefit from taking
high-quality nowcasts as a jumping-off point (see, e.g., Faust and Wright, 2013; Krüger
et al., 2017).

Machine learning (ML) methods have recently enjoyed great popularity in inflation
forecasting under a data-rich environment (Garcia et al., 2017; Medeiros et al., 2021; Joseph
et al., 2021; Hauzenberger et al., 2023; Araujo and Gaglianone, 2023; Barkan et al., 2023),
exhibiting substantial improvements upon well-established benchmarks (e.g., Atkeson and
Ohanian, 2001; Stock and Watson, 2007). However, there remains insufficient guidance
on key modeling choices when using ML methods to construct inflation nowcasts in a
real-time setup, especially during high inflation periods. The pandemic, in particular,
posed challenges to nowcasting frameworks that struggle to anticipate rapidly evolving
inflation dynamics not often seen in past data. Furthermore, in a nowcasting setting, the
dimensionality challenge is amplified by the presence of high-frequency lags from numerous
predictors, which may easily lead to overfitting.

This paper provides clear guidance for inflation nowcasting by evaluating a battery of
easy-to-implement ML methods within a mixed-data sampling (MIDAS) approach. We con-
tribute to the nowcasting literature by thoroughly investigating key modeling practices in
an environment characterized by persistently high inflation, namely the Brazilian economy
of the past decades. Moreover, we assess the predictive value of selected macro-financial
predictors for inflation, including informed judgment entailed in a timely survey of profes-
sional forecasters (SPF). Specifically, we show that a well-designed unrestricted MIDAS (U-
MIDAS) approach (Foroni et al., 2015) combined with linear shrinkage methods, especially
the LASSO, produce inflation nowcasts that significantly improve upon SPF expectations.
These predictive gains are particularly large at the onset of the COVID-19 crisis, whereas

1Giannone et al. (2008) and Bańbura et al. (2013), e.g., provide a comprehensive review of how the
rapidly increasing availability of high-frequency data proves invaluable in obtaining early estimates of the
current economic landscape while official statistics on key macroeconomic variables are yet to be released.
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meaningful off-model information from SPF helps to discipline our model-based nowcasts.
The unrestricted mixed-frequency ML structure also facilitates model interpretation and
allows us to exploit potential nonlinear dynamics in the data, hereby assessed via tree-based
methods.

In the broader field of macroeconomic nowcasting, research has typically focused on
the holy grail of constructing high-frequency estimates of GDP, influenced by the success
of Giannone et al. (2008). Dynamic factor models and mixed-frequency Bayesian VARs
have emerged as popular tools amongst practitioners and policymakers (see, among others,
Schorfheide and Song, 2015; McCracken et al., 2015; Carriero et al., 2015; Hindrayanto
et al., 2016; Dahlhaus et al., 2017; Cimadomo et al., 2022; Cascaldi-Garcia et al., 2023; Hu-
ber et al., 2023). An early use of these econometric frameworks to exploit high-frequency
data for inflation nowcasting is presented in Modugno (2013) and Knotek and Zaman (2017).
Large-scale factor models, however, are not designed to capture fast-moving inflation dy-
namics at very short horizons and suffer from the ragged-edge problem that considerably
worsens the forecasting properties of the model (see Marcellino and Schumacher, 2010).
In addition, Knotek and Zaman (2017) show that inflation nowcasting may benefit from
choosing a small number of highly informative predictors in contrast to extracting common
factors from a large dataset.

Andreou et al. (2013), Monteforte and Moretti (2013), Breitung and Roling (2015) and
Knotek II and Zaman (2023) consider MIDAS regressions with leads to eliminate ragged
edges and effectively exploit more daily information of financial markets that are highly
correlated with short-term inflation expectations. Although MIDAS regressions gained
popularity for their parsimonious treatment of high-frequency lags and successful out-of-
sample performance, they struggle with the dimensionality issue posed by numerous high-
frequency predictors, which may easily lead to overparameterization.

Boosted by the COVID-19 crisis and the big data boom in economics, this line of research
has taken up but with an increased focus on ML methods to guard against overfitting in
high-dimensional settings and improve nowcasting accuracy over traditional econometric
frameworks.2 Penalized MIDAS regressions evolved as a suitable strategy for performing
variable selection in macroeconomic nowcasting (Marsilli, 2014; Siliverstovs, 2017; Uematsu
and Tanaka, 2019; Mogliani and Simoni, 2021; Babii et al., 2021; Kohns and Potjagailo,
2023; Beck et al., 2023; Aliaj et al., 2023). Specifically, Borup et al. (2023) demonstrate
that exploiting more recent daily Google Trends data via their proposed combination of
the U-MIDAS approach with ML methods can substantially improve predictions of weekly

2Non-traditional high-frequency data such as web scraping, Google Search, and scanner data have also
become viable sources to nowcast both headline inflation and disaggregated components, such as food prices
(see Harchaoui and Janssen, 2018; Powell et al., 2018; Macias et al., 2023; Beck et al., 2023, to name only
a few).
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initial claims while securing model interpretation in the era of big data. Besides, this
mixed-frequency ML structure accommodates nonlinear ML-based predictive relationships,
such as those analyzed in Richardson et al. (2021), Clark et al. (2022) and Barbaglia et al.
(2023).

Building on these trends, we develop guidelines for key modeling choices for producing
accurate weekly nowcasts of inflation using a large set of macro-financial data within the
mixed-frequency ML structure. Therefore, from an practical standpoint, providing rec-
ommendations for practitioners and policymakers in this domain is the key objective of
this paper. In addition, building upon the success of random forest models in forecasting
U.S. inflation (Medeiros et al., 2021) and their capability to address temporal nonlineari-
ties when forecasting UK inflation (Joseph et al., 2021), we complement the existing ML
applications in macroeconomic nowcasting. Specifically, we evaluate the effectiveness of
tree-based methods for inflation nowcasts.

From a practical standpoint, we conduct a real-time empirical exercise based on Brazil-
ian data, which encompasses recent decades marked by persistently high inflation rates.
This sets us apart from the predominant focus on U.S. or euro area inflation by existing
literature. Notably, the presence of multiple episodes of rising inflation in recent Brazilian
history allows us to gain insights that may be extrapolated to advanced economies under-
going unprecedented inflationary shocks not present in past data. To this end, we construct
a novel real-time database from the Brazilian macroeconomy, which also features a variety
of alternative high-frequency price indicators that are timely released by private agencies
and closely monitored by professional forecasters. Furthermore, survey-based expectations
have proven valuable to improve model-based nowcasts, particularly during periods of rising
inflation (see, e.g., Banbura et al., 2021a,b; Bobeica and Hartwig, 2023). In this sense, we
integrate the daily SPF conducted by the Brazilian Central Bank (BCB).

Our empirical exercise produces weekly nowcasts for the monthly developments of the
official headline CPI targeted by BCB’s monetary policy decisions, which is released with
an average delay of seven business days after the reporting month. We select 20 predictors
to compose our real-time dataset. The predictors are either available at a higher frequency
– and transformed into weekly time series containing the latest month-on-month signal – or
sampled monthly but released throughout the reporting month. For model interpretation,
we divide them into four categories: monthly price indicators, weekly price indicators, daily
financial variables, and daily SPF expectations. To exploit the information in our real-time
set of predictors while guarding against overfitting, we compare linear prediction models via
shrinkage (the LASSO, Ridge, Elastic Net, and sparse-group LASSO) against tree-based
methods (Random Forest, Local Linear Forest, and Bayesian Additive Regression Trees).

Our findings underscore the effectiveness of shrinkage models to nowcasting inflation dy-
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namics, with LASSO consistently surpassing tree-based methods in terms of RMSE. This is
consistent with previous results for forecasting Brazilian inflation (see, e.g., Medeiros et al.,
2016; Garcia et al., 2017), which indicate that variable selection done via the LASSO outper-
forms at the very short horizon. Notably, LASSO predictions exhibit exceptional accuracy
at longer nowcast horizons compared to SPF expectations. This reflects the tendency of
professional forecasters to adjust their expectations more frequently as the information set
expands within the reporting month. Additionally, we observe large nowcasting gains build-
ing up during the COVID-19 inflation surge, where professional forecasters underestimated
the rapidly evolving inflationary environment.

Moreover, our analysis reveals a notable difference in the variables selected by the
LASSO depending on the nowcast horizon. Specifically, at longer nowcast horizons, the
selection tends to produce a relatively sparse structure with SPF expectations and weekly
price indicators as the primary predictors. Conversely, as we approach shorter horizons, a
denser model structure emerges, driven by the pronounced relevance of monthly price indi-
cators. This shift reflects the increased availability of accurate contemporaneous inflation
signals as the reporting month unfolds. Consequently, data releases on monthly price indi-
cators diminish the relative importance of SPF expectations, although informed judgment
remains highly influential, particularly in navigating the challenges posed by the COVID-19
crisis. Overall, while financial variables play a minor role, the combination of timely price
indicators with SPF judgments proves critical in producing weekly inflation nowcasts.

Finally, a deeper investigation of key modeling choices within our mixed-frequency ML
framework reveals the considerable impact of (i) accounting for SPF data in the predictor
set, (ii) eliminating ragged edges, (iii) guiding model specifications by real-time data re-
leases, and to a lesser extent, (iv) focusing solely on the most recent high-frequency signal.
A baseline prediction model featuring these key elements yields predictive gains up to 60%.
Notably, shrinkage-based predictions can highly benefit from using meaningful judgment in
survey data and addressing the ragged-edge problem.

The paper proceeds as follows. Section 2 describes the real-time dataset of the Brazilian
macroeconomy and how these macro-financial variables relate to the target variable. Sec-
tion 3 outlines the nowcasting setup and provides an overview of the mixed-frequency ML
strategies. Next, we present our empirical results in Section 4. This section also provides
an interpretation of the best-performing fitted model and offers guidance on key modeling
choices for constructing accurate weekly nowcasts using the real-time data flow. Finally,
Section 5 concludes.
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2 Data

To compute weekly nowcasts of inflation figures we select predictors that have two fea-
tures: significant correlation with price developments and earlier availability in comparison
to official inflation releases. We put together a novel real-time database of macro-financial
series from the Brazilian economy tailored for inflation nowcasting. In this context, our
dataset mainly consists of timely price indicators, financial variables, and experts’ forecasts
that carry predictive content about the current month’s inflation rate.3 Besides data on
the target CPI variable, we organized publicly available information on price indicators
released both by public and private institutions, financial indicators, and daily SPF with
aggregate predictions for the target variable.4 Our real-time dataset covers the period from
June 2004 up to December 2022 (T = 222 monthly observations), whereas information on
release dates is available from January 2013 onwards.

The official inflation measure in Brazil is known as the Broad National Consumer Price
Index (IPCA), and concurrently, it serves as the reference for the inflation-targeting system
in Brazil.5 The IPCA is designed to reflect consumption patterns of urban households in
major Brazilian cities that earn from 1 to 40 minimum wages (90% of urban population).
The Brazilian statistical office publishes IPCA figures with an average lag of seven workdays
after the end of the reporting month.

Figure 1 shows the IPCA evolution since mid-2001, shortly after the BCB adopted the
inflation targeting regime. The year 2003 witnessed an escalation in political and economic
risks following the election of the Workers’ Party representative, triggering a foreign capital
outflow that led to a strong exchange rate depreciation and domestic inflationary pressure.
This was followed by a relatively calm period, marked by annual IPCA fluctuations around
5%. However, a return to double-digit inflation figures occurred during the political turmoil
that started in 2013, leading to the impeachment of President Rousseff in early 2015.
Following years of price stability with IPCA oscillating close to BCB’s target, inflation
surged again in the aftermath of the pandemic shock, similar to trends observed worldwide.

3We disregard monthly indicators of real economic activity for two reasons: (i) short or no availability
before official releases of the target inflation and (ii) non-significant cross-correlations up to six lags with
the target month-on-month inflation rate. Hence, economic activity variables do not fit our nowcasting
purpose.

4Although our analysis focuses on price indicators and financial variables as the potential predictors
for inflation, due to their high-frequency and timely attributes, the real-time database also comprises
vintages and revisions of hard and survey-based data for economic activity (e.g., industrial production,
unemployment rate, net payroll jobs, PMI manufacturing, retail and services indices, consumer and business
confidence indicators, among others).

5Besides, a sizeable number of inflation-linked government bonds use the IPCA as their reference.
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Figure 1: Time series of Brazilian price indicators, 2001 – 2022
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Notes: The official Brazilian CPI (IPCA) is depicted in black while alternative price indicators are illustrated
in colored lines. The full description of each indicator is available in Table 1.

We use a total of 20 predictors in our empirical application, excluding the lags of IPCA6.
These predictors can be divided into four categories: monthly price indicators, weekly
price indicators, daily financial variables, and daily expectations of professional forecasters.
The data and publication dates are obtained from many sources, including the Brazilian
Institute of Geography and Statistics (IBGE), BCB, Brazil Stock Exchange (B3), Getulio
Vargas Foundation (FGV), Institute of Economic Research Foundation (Fipe), Brazilian
National Agency of Petroleum, Natural Gas and Biofuels (ANP) and Bloomberg. Table 1
presents a summary of the selected predictors for IPCA dynamics, including the sampling
period and publication lags.

The first group of predictors consists of five monthly price indicators primarily collected
in urban areas of major Brazilian cities. These indices are sampled at the monthly frequency
but released before the end of the reporting month and essentially differ in terms of the
sampling period and targeted prices. For instance, IPCA-15 mimics IPCA itself in terms

6While more indicators could potentially correlate with IPCA, we have chosen a medium-sized dataset.
This decision aligns with previous findings in the literature (see, e.g., Carriero et al., 2019, 2020), who
show that, for point and density forecasting/nowcasting of GDP growth and inflation, a wider array of
predictors do not outperform models with only a few hand-picked predictors. Nonetheless, the potential
high-dimensionality issue arising in our application is also connected to the choice of high-frequency lags
included in the nowcasting model (see Section 3.1)
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of methodology, but it reflects prices collected from the 16th of the preceding month to
the 15th of the reporting month. Releases for this mid-month version of the IPCA become
available with an average delay of 8 days (usually at the beginning of the 4th week) and
thus allow for early signals of IPCA dynamics. Additionally, we include a producer price
index (PPI) termed IPA-M, which monitors inter-business transaction prices of agricultural
and industrial products, and a construction cost index named INCC-M. The remaining two
indices, IGP-M and IGP-10, are the weighted average of the IPA-M (60%), IPC-S (30%,
FGV’s weekly CPI measure presented below), and the INCC-M (10%), diverging only by
their sampling periods.

The above five monthly indices are also displayed in Figure 1. While closely correlated
with IPCA, some exhibit greater volatility, especially in turbulent times. For example, IPA-
M – and consequently, IGP-M and IGP-10 – are markedly affected by the large volatility in
exchange rates observed during the initial year of Lula’s administration, the Great Financial
Crisis, and the pandemic. The INCC-M, related to construction costs, is in general higher
than the IPCA, but presents a lower amplitude than the majority of the other indexes.

The second group of predictors contains six timely indicators of consumer and energy
prices sampled at the weekly frequency and published with a lag of one or two days after
the closing of a given week. The IPC-S and FIPE intend to closely mirror the IPCA at
a higher frequency – as shown in Figure 1 – but respectively accounting for consumption
baskets of earnings in the range of 1-33 and 1-10 minimum wages.7 Moreover, we include
prices of major energy components: diesel, gasoline, ethanol fuel, and liquefied natural gas.
These prices are collected by surveys of the wholesale fuel price practiced by retailers of
around 500 cities nationwide.8

Figure 2 illustrates the timeline of real-time data releases of the above price indicators
in December 2022. As shown, IPCA figures came out on the 10th of January 2023, but
data releases of the selected predictors mostly occur throughout the reporting month. For
example, given that energy prices become available after the closing of a calendar week, the
first release is on 5 December while the subsequent numbers are provided on the following
Mondays. IPC-S and FIPE become available shortly after the closing of a four-week collec-
tion system ending on four set dates (07, 15, 22 and end-of-month).9 Hereby these numbers
are first released on the 8th and 9th, followed by releases on the 16th and 19th, and so on,
which is extremely quick for international standards. Turning to monthly indicators, data
on IGP-10 and IPCA-15 come out relatively early in the month – around the third week –
whereas INCC-M, IGP-M and IPA-M follow next before the month ends.

7The sampling procedure of FIPE only accounts for households living in São Paulo city.
8Compared to information on raw oil prices available in financial markets, these surveys have the ad-

vantage that distribution and retail margins are fully accounted for.
9This means that the computation of these indices considers the average of prices collected during the

four weeks preceding the closing date.
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Figure 2: Release calendar of Brazilian price indicators in December 2022

The third group of predictors contains daily information from financial markets, in-
cluding movements in the yield curve or interest rate spreads, commodity and stock price
indices, and exchange rates.10 The choice of these financial market variables is motivated
by their timely information about short-term inflation expectations and findings in the lit-
erature on inflation forecasting. For example, Modugno (2013), Monteforte and Moretti
(2013), and Breitung and Roling (2015) show that relevant commodities (e.g., crude oil
prices) and financial assets are among the most reliable indicators of inflation changes.
Furthermore, central banks and practitioners monitor daily financial variables to forecast
the state of the macroeconomy (Andreou et al., 2013).

Finally, we use expert information from the SPF conducted by the BCB, also known
as the FOCUS survey. It started in the late 90s, together with the implementation of the
inflation-targeting regime in Brazil. Participation in the survey is limited to banks, asset
managers, companies linked to real economic sectors, brokers, and consultancies, who have
to be pre-screened by the BCB. These institutions can continuously provide their short and
long-run expectations regarding key macroeconomic indicators such as GDP, inflation, and
exchange rate, among others. The BCB releases daily aggregate statistics of the SPF, with
a delay of one business day, as well as a Top 5 ranking with the best-performing forecasting
institutions divided across indicators and forecast horizons.

Historically, there are over 100 active participants in the SPF survey. The median of
these experts’ forecasts for IPCA dynamics is closely monitored by market participants,
especially via the weekly handout report released by the BCB every Monday morning with
data up to the previous Friday (Marques, 2012). We use the median of SPF expectations
as both a predictor in our models as well as a benchmark to compare our nowcasts. As an
additional benchmark, we compare our predictions against the median forecast produced by
the Top 5 forecasters. The BCB ranks the Top 5 participant institutions based on previous
months’ performance. Hence, after obtaining the best five institutions, for each indicator
and horizon, the BCB averages their forecasts for the current month11.

10The stock index (IBOV) corresponds to the B3 Index, while interest rates are derived from Brazilian
interbank deposit future contracts negotiated at B3, ultimately linked to treasury bills issued by the BCB.

11Note that there is no “data leakage" given that the ranking is computed based on the past. For instance,
it might be that the current Top 5 institutions are not the ones that will produce the best forecasts at the
current period.
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Table 1: Database

Series Mnemonic Reference
period

Publication
timing

Avg.
delay

Starting
date Source

Target inflation variable

Broad national CPI IPCA full month t
2nd week,

following month 7 2003M1 IBGE

Monthly price indicators

IPCA - extended IPCA-15 16th
t−1 to 15th

t
3rd/4th week,

reporting month 8 2003M1 IBGE

General market price index IGP-M 21st
t−1 to 20th

t
last week,

reporting month 7 2003M1 FGV

General price index - 10 IGP-10 11th
t−1 to 10th

t
2nd/3rd week,

reporting month 4 2003M1 FGV

Wholesale market PPI IPA-M 21st
t−1 to 20th

t
last week,

reporting month 7 2003M1 FGV

National construction cost INCC-M 21st
t−1 to 20th

t
last week,

reporting month 5 2003M1 FGV

Weekly price indicators

FGV’s CPI IPC-S four-week 1st day,
following week 1 2003M2 FGV

Fipe’s CPI FIPE four-week 2nd day,
following week 2 2003M1 Fipe

Diesel prices DIESEL full week 1st day,
following week 1 2004M5W2 ANP

Gasoline prices GAS full week 1st day,
following week 1 2004M5W2 ANP

Ethanol fuel prices ETOH full week 1st day,
following week 1 2004M5W2 ANP

Liquefied natural gas prices LNG full week 1st day,
following week 1 2004M5W2 ANP

Daily financial variables
Short-term interest rates SELIC end of day real-time 0 2003M1 BCB
Brazilian Real/U$$ forex FOREX end of day real-time 0 2003M1 BCB
Bovespa stock price index IBOV end of day real-time 0 2003M1 B3
Electric utilities index IEE end of day real-time 0 2003M1 B3
DI-rates (10Y maturity)∗ DI10 end of day real-time 0 2004M1 B3
DI-spread (10Y minus 3M)∗ SPREAD end of day real-time 0 2004M1 B3
Bloomberg commodity index BCOM end of day real-time 0 2003M1 Bloomberg

Daily expectations from the FOCUS survey of professional forecasters
IPCA nowcasts (median) SPF full day subsequent day 1 2003M1 BCB

Note: This table reports the full list of time series selected for the nowcasting exercise. The reference period
relates to the data collection period. The publication timing provides the regular release calendar for the
reference period while the average delay stands for the publishing lags (in business days). The variables are
not seasonally adjusted and transformed into month-on-month (MoM) % change to guarantee stationarity
of the time series; the only exceptions are the interest rates series (SELIC, DI10 and SPREAD) which are
transformed into monthly changes. MoM transformations for high-frequency variables consider the same
reference week or day from the preceding month. ∗DI-rates are yields of Brazilian interbank deposit future
contracts negotiated at B3.
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3 Methodology

Our nowcasting model follows an unrestricted mixed-frequency structure combined with
ML methods that guard against overfitting in a high-dimensional setting. Our methodology
is essentially divided into two components: (i) the general nowcasting setup, describing the
functional form of how the mixed-frequency dataset will be organized and specifying the
information used at each nowcast date, and (ii) the classes of ML methods employed to
produce the nowcasts. This mixed-frequency ML structure enables us to treat separately the
real-time flow of information from each predictor, thereby facilitating model interpretation,
while improving nowcasting accuracy by harnessing the power of ML methods.

3.1 Nowcasting setup

To fix ideas, we aim to nowcast monthly inflation rates with predictors sampled at the
daily, weekly, and monthly frequencies. Let πt = 100(Pt/Pt−1 − 1) denote the month-on-
month inflation rate, where Pt is the price level in month t. A generic high-frequency (daily
or weekly) macro-financial variable is given by x

(w)
t and can be sampled w times more

frequently than the target πt. Moreover, xt represents a generic monthly price indicator,
with the sampling process extending over t but disclosed before πt. In this sense, time
indices t = 1, . . . , T act as the common frequency between πt and predictors x

(w)
t and xt.

Suppose we would like to update our nowcasts at the weekly frequency. Specifically,
at four different points within the month: days 8, 15, 22, and end-of-month.12 Given
the mixed-frequency environment, we take a stance on how to incorporate high-frequency
information on these four nowcast days. We start by assuming a fixed monthly-to-weekly
combination, with a frequency ratio of w = 4, to accommodate weekly updates of the
nowcast.13 Hence, at the end of month t, the information set also includes the following
K-dimensional vectors of high-frequency predictors: x(w)

t ,x
(w)

t− 1
w

, . . . ,x
(w)

t−w−1
w

, where t−j/w

denotes the jth past high-frequency period for j = 0, . . . , w−1. More precisely, t corresponds
to end-of-month observations; t−1/4 is the next to end-of-month, and thus day 22; t−2/4,
day 15; and t− 3/4, day 8. As a result, the forecast horizon h respectively becomes j/w.

Next, we must address the frequency mismatch between daily and weekly data, along
with the non-synchronous nature of macroeconomic data releases. We transform the daily

12This particular choice of days allows us to control for the problem of overlapping calendar weeks across
consecutive months and the heterogeneous number of days in different months.

13The choice for weekly updates of the nowcast with a fixed monthly/weekly mixture also avoids a
higher proliferation of parameters arising from a higher frequency mismatch in a model that would combine
monthly and daily variables.
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information from financial predictors and the SPF data into weekly time series containing
the latest month-on-month rates available on the nowcast day.14 Data on our weekly
predictors follow different sampling strategies but become available with a minimal lag of
one or two days. Hence, by day 8 of the reporting month t, we assume immediate access to
the first week’s contemporaneous data. For example, IPC-S data covering the first week of
t is reliably published on the first day following the closure of that week – typically on the
8th or the 9th/10th if the closing date is a Friday/Saturday (see Figure 2). Consequently,
this data regularly integrates our information set in t − 3/4. For the remaining nowcast
days within t, we shift forward the latest released contemporaneous month-on-month signal
if the corresponding weekly data is not yet published.

The general prediction model for the nowcast horizon h = j/w is given by

πt|t−h = fh
(
πt−1,x

h
t ,dt,x

(w)
t−h, . . . ,x

(w)
t−h−p/w ;θh

)
+ εht , (1)

whereas the autoregressive term accounts for temporal dependence in πt
15; xh

t is a horizon-
specific Jh-dimensional vector of monthly predictors, thereby sampled at the same frequency
as πt; the set of 11 monthly dummy variables dt capture potential seasonal patterns in
price dynamics; and high-frequency predictors with data up to the nowcast date t− h and
corresponding lags are respectively denoted by x

(w)
t−h, . . . ,x

(w)
t−h−p/w. In addition, θh is a

vector of model parameters specific to the prediction function fh at horizon h; and εht is a
zero-mean disturbance term.

In the general form, model (1) includes p ≥ 0 relevant high-frequency lags to con-
struct the nowcast at any horizon h. For instance, assuming that we stand at day 8
of month t, the nowcast horizon is h = 3/4 and we might use the high-frequency lags
x
(w)
t−3/4,x

(w)
t−1,x

(w)
t−5/4, . . . ,x

(w)
t−p/4. Likewise, if end-of-month observations are available, the

nowcast horizon is h = 0 and the predictors x
(w)
t ,x

(w)
t−1/4, . . . ,x

(w)
t−p/4 might be included.16

Hereby the baseline specification only incorporates the most recent month-on-month high-
frequency signal by setting p = 0, although one might choose p = w − 1 to account for all
contemporaneous high-frequency signals when nowcasting at the end-of-month (see Section
4.3), or even p > w − 1 to include lags that span over past and distant months.

Since our prediction model assigns individual coefficients to each of the high-frequency
predictors in x

(w)
t and its associated lags, a linear specification of (1) can be seen as a

U-MIDAS model. Foroni et al. (2015) argue that a fairly small frequency mismatch, such
as our monthly-to-weekly mixture, favors the adoption of the U-MIDAS over restricted

14The month-on-month transformations of daily and weekly data are taken by referencing the same day
in the previous month. This also ensures the stationarity of the variables.

15If needed, additional lags of πt can be included.
16See Appendix A for an explicit representation of the high-frequency component of (1) in matrix form.
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MIDAS regressions with tightly specified lag polynomials that perform nonlinear temporal
aggregation of high-frequency lags (see also Ghysels and Marcellino, 2018).17 Consequently,
the U-MIDAS approach allows for flexible estimation of the individual effects of high-
frequency lags on the target while facilitating the interpretability of the model.

It is worth emphasizing that xh
t only incorporates monthly predictors with available

contemporaneous information at the time of the nowcast, resulting in a horizon-specific
dimension Jh. For example, given that data on IPCA-15 is usually published between the
19th and 23rd of the reporting month t, IPCA-15 will not be included in xh

t when nowcasts
are made on days 8 and 15. This implies that the predictor space will exhibit reduced
dimensionality at longer nowcast horizons. Hence, we constantly assess the real-time data
availability of monthly predictors by the time of the nowcast and adjust the general speci-
fication (1) accordingly. This approach mitigates the risk of generating imprecise nowcasts
from assigning non-zero and relevant coefficients to monthly predictors lacking new in-
formation to construct the nowcast for πt.18 Furthermore, it avoids ragged edges in the
modeling.

The flexibility of model (1), however, comes at the cost of overparameterization as
the count K of high-frequency predictors and their lags p rise. Specifically, the model
features K(p+1)+ Jh +13 parameters for a specific horizon h, including the intercept. In
macroeconomic contexts, the effective sample size might be relatively short compared to the
number of parameters, posing challenges for conventional estimation methods and leading
to high estimation uncertainty. To address this high-dimensional prediction problem, we
implement the mixed-frequency ML strategy (see Borup et al., 2023) by incorporating a
wide range of ML methods that allow for flexible estimation of the coefficients while still
guarding against overfitting.

3.2 Machine learning methods

The mixed-frequency ML strategy can be applied to both linear and nonlinear prediction
models. The ML methods we implement have been enjoying growing popularity within
economics and are distinguished between two classes: linear shrinkage and nonlinear tree-
based methods. In the first group, we have the Elastic Net (ENet) regression and its two
special cases, LASSO and Ridge. As an alternative to these standard methods, we apply

17The core idea of MIDAS regressions is to efficiently address the dimensionality issue arising from the
numerous high-frequency lags in the model. This is efficiently achieved via tightly specified lag polynomials
to ensure parsimonious modeling. However, the adoption of a constrained MIDAS approach in this context
would yield only a slight reduction in the number of parameters to be estimated in Eq. (1).

18One might also include lags of xh
t in Eq. (1), but we use the autoregressive term to fully capture the

potential serial correlation in πt.
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the sparse-group LASSO estimator with MIDAS structure, a novel approach introduced by
(Babii et al., 2021). This method has the advantage of acknowledging the serial dependence
across different high-frequency lags. Turning to tree-based methods, we implement the
Random Forest (RF), Local Linear Forest (LLF) – both in its solo form and the ensemble
prediction with a LASSO pre-selection of predictors – and the Bayesian Additive Regression
Trees (BART). Table 2 provides an overview of these methods and the corresponding tuning
parameters.

Table 2: Summary of the ML models applied to the general specification (1)

Model Short name Reference R function (package) Tuning parameters and cross-validation

Least absolute shrink-
age and selection op-
erator

LASSO Tibshirani (1996) glmnet (glmnet) and
trainControl, train (caret) λ using time series cross-validation

Ridge Ridge Hoerl and Kennard (1970) glmnet (glmnet) and
trainControl, train (caret) λ using time series cross-validation

Elastic Net ENet Zou and Hastie (2005) glmnet (glmnet) and
trainControl, train (caret) α, λ using time series cross-validation

Sparse-Group LASSO sg-LASSO Babii et al. (2021) cv.sgl.fit (midasml) α, λ using time series cross-validation

Random Forest RF Breiman (2001) randomForest
(randomForest) number of skip-sampled predictors to split the tree (mtry)

equal to the maximum between number of predictors di-
vided by three and one

Local Linear Forest LLF Friedberg et al. (2020) ll_regression_forest (grf) We used default values for sample fraction (0.5), num-
ber of trees (2000), mtry (min{number of predictors1/2 +
20, number of predictors}), minimum node size (5), hon-
esty fraction (0.5), honest prune leaves (1), α (0.05), im-
balance penalty (0)

Bayesian Additive Re-
gression Trees

BART Chipman et al. (2012) rbart (rbart) 200 trees, 1000 posterior simulations after burn-in (100),
d=0.95, probability of death = 0.7

To set the stage to formally outline the ML methods, we denote by π = (π1, . . . , πt)
′

the target inflation series up to t. The low-frequency predictor set specific to horizon h is
denoted by x = (xh′

1 , . . . ,xh′
t ). The t × K(p + 1) predictor set of high-frequency data is

given by x(w) = (x
(w)
−h ,x

(w)
−h−1/4, . . . ,x

(w)
−h−p/w), whereas x

(w)
−h = (x

(w)
1−h,x

(w)
2−h, . . . ,x

(w)
t−h)

′

denotes the t × K high-frequency set associated with lag t − h. The general predictors
matrix is then given by X = (ι,π−1,x,d,x

(w)), where ι accounts for the intercept, π−1

is the first lag of π and d comprises the seasonal deterministic dummies. For convenience,
we drop the superscript h from the vector of model parameters θ.

Shrinkage methods

Shrinkage methods are penalized regression schemes that identify the relevant predictors
from a large dataset. This targeted selection aims to improve forecasting precision at the
cost of a slight increase in bias. The ENet estimator, proposed by (Zou and Hastie, 2005),
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solves the penalized least-squares problem:

θ̂ = min
θ̂

||π −Xθ||2 + λ

(
α |θ|1 +

(1− α)

2
||θ||2

)
, (2)

where α ∈ (0, 1] is a weight hyperparameter that interpolates between LASSO (α = 1)
and Ridge regression (as α → 0). Hence, LASSO penalizes the sum of absolute coefficients
via the shrinking penalty using the ℓ1-norm while Ridge penalizes the sum of squared
coefficients via the ℓ2-norm. The regularization hyperparameter λ controls the amount of
shrinkage in the parameter space θ. Hence, estimator (2) shrinks coefficients of irrelevant
predictors toward zero. Because the penalty term of ENet and LASSO include the ℓ1-norm,
they can perform variable selection and thus yielding a sparse and parsimonious model that
facilitates interpretation. In contrast, coefficients estimated via Ridge regression never equal
zero, yielding a dense model.

Babii et al. (2021) argue that high-dimensional mixed-frequency representations with
multiple high-frequency lags (p > 0 using our notation) involve certain data structures
that once taken into account should lead to increased performance out-of-sample. These
structures relate to groups covering the relevant lags of a single high-frequency predictor.
In this sense, the sg-LASSO with MIDAS structure selects not only the relevant predic-
tors for the target but also the appropriate lag structure of each high-frequency predictor.
This structured sparsity constitutes the key feature of sg-LASSO and a refinement of the
unstructured LASSO, which fails to acknowledge serial dependence across high-frequency
lags and tends to arbitrarily select one lag from the group (see “irrepresentable condition”
in Zhao and Yu, 2006).

The sg-LASSO solves the penalized regression problem:

θ̂ = min
θ̂

||π −Xθ||2 + 2λ (α |θ|1 + (1− α) ||θ||2,1) , (3)

where ||θ||2,1 =
∑

G∈G ||θG|| is the group LASSO norm for a group structure G that com-
prises the p + 1 lags of each high-frequency predictor.19 This implies that sg-LASSO pro-
motes sparsity between and within groups.20

Moreover, the high-frequency predictor set x(w) in (3) is based on orthogonal Legendre
polynomials of degree L that aggregate over the high-frequency lags of each predictor.
They can be viewed as predetermined weights that alleviate overfitting by reducing the
predictor-dimension in x(w) from a factor of (p + 1) to L. In our empirical exercise, the
sg-LASSO is implemented with p = 3 and L = 1. This means that four high-frequency lags

19α ∈ [0, 1] determines the relative importance of LASSO-sparsity and the group structure.
20Note that our application requires us to assume that each monthly predictor in X represents a whole

group in (3).
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are considered, which will be aggregated with equal weights for the Legendre polynomial
of order L = 0 while L = 1 features an increasing linear function and thereby favors
more distant lags.21 In addition, we link these high-frequency lags to the contemporaneous
information set only, giving rise to missing observations at the end of the sample (ragged-
edge problem) when nowcasting on days 8, 15 and 22. Hereby we replace the ragged edges
with random-walk updates of the latest month-on-month information available at the time
of the nowcast. Therefore, in terms of model specification, sg-LASSO departs from standard
shrinkage based on Eq. (2) in two aspects: the number of high-frequency lags (p = 3 rather
than p = 0) and the presence of ragged edges. Finally, having estimated the parameters
using either Equation (2) or (3), we can form a nowcast π̂ by taking a new set of observations
X̃ and multiplying by θ̂.

The shrinkage hyperparameters λ and α are tuned in a data-driven manner using time
series cross-validation, whereas we set the grid values (0, 0.25, 0.5, 0.75, 1) for α. Differently
from the standard cross-validation procedure, in which folds are randomly selected assuming
that observations are independently and identically distributed, time series cross-validation
splits the training dataset into time slices that retain the chronological order. Therefore,
time series cross-validation takes place sequentially and avoids using future observations
to fit the model (for a review, see Arlot and Celisse, 2010; Goulet Coulombe et al., 2022;
Bergmeir et al., 2018). In our empirical exercise, we start with a 36-month initial fixed
window with sequential folds of 12 months.

Tree-based methods

Tree models are based on decision trees, which are nonparametric methods that re-
cursively divide the predictor space according to a pre-determined splitting rule. In our
nowcasting exercise, we use the following models: random forest; the local linear forest; the
bayesian additive regression tree; and a combination of LASSO with the local linear forest.

First proposed by Breiman (2001), random forests are an extension of decision trees in
which the results from several non-correlated (or with very small correlation) trees randomly
chosen are aggregated to form a prediction. The predictions of the trees in a forest are
averaged in such a way that decreases the variance of the final predictions while maintaining
the flexibility of the trees. Specifically, for a random forest with B trees, an univariate
prediction is given by

π̂(X̃m) =
1

B

B∑
b=1

π̂b(X̃m), (4)

21The choice of L = 1 delivers similar results compared to L = 2 but at a lower computational cost.
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where π̂b(X̃m) is the prediction of the b-th tree using new data X̃m, and m here denotes
a subset of all available predictors. RF can deal with high dimensional data without suf-
fering from the curse of dimensionality, but in comparison to a single tree, the forests lack
interpretability (James et al., 2013). Nonetheless, random forests have shown to be highly
competitive against other ML methods and traditional econometric frameworks when used
to forecast inflation (see Medeiros et al., 2021; Araujo and Gaglianone, 2023, among others).

The LLF method proposed by Friedberg et al. (2020) is the combination of a random
forest with a local linear regression. In general terms, it combines the RF ability to deal
with high-dimensional and nonlinearities with the smoothness of a local linear regression. It
is a two-step approach in which the random forest is used to obtain weights for observations
that will be later used in the local linear regression with a ridge-type penalty.

To find the weights using a random forest, we start from (4):

π̂
(
X̃m

)
=

1

B

B∑
b=1

[
Kb∑
k=1

θk,b1X̃m∈Jk,b

]
=

1

B

B∑
b=1

∑
Xi∈Jb(X̃m)

πi

|Jb(X̃m)|

=
1

B

B∑
b=1

n∑
i=1

πi1Xi∈Jb(X̃m)

|Jb(X̃m)|
=

n∑
i=1

αi(X̃m)πi, (5)

where 1X̃m∈Jk,b
is an indicator function denoting that X̃m belongs to the region Jk in tree

b, θk,b is a parameter, and |·| denotes the cardinality of a set. The quantity πi denotes a
response paired with Xi (from the in-sample information), from which n points are available.
The term αi(X̃m) is called forest weight and denotes the fraction of trees that allocates
X̃m in the same leaf as the predictor vector Xi. In Eq. (5), the regression forest will assign
higher weights to sample points closer to X̃m since the prediction is an average over a set
of trees. The forests can adapt the weights, such that a predictor that has little relation
with πi will appear less frequently when making splits (Athey et al., 2019).

The second step is a local linear regression. Specifically, π(X̃m) will be the local average,
which can be estimated together with a θ(X̃m) through the following optimization problem: π̂

(
X̃m

)
θ̂
(
X̃m

)  = argmin
π,θ

{
n∑

i=1

αi

(
X̃m

)(
πi − π

(
X̃m

)
−
(
Xi − X̃m

)
θ
(
X̃m

))2

+λ
∥∥∥θ (

X̃m

)∥∥∥2
2

}
, (6)

where π̂
(
X̃m

)
is still a prediction for a new point but with the slope of the local linear

regression θ
(
X̃m

)
, which corrects for the local trend in Xi − X̃m. The LLF prediction
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is then based on the intercept π̂
(
X̃m

)
while the parameter vector θ is neglected at this

stage. Note that the penalization term λ
∥∥∥θ (X̃m

)∥∥∥2
2

plays a role in avoiding overfitting
to the local trend and λ is typically chosen via cross-validation. As a result, the LLF
can effectively approximate smooth functions through local regression without becoming
infeasible with a growing number of predictors.

Additionally, we implement a combination of LASSO with LLF, as suggested by Fried-
berg et al. (2020). The pre-selection step via the LASSO might lead to improved predictive
performance given that it helps mitigate the curse of dimensionality and better handles
multicollinearity by selecting the most informative predictor among the group. Chinn et al.
(2023) offer a broader discussion on multi-step nowcasting approaches composed of pre-
selection and factor extraction before the estimation of tree-based models.

Chipman et al. (2012) introduce the BART method, which can be viewed as the Bayesian
counterpart to random forests. BART predictions are derived from several trees, but op-
posed to RF, are here sequentially estimated using the residuals from the preceding tree
as the dependent variable. Hence, each subsequent tree attempts to capture the remaining
variability not explained by the previous trees. In general terms, each Bayesian (regression)
tree is defined by T , a collection of interior nodes; and M a set of parameter values that
are associated with the terminal nodes. The set T is also called tree structure and contains
the information on the topology of the trees: whether a node is terminal or not and how
to make splits in non-terminal nodes.

A BART defines a function g(Xi,T ,M) which maps a row Xi (from the predictor
matrix X) to a particular θj ∈ M, j ∈ 1, . . . , |M|. Predictions from individual trees form
the final BART prediction and are obtained by sampling from the posterior distribution.
We closely mirror the prior specification used in Chipman et al. (2012). This implies a
uniform prior to determine both the variable for a split and the corresponding cutpoint. A
conjugate normal prior is used for the predictions on the terminal nodes and a conjugate
inverse χ2-square for the (constant) error term of the model. Finally, the probability of
growing another layer in a tree is given by α(1 + d)−β , where d is the current depth of the
tree, while α ∈ (0, 1) and β ∈ R+ are hyperparameters.

In our empirical exercise, we set the hyperparameters of the above tree-based methods
to default values respectively recommended by Breiman (2001), Friedberg et al. (2020) and
Chipman et al. (2012).22 To construct BART predictions we estimate 200 trees using 1000
posterior draws, with 100 draws as burn-in. For the tree structure, we use α = 0.95 and
θ = 2, which penalizes bigger trees. For the conjugate normal prior of the predictions, we

22Tuning hyperparameters via time series cross-validation results in a lower nowcasting performance and
substantially increased computational burden. These results are available upon request.
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centered the prior at 0 and the variance is equal to 0.5/k(
√
m) where k = 2 and m = 200

denote the number of trees. For the variance prior, the hyperparameters ν and λ of the
(νλ)/χν distribution are obtained from the standard deviation of the response variable in
the estimation sample and a factor of 10, respectively.

4 Empirical Results and Discussion

In this section, we investigate the performance of our mixed-frequency ML models for
nowcasting Brazilian inflation using a real-time dataset with macro-financial predictors that
span from June 2004 to December 2022. For the out-of-sample evaluation, we focus on the
interval from January 2013 to the end of our sample using an expanding window scheme.
This evaluation sample is constrained by data availability, as the release calendar for the
entire dataset is only available from January 2013 onward. Nonetheless, it includes two
of the most inflationary periods in Brazil’s recent history: the economic domestic crisis of
2014 and the COVID-19 pandemic.

To assess the accuracy of our IPCA predictions, we compare them against SPF expecta-
tions – both the median and the Top 5 – published by the BCB. We update our nowcasts on
a set of fixed days (8, 15, 22 and end-of-month) using the most recent increments of monthly
and high-frequency (weekly and daily) data respecting the release calendar. While model
estimation is based on month-on-month transformations of variables, we use year-on-year
IPCA rates as our ultimate metric for performance evaluation. Consequently, we adjust
our model-derived nowcasts for month-on-month IPCA rates before comparison with ac-
tual realizations of the target. Our findings highlight the superior performance of shrinkage
methods over tree-based methods. Moreover, a deeper analysis of key modeling choices in
Eq. (1) reinforces the importance of eliminating ragged edges in a real-time setup and to
account for some degree of informed judgment in SPF data.

4.1 Out-of-sample results

To compare the nowcasting performance across ML models, we use the root mean
squared error (RMSE) of a competing model Mi relative to the benchmark SPF’s median
expectations at the nowcast horizon h. The RMSE is defined as follows

RMSEMi,h =

√√√√ 1

t1 − t0 + 1

t1∑
t=t0

e2t,Mi,h
, (7)
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where et,Mi,h = πt− π̂t|t−h;Mi
is the corresponding nowcasting error with information up to

t−h.23 To test whether nowcasts generated by the ML model Mi are statistically different
from the benchmark, we conduct the Diebold-Mariano (DM) test (Diebold and Mariano,
1995).

Table 3 reports the nowcasting performance of competing models, evaluated in terms
of RMSE relative to the benchmark, whereas the rows refer to the nowcast horizon and,
consequently, the within-month information set. The results underscore the superior per-
formance of shrinkage methods across all nowcast horizons, highlighting the efficacy of
employing penalized regressions alongside a comprehensive real-time dataset. Specifically,
standard shrinkage via the LASSO, Ridge and ENet consistently yields lower RMSE val-
ues, resulting in statistically significant gains of 8.5% up to 17% compared to the median
SPF expectations. While the LASSO generally outperforms, Ridge shows slightly better
performance when nowcasts are made on day 22. Relative to the Top 5 SPF benchmark,
these predictive gains range from 4% to 15%, indicating a substantial difference despite
their status as the best-performing institutions before each nowcasting round. Therefore,
we match those results of Medeiros et al. (2016) and Garcia et al. (2017) for forecasting
Brazilian inflation, which found that techniques based on LASSO outperform at the very
short horizon.

Table 3: RMSE: ML methods relative to the SPF benchmark

SPF Shrinkage-based models Tree-based models
Horizon Median Top 5 LASSO Ridge ENet sg-LASSO RF LLF BART LASSO-LLF

Day 8 1 0.932 0.830∗∗ 0.856∗ 0.842∗∗ 0.930∗ 1.027 0.965 0.963 0.910
Day 15 1 1.014 0.865∗∗ 0.879 0.870∗ 0.955 1.089 1.035 1.033 1.011
Day 22 1 0.942∗ 0.833∗ 0.830∗ 0.833∗ 0.920 1.247 1.046 1.134 0.983

End-of-month 1 0.951 0.915 0.974 0.915 0.936 1.399 1.371 1.310 1.042

Notes: The table reports the RMSE for each competing model relative to the survey of professional fore-
casters (SPF, median). Results for the Diebold and Mariano (1995) test in the event of outperformance
relative to the benchmark are indicated by the symbols ∗ (5% level) and ∗∗ (1% level).

Across information sets, the performance of our ML models relative to the benchmark
generally increases with the nowcast horizon. On days 8 and 15, for example, standard
shrinkage methods can respectively cut the nowcast errors by 16% and 13.5% on average.
Based on the absolute RMSE, this translates into 4.5 and 2.8 basis points of higher accuracy
for tracking the year-on-year inflation target. It is worth noting the significant decline in
nowcasting gains for the end-of-month horizon. Exclusively at this horizon, our model-based
nowcasts have not exhibited statistically significant differences from the benchmark. This
trend aligns with the timing of price indicator releases, which predominantly occur towards

23The nowcasting evaluation using the mean absolute error (MAE) slightly changes compared to the
RMSE metric. This implies that our results are not affected by a few large errors, making them robust to
outliers and asymmetries.
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the end of the month, particularly the IPCA-15. Such a dynamic likely prompts professional
forecasters to increase the frequency of their updates, narrowing the information advantage
exploited by our timely nowcasts at longer horizons.

The dominance of LASSO among shrinkage methods indicates the need for a more ag-
gressive variable selection to nowcasting inflation dynamics. This inherent feature of LASSO
is particularly advantageous in dealing with the high degree of collinearity among the price
indicators within our dataset. Despite cross-validation tuning of the hyperparameter α in
ENet, both Ridge and ENet produce more evenly distributed estimates across those highly
correlated predictors, resulting in slightly increased overfitting in this context. Further-
more, the sg-LASSO yields a considerably lower precision relative to standard shrinkage for
longer horizons (day 8 up to day 22), possibly affected by the presence of ragged edges (see
Section 4.3). For end-of-month horizons, where ragged edges are eliminated, sg-LASSO
outperforms Ridge and narrows the gap against LASSO and ENet. This highlights the
importance of an assertive selection of predictors and suggests that our baseline setting is
not high-dimensional enough for sg-LASSO to thrive.

What drives the poor nowcasting results of tree-based methods? Although the flexibility
of these methods allows for potentially detecting turning points and complex nonlinear
dynamics in the data, their ’need’ for large quantities of data characteristic leads to poor
performance in our setup. Notable exceptions are observed for the longest horizon of day 8,
where LLF, BART and LASSO-LLF yield RMSE reductions between 3.5% and 9% relative
to the benchmark, tough statistical significance is not achieved. The slightly improved
performance of LASSO-LLF corroborates the hypothesis that tree-based methods might
be ill-equipped to handle the limited samples of macroeconomic time series; pre-selecting
strong predictors from a large dataset works best and goes in line with the recommendation
from Friedberg et al. (2020) when dealing with large datasets for the LLF. Moreover, these
results suggest the absence of relevant temporal nonlinearities in Brazilian data.

The findings in Table 3 prompt the question of whether relative performance is constant
throughout the evaluation period or largely affected by inflationary shocks. To gain further
insights into the evolution of loss differentials, we report the cumulative sum of squared
forecast error:

CUMSFEMi,h = −
t1∑

t=t0

(
e2t,Mi,h

− e2t,MSPF,h

)
. (8)

A positive value of CUMSFE indicates an outperformance of the ML model Mi relative
to the benchmark median SPF expectations for horizon h and from period t0 up to t1.
Negative values imply the opposite.
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Figure 3: CUMSFE: shrinkage methods versus the SPF benchmark
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Figure 3 exhibits CUMSFE developments for shrinkage methods across different now-
cast horizons. It becomes crystal clear that the inflationary period following the COVID-19
crisis is a game changer in terms of loss differentials. Particularly, large nowcasting gains
build up from September 2020. During this period of persistent high inflation, we observe
the largest jumps in CUMSFE for nowcasts made on days 8 and 15 using the LASSO.
Moderate gains are also achieved when nowcasting at shorter horizons. It is worth empha-
sizing that these findings during the pandemic mostly drive performance evaluation based
on full-sample metrics, as in Table 3. For instance, our previous hypothesis based on the
performance across information sets – professional forecasters tend to update their expec-
tations more frequently as the information set increases within the reporting month – is a
trend predominantly observed within the context of the COVID-19 crisis.

Turning to the years preceding the pandemic, differences in predictive accuracy between
shrinkage methods and SPF expectations are modest across all shrinkage methods. LASSO
and sg-LASSO prove the most reliable models by consistently keeping an edge relative
to the benchmark for most horizons. In contrast, nowcasts purely based on tree-based
models can be highly detrimental during calm times, as shown in Figure B1 of Appendix
B. The LASSO-LLF performs roughly on par with SPF expectations, reinforcing the idea
that a pre-selection step proves beneficial for tree-based methods. Nonetheless, amidst the
COVID-19 crisis, most tree-based models exhibit a rising competitive advantage over the
benchmark on days 8 and 15.

Figure B2 in Appendix B reports the fluctuation test, introduced by Giacomini and Rossi
(2010), and reaffirms the previous analysis. Predictive gains relative to SPF expectations
change substantially over time, depending on the model and horizon, and are prominent
in the aftermath of the pandemic. Standard shrinkage via the LASSO, Ridge and ENet
deliver occasional significant gains at the 10% level throughout 2021. Other models also
produce statistically significant gains during this period: sg-LASSO on day 8, and LASSO-
LLF on both day 8 and end-of-month. Besides, the picture reveals a clear discrepancy
between shrinkage- and tree-based models, as expected from previous results. Finally, a
higher dispersion of prediction accuracy across models can be observed during turbulent
times such as the domestic economic crisis of 2014 and the pandemic.

4.2 Interpreting the best-performing model

Based on the variable selection performed by our most effective strategy, we investi-
gate the relative importance of the selected predictors fitted via the LASSO. Heatmaps
illustrating the evolution of coefficient estimates at each nowcast horizon are presented in
Figure B3 of Appendix B. The x-axis denotes a nowcasting round in the evaluation sample,
while predictors are displayed in the y-axis. Consequently, the coefficient value associated
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with a given predictor on a specific date within the evaluation sample determines the color
intensity reflected in the graph.

Comparing all panels in Figure B3, we observe that LASSO prompts a fairly sparse
structure at higher nowcast horizons while a more dense structure prevails at horizons ap-
proaching the end of the month. Two factors contribute to this pattern: (i) increased avail-
ability of data on monthly price indicators as the month unfolds, and (ii) signals associated
with price developments in the reporting month t become more accurate as month-on-
month rates rely less on the information set from t− 1. Not surprisingly, on days 8 and 15
(panels B3a and B3b), SPF expectations stand out as the primary predictor, with average
coefficient estimates near 0.7 but exceeding 0.8 towards the end of the sample. Alongside
SPF, the high-frequency price indicators IPC-S and FIPE are consistently selected across
the entire evaluation sample, albeit with comparatively smaller coefficients – e.g., on av-
erage, 0.16 and 0.1 respectively for day 15. At the same time, energy prices, interest rate
variables and commodity prices regularly enter the forecasting model, though with modest
coefficient values.

As the horizons approach the end of the month, the low-frequency but timely indicator
IPCA-15 takes on enormous importance, with coefficient estimates reaching 0.5 in many
cases. Conversely, SPF expectations lose a substantial portion of their relevance. One
plausible hypothesis is that professional forecasters adjust their survey responses in response
to the release of this indicator.

Using a more aggregate approach, we assess the joint relevance of each class of predictors
across different nowcast horizons and sub-periods. As a variable-importance measure, Fig-
ure 4 depicts the weighted sum of absolute LASSO estimates grouped into four categories
of predictors as described in Table 1: monthly price indicators, weekly price indicators,
daily financial variables, and daily SPF expectations. As shown previously, SPF expecta-
tions, closely trailed by weekly price indicators (particularly IPC-S and FIPE), exert the
most substantial impact on shaping our model-based nowcasts. This suggests that SPF ex-
pectations not only incorporate up-to-date information from our dataset but also integrate
informed judgment that extends beyond relying solely on hard predictors for inflation. How-
ever, as recent data on monthly and weekly price indicators becomes available throughout
the reporting month, their relevance in model estimation rises, subsequently diminishing
SPF’s weights as we approach the end-of-month horizon. Particularly, the availability of
contemporaneous data on monthly price indicators after the third week typically elevates
their relative importance when nowcasting on day 22 and end-of-month. On the other hand,
financial variables play a minor role in shaping our model-based nowcasts due to their lim-
ited informativeness regarding current inflation dynamics, especially when compared to the
signals already present in the dataset.
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Figure 4: Variable relevance via coefficient estimates using LASSO

Notes: This Figure reports the weighted sum of absolute coefficient estimates fitted via the LASSO and
grouped into different categories of predictors (see Table 1) on days 8, 15, 22 and end-of-month (EoM).
The “Domestic Economic Crisis” covers the period from 2013 to 2016 while March 2020 divides the “Pre-
Pandemic” period and the start of the COVID-19 crisis (“Post-Pandemic”).

Turning to different sub-periods, the informed judgment in SPF data appears to weigh
more heavily on nowcasting the inflation surge following the pandemic. This tendency
toward increasing SPF weights is already evident in the calm period preceding the pandemic,
particularly when nowcasts are made on day 22. In this case, monthly price indicators lose
significant ground relative to SPF and weekly price indicators. This suggests that SPF
encompasses more robust signals about the target dynamics as we advance in the sample,
possibly stemming from a more timely update of forecasts made by specialists as new
information on other predictors is released. Additionally, off-model information proves more
valuable during turbulent times, especially if the nature of post-pandemic price spikes differs
from the nature of past inflationary shocks in the sample. For example, the inflationary
wave induced by 2014’s domestic economic crisis was more accurately anticipated by relying
solely on hard signals from price indicators.

The natural question that follows is what part of the information set mostly contributes
to the outperformance relative to the tough SPF benchmark. To address this question,
we replicate our recursive exercise using the SPF nowcasting errors as the dependent vari-
able in LASSO regressions and plot the period-wise estimates in Figure B4 of Appendix
B. Surprisingly, professional forecasters mainly overlook recent data increments of FIPE
when nowcasting at longer horizons. Other weekly price indicators are also partially disre-
garded across all horizons but to a smaller extent. As for financial variables, they hardly
contribute to explaining expert’s errors; except for occasional minor effects of Bloomberg’s
commodity index and interest rate movements (SELIC, DI10 and SPREAD) for shorter
horizons. Although a slightly negative intercept estimate shows up across the board, we
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observe a consistent downward bias of SPF expectations. Notably during the pandemic pe-
riod after March 2020, where the average nowcast error based on year-on-year percentage
points yields 0.14 for end-of-month nowcasts compared to only 0.003 in the pre-pandemic
sample. Moreover, it appears that experts do not fully adjust for their past errors given
the significant effect of the lagged dependent variable on day 8 and end-of-month.

Therefore, SPF nowcast errors can be partially predicted with the relevant information
set available at the nowcast date, explaining the additional improvements reported in Sec-
tion 4.1. But what if we add these LASSO-based forecasts for SPF nowcast errors back to
the SPF expectations to obtain implied nowcasts for the IPCA target? In terms of relative
RMSE as in Table 3, this modeling strategy fares better than our previous nowcasts on days
8 and 15. More precisely, respective predictive gains of 18.5% and 16.5% are now obtained
compared to the SPF benchmark. For the remaining horizons, the nowcasting precision
significantly drops when competing against the best-performing models in Table 3.

4.3 A deeper assessment of key modeling features: guiding accurate in-
flation nowcasts

What drives the accuracy of our inflation nowcasts? To explain why the baseline mixed-
frequency ML structure introduced in Section 3.1 coupled with a highly informative dataset
successfully outperforms tough benchmarks, we assess the value added of key modeling
choices in Eq. (1). More specifically, we investigate three aspects: the impact of the high-
frequency lag choice; the impact of eliminating ragged edges; and the impact of using SPF
expectations in the predictor set. It is noteworthy to recall that our baseline specification of
(1), to which we compare the alternative strategies, features the following choices: only the
most recent high-frequency data enters the model by setting p = 0, there is no ragged-edge
problem, and we include the SPF as a predictor.

First, we investigate whether past month-on-month high-frequency regressors carry pre-
dictive value beyond the most recent signal available at the nowcast date t−h. This is done
by extending our baseline choice of p = 0 to account for p = 3 high-frequency lags. Hence,
our alternative specification here includes the four most recent high-frequency information
x
(w)
t−h, . . . ,x

(w)
t−h−3/4. For example, if we stand at 31 December, we include the high-frequency

signals stemming from x
(w)
31 Dec,x

(w)
22 Dec,x

(w)
15 Dec,x

(w)
8 Dec rather than just x

(w)
31 Dec. In general

terms, we increase the high-frequency predictor set by a factor of 4.

The impact in terms of RMSE from incorporating these additional high-frequency lags
can be seen in Figure 5a. The plot indicates that RMSE values generally deteriorate
with the inclusion of additional high-frequency lags. This pattern is more pronounced
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across longer nowcast horizons (days 8, 15 and 22) and tree-based models such as LLF.
However, at the end-of-month (yellow dots) a marginal increased gain of 2-5% in RMSE
is observed across shrinkage methods, most notably for Ridge regression. Therefore, the
last available high-frequency predictor on its own already carries the relevant signal for
updating the nowcasts throughout the reporting month, except at end-of-month, whereas
including lagged high-frequency information is slightly favorable.

Secondly, we keep the alternative assumption of p = 3, however, we redesign the model
to incorporate exclusively contemporaneous high-frequency lags x

(w)
t , . . . ,x

(w)
t−3/4 at any

nowcast day in month t. Additionally, we assume that the low-frequency predictor set
must include all monthly price indicators in the dataset at any horizon h, regardless of
their publication timing. These choices give rise to missing observations at the end of the
sample (ragged-edge problem) when nowcasting on days 8, 15 and 22. As for sg-LASSO, we
complete the ragged edges with random-walk nowcasts based on the most recently released
information.

Figure 5b points to a considerable worsening of the nowcast precision when the model
suffers from the ragged-edge problem. Except for the RF model in the first week of the
month, the loss in performance is consistent within both classes of ML methods. Shrinkage
methods, particularly at shorter nowcast horizons, exhibit the most pronounced suscepti-
bility to ragged edges, experiencing average losses approaching 60%. These findings confirm
the consensus in the MIDAS literature suggesting that ragged edges worsen the forecasting
properties of the model, especially in the very short run (see, e.g., Marcellino and Schu-
macher, 2010; Andreou et al., 2013; Monteforte and Moretti, 2013).

The reasons for this underperformance are twofold. Firstly, during model estimation,
substantial weight is assigned to monthly predictors, which can only bring outdated infor-
mation from t−1 to construct the nowcast for πt, particularly at longer horizons. Secondly,
the multicollinearity arising from the inclusion of p = 3 high-frequency lags in the pre-
dictor set somewhat disorients ML methods, hindering their ability to identify accurate
high-frequency signals.

Third, we investigate the benefits of incorporating some degree of informed judgment
entailed in SPF median expectations. Professional forecasters do not solely rely on models
to form their expectations about short-run inflation dynamics but these can also be at-
tributed to judgment, particularly in challenging times such as the COVID-19 crisis where
purely model-based forecasts are adversely affected. Since our baseline strategy includes
SPF as a high-frequency predictor, we compare it against the alternative specification that
excludes any SPF information from the predictor set. Notably, Figure 5c shows that adding
meaningful off-model information from SPF leads to sizeable nowcasting advantages. Specif-
ically, predictive gains are substantially higher across shrinkage methods, averaging from
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27% on day 8 to 36% at end-of-month. This indicates that SPF information on inflation
expectations can better discipline parametric model structures.

Amidst the turbulence induced by the pandemic, professional forecasters tended to
underestimate the inflation surge. Nevertheless, informed judgment in SPF data carried
relevant information about rapidly unfolding inflationary trends beyond what was reflected
by other predictors in our dataset. In addition, the previous discussion on Figure 4 reveals
a growing relevance of SPF in constructing LASSO-based nowcasts, especially post-2021.
Consequently, environments marked by highly unpredictable and elevated inflation, like the
pandemic, are best suited for enriching model-based inflation nowcasts with SPF expecta-
tions. These findings align with most of the previous studies that investigate the value
added of SPF expectations into model-based forecasts (see, e.g., Banbura et al., 2021b;
Bobeica and Hartwig, 2023).

In summary, superior nowcasting accuracy predominantly stems from the combination
of a well-designed mixed-frequency ML structure with carefully selected predictors that
include some degree of informed judgment in SPF expectations. Specifically, the prediction
model must be free from ragged edges. This is first attained through high-frequency leads,
preferably focusing solely on the last available high-frequency signal conveyed by x

(w)
t−h.

Furthermore, the inclusion of monthly predictors in the model specification should be guided
by their real-time data releases; in particular, only those with available contemporaneous
data by the nowcast date.

Figure 5: Absolute RMSE: alternative versus the baseline specification

(a) Alternative (with p = 3 high-frequency lags) versus the baseline (with p = 0)
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(b) Alternative (with ragged-edge problem and p = 3) versus the baseline (no ragged edges and p = 0)

(c) Alternative (without SPF) versus the baseline (including SPF as predictor)

Notes: This Figure reports the absolute RMSE of the alternative specification versus the baseline model
specified in Section 3.1. Points below (above) the 45-degree reference line, in solid black, indicate an
underperformance (outperformance) of the alternative specification for a given competing ML method and
nowcast horizon.

5 Summary and conclusions

Machine learning methods have recently gained considerable traction as standard tools
for macroeconomic nowcasting, offering an effective solution to handle the increasing avail-
ability of high-frequency information stemming from all parts of the economy. In the wake
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of disruptive events like the COVID-19 pandemic, the demand for such nowcasts has intensi-
fied. Yet there remains a notable gap in harnessing ML methods to leverage high-frequency
signals for real-time inflation nowcasting.

To address this gap, our study compares shrinkage methods with tree-based models in
an environment characterized by persistently high inflation. Our empirical exercise under-
scores the importance of a well-designed mixed-frequency ML framework to construct robust
inflation nowcasts that consistently outperform SPF expectations, with major nowcasting
benefits during the COVID-19 inflation surge. Moreover, we show that good nowcasts de-
pend on variable selection performed via the LASSO combined with accurate timely signals
from price indicators and informed judgment entailed in SPF data. The findings high-
light the adaptability of shrinkage methods to produce accurate nowcasts across different
horizons while tree-based methods lead to poor performance due to the limited time series
sample and the plausible absence of temporal nonlinearities in our setup. Overall, the timely
and high-frequency character of the Brazilian real-time dataset offers valuable insights for
policymakers and practitioners seeking to refine their inflation forecasting capabilities in
uncertain economic landscapes.

Variable importance analysis via the LASSO fitted coefficients shows that model selec-
tion heavily depends on the contemporaneous information set available at the time of the
nowcast. Specifically, at longer nowcast horizons, a more sparse model delivers higher pre-
dictive gains compared to the benchmark, while exploiting early information from weekly
price indicators and SPF expectations. At shorter horizons, shrinkage-based models yield a
denser structure that also assigns substantial importance to monthly price indicators, which
only enter the predictor set when their contemporaneous signal becomes available. In gen-
eral, financial variables play a minor role but the combination of timely price indicators
with SPF judgments proves highly influential in shaping our model-based nowcasts.

Furthermore, our study sheds light on key modeling choices in a mixed-frequency ML
framework. The results suggest implementing the following strategies to achieve higher
performance: (i) account for expert judgment in the predictor set, (ii) make the prediction
model free of ragged edges, (iii) align the model specification with the release calendar of
monthly predictors, and (iv) prioritize the most recent high-frequency signal available in the
information set. With our framework, we can significantly improve upon SPF expectations,
even outperforming the Top 5 SPF institutions, which are widely regarded as the most
challenging benchmark for forecasting Brazilian inflation dynamics. As a fruitful avenue
for further research, one could expand our analysis to encompass additional classes of ML
methods and contrast them with traditional econometric frameworks such as factor models
and mixed-frequency Bayesian VARs. Moreover, one could assess the economic value of our
nowcasting gains in monetary policy decisions and portfolio allocation strategies.
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Appendix A Mixed-frequency framework in matrix form

For expositional simplicity, let us reduce the general multiple-predictors specification (1) to
the single generic high-frequency predictor x

(w)
t and neglect both the low-frequency predictors and

seasonal dummies. From there, assume the latest data release for the target variable is associated
with a given month t. Based on the high-frequency information set available up to the nowcast
point, say t + 1 − h, and pre-sample information {π0, x(w)

0 , x
(w)
0−1/4, . . . , x

(w)
0−p/4}, one can construct

the nowcast for πt+1 at horizon h = j/w, with j ∈ {0, 1, 2, 3}, by using the following matrix
representation for model estimation:


π1
π2
...
πt

 =



1 π0 x
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ρ1
β1
β2
β3
...

βp+1


+


ε1
ε2
...
εt

 (A1)

For example, suppose we stand at day 15 of December and we want to construct the nowcast
for πDec assuming a general high-frequency lag order p. In this case, the forecast horizon is h =
2/4 and we estimate the model using monthly data until November and weekly data until 15
November. To account for the lags p, the last high-frequency observations in (A1) will respectively
be associated with 15 November, 8 November, 31 October, 22 October, 15 October, and so on up to
the corresponding lag-length p. From there, the nowcast for πDec is constructed using the estimated
coefficients and all the low- and high-frequency information available until 15 December.

Ultimately, note that (A1) makes explicit that the general prediction model is still written
at the monthly frequency but accounting for the w high-frequency time increments within each
common period t. The nowcast for the inflation rate at periods t + 1, . . . , T can then be updated
regularly using the high-frequency data increments that become available after t and well before
official releases of the target inflation rate.
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Appendix B Supplementary results

Figure B1: CUMSFE: tree-based methods versus the SPF benchmark
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Figure B2: Fluctuation test: ML competing models versus the SPF benchmark
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Notes: This Figure reports the fluctuation test from Giacomini and Rossi (2010) based on the squared loss differential
between a machine learning method and SPF nowcasts. Areas between the horizontal dashed lines correspond to the
90% confidence interval of the two-sided statistical test. We used as window parameters of the test µ = 0.1 and five
for the number of lags in the variance of the DM test.
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Figure B3: Heatmap of coefficient estimates using LASSO

(a) Day 8 (b) Day 15

(c) Day 22 (d) End-of-month

Notes: This Figure depicts heatmaps of LASSO-fitted coefficients over the evaluation period. Empty cells represent
a coefficient estimate equal to zero, and thus a predictor that has not been selected at the estimation round t in the
evaluation period.
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Figure B4: Heatmap of coefficient estimates using LASSO on the SPF nowcasting errors

(a) Day 8 (b) Day 15

(c) Day 22 (d) End-of-month

Notes: This Figure depicts heatmaps of LASSO-fitted coefficients using SPF nowcasting errors as the dependent
variable. Empty cells represent a coefficient estimate equal to zero, and thus a predictor that has not been selected
at the estimation round t in the evaluation period.
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