The Transmission of Monetary Policy through Redistributions and Durable Purchases

Vincent Sterk and Silvana Tenreyro

UCL, LSE

DNB, November 2015

The Monetary Transmission Mechanism

Workhorse models of monetary policy:

• are centred on nominal rigidities (New Keynesian model)

The Monetary Transmission Mechanism

Workhorse models of monetary policy:

- are centred on nominal rigidities (New Keynesian model)
- abstract from redistributional effects (representative agent)

Study different channel of monetary transmission. Simple DSGE model

no sticky prices or nominal wages

- no sticky prices or nominal wages
 - ▶ integrate later

- no sticky prices or nominal wages
 - ▶ integrate later
- heterogeneous households

- no sticky prices or nominal wages
 - ▶ integrate later
- heterogeneous households
 - parsimonious life-cycle structure

- no sticky prices or nominal wages
 - ▶ integrate later
- heterogeneous households
 - parsimonious life-cycle structure
- government or fiscal authority: net debtor

- no sticky prices or nominal wages
 - ▶ integrate later
- heterogeneous households
 - parsimonious life-cycle structure
- government or fiscal authority: net debtor
- key role for durables

- no sticky prices or nominal wages
 - ▶ integrate later
- heterogeneous households
 - parsimonious life-cycle structure
- government or fiscal authority: net debtor
- key role for durables
 - in line with VAR evidence

- no sticky prices or nominal wages
 - ▶ integrate later
- heterogeneous households
 - parsimonious life-cycle structure
- government or fiscal authority: net debtor
- key role for durables
 - in line with VAR evidence
- monetary policy implemented through open market operations

- no sticky prices or nominal wages
 - ▶ integrate later
- heterogeneous households
 - parsimonious life-cycle structure
- government or fiscal authority: net debtor
- key role for durables
 - in line with VAR evidence
- monetary policy implemented through open market operations
 - contrast to "helicopter drops"

Open Market Operation (OMO): central bank sells/buys short-term bonds

Modern practice

- Modern practice
 - more sophisticated OMOs since financial crisis (e.g., longer-term securities)

- Modern practice
 - more sophisticated OMOs since financial crisis (e.g., longer-term securities)
- Theoretical literature: irrelevance results found in:

- Modern practice
 - more sophisticated OMOs since financial crisis (e.g., longer-term securities)
- Theoretical literature: irrelevance results found in:
 - Wallace (1981), Sargent & Smith (1982),

- Modern practice
 - more sophisticated OMOs since financial crisis (e.g., longer-term securities)
- Theoretical literature: irrelevance results found in:
 - Wallace (1981), Sargent & Smith (1982),
 - ► Eggertsson & Woodford (2003), Woodford (2011)...

- Modern practice
 - more sophisticated OMOs since financial crisis (e.g., longer-term securities)
- Theoretical literature: irrelevance results found in:
 - Wallace (1981), Sargent & Smith (1982),
 - ► Eggertsson & Woodford (2003), Woodford (2011)...
 - ...but all of the above rule out redistributional effects

- Modern practice
 - more sophisticated OMOs since financial crisis (e.g., longer-term securities)
- Theoretical literature: irrelevance results found in:
 - Wallace (1981), Sargent & Smith (1982),
 - ► Eggertsson & Woodford (2003), Woodford (2011)...
 - ...but all of the above rule out redistributional effects
- Fiscal authorities do not "undo" the redistributive effects from MP

- Modern practice
 - more sophisticated OMOs since financial crisis (e.g., longer-term securities)
- Theoretical literature: irrelevance results found in:
 - ► Wallace (1981), Sargent & Smith (1982),
 - ► Eggertsson & Woodford (2003), Woodford (2011)...
 - ...but all of the above rule out redistributional effects
- Fiscal authorities do not "undo" the redistributive effects from MP
 - when researchers estimate the transmission mechanisms, these effects are present...

Expansionary OMO triggers:

• an increase in prices, surprise destruction of nominal private wealth

- an increase in prices, surprise destruction of nominal private wealth
- a negative wealth effect for households, particularly old

- an increase in prices, surprise destruction of nominal private wealth
- a negative wealth effect for households, particularly old
- increased incentive save for retirement \Longrightarrow lower *real* interest rate

- an increase in prices, surprise destruction of nominal private wealth
- a negative wealth effect for households, particularly old
- increased incentive save for retirement \Longrightarrow lower *real* interest rate
- a substitution towards durables

- an increase in prices, surprise destruction of nominal private wealth
- a negative wealth effect for households, particularly old
- increased incentive save for retirement \Longrightarrow lower *real* interest rate
- a substitution towards durables
 - durable boom: increase in employment and output

- an increase in prices, surprise destruction of nominal private wealth
- a negative wealth effect for households, particularly old
- increased incentive save for retirement \Longrightarrow lower real interest rate
- a substitution towards durables
 - durable boom: increase in employment and output
 - with search and matching frictions: increase in investment in durable matches (employment rises)

- an increase in prices, surprise destruction of nominal private wealth
- a negative wealth effect for households, particularly old
- increased incentive save for retirement \Longrightarrow lower real interest rate
- a substitution towards durables
 - durable boom: increase in employment and output
 - with search and matching frictions: increase in investment in durable matches (employment rises)
- reduction in real government debt and persistent increase in central bank revenues

- an increase in prices, surprise destruction of nominal private wealth
- a negative wealth effect for households, particularly old
- increased incentive save for retirement \Longrightarrow lower real interest rate
- a substitution towards durables
 - durable boom: increase in employment and output
 - with search and matching frictions: increase in investment in durable matches (employment rises)
- reduction in real government debt and persistent increase in central bank revenues
 - rebated to tax-payers via the Treasury (2-3% of G)

- an increase in prices, surprise destruction of nominal private wealth
- a negative wealth effect for households, particularly old
- increased incentive save for retirement \Longrightarrow lower real interest rate
- a substitution towards durables
 - durable boom: increase in employment and output
 - with search and matching frictions: increase in investment in durable matches (employment rises)
- reduction in real government debt and persistent increase in central bank revenues
 - rebated to tax-payers via the Treasury (2-3% of G)
 - breakdown Ricardian Equivalence

Empirical evidence

VectorAutoRegresson

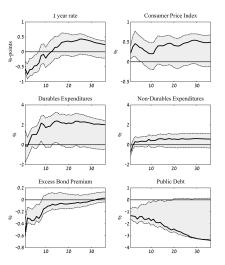


Figure: Responses to an expansionary monetary policy shock, identified following Gertler and Karadi (2015).

Model

• Closed economy, overlapping generations.

- Closed economy, overlapping generations.
- 2 life cycle stages (young, old), stochastic ageing (prob. ρ_o) and death (prob. ρ_x), Gertler (1999).

- Closed economy, overlapping generations.
- 2 life cycle stages (young, old), stochastic ageing (prob. ρ_o) and death (prob. ρ_x), Gertler (1999).
- Following retirement, immediate death shock may occur.

- Closed economy, overlapping generations.
- 2 life cycle stages (young, old), stochastic ageing (prob. ρ_o) and death (prob. ρ_x), Gertler (1999).
- Following retirement, immediate death shock may occur.
- Population size normalized to one. Stationary population:

$$\rho_o \nu = \rho_x \left(1 - \nu + \rho_o \nu \right)$$

where ν is the fraction of young agents in the population (#newborn=#aging=#dying).

ullet Young agents supply labor (h_t) , old agents are not productive

- Young agents supply labor (h_t) , old agents are not productive
- Agents derive utility from non-durables (c_t) , durables (d_t) and money (m_t) . No utility from bequests.

- ullet Young agents supply labor (h_t) , old agents are not productive
- Agents derive utility from non-durables (c_t) , durables (d_t) and money (m_t) . No utility from bequests.
- Agents can also save in bonds (b_t)

• Firms are perfectly competitive, producing durables and non-durables with the same technology $y_t = h_t$. They rent labor on an competitive labor market. Profit maximization implies $w_t = 1$.

- Firms are perfectly competitive, producing durables and non-durables with the same technology $y_t = h_t$. They rent labor on an competitive labor market. Profit maximization implies $w_t = 1$.
- Government consists of a central bank and a Treasury.

- Firms are perfectly competitive, producing durables and non-durables with the same technology $y_t = h_t$. They rent labor on an competitive labor market. Profit maximization implies $w_t = 1$.
- Government consists of a central bank and a Treasury.
- The treasury makes a transfer τ_t^s to each household of type s. We denote an agent's life-cycle status by superscript $s \in \{n, y, o\}$, with n denoting a newborn young agent, y a pre-existing young agent, and o an old agent.

- Firms are perfectly competitive, producing durables and non-durables with the same technology $y_t = h_t$. They rent labor on an competitive labor market. Profit maximization implies $w_t = 1$.
- Government consists of a central bank and a Treasury.
- The treasury makes a transfer τ_t^s to each household of type s. We denote an agent's life-cycle status by superscript $s \in \{n, y, o\}$, with n denoting a newborn young agent, y a pre-existing young agent, and o an old agent.
- Wealth of deceased agents equally distributed among the young.

Old agents

Optimization problem old agent $(\mathbf{s} = \mathbf{o})$ in real terms:

$$\begin{split} &V^{\mathbf{o}}(\mathbf{a},\Gamma) = \max_{c,d,m,b} U(c,d,m) + \beta \left(1-\rho_{\mathbf{x}}\right) \mathbb{E} V^{\mathbf{o}}(\mathbf{a}',\Gamma') \\ &s.t. \\ &c+d+m+b = \mathbf{a}+\tau^{\mathbf{o}} \\ &\mathbf{a}' \equiv \left(1-\delta\right)d + \frac{m}{1+\pi'} + \frac{(1+r)\,b}{1+\pi'}, \\ &c.\,d.\,m > 0. \end{split}$$

where $V^{\mathbf{o}}(a,\Gamma)$ is the value function, a denotes individual wealth, Γ is the aggregate state and π is the net rate of inflation. Also, β is the agents' subjective discount factor, δ is the depreciation rate of durables and $\mathbb E$ is the conditional expectations operator.

Young agents

Optimization problem young agents $(\mathbf{s} = \mathbf{n}, \mathbf{y})$

$$\begin{split} V^{\mathbf{s}}(\mathbf{a},\Gamma) &= \max_{c,d,m,b,h} U(c,d,m) - \zeta \frac{h^{1+\kappa}}{1+\kappa} + \beta \left(1-\rho_o\right) \mathbb{E} V^{\mathbf{y}}(\mathbf{a}',\Gamma') \\ &+ \beta \rho_o \left(1-\rho_x\right) \mathbb{E} V^{\mathbf{o}}(\mathbf{a}',\Gamma') \end{split}$$
 s.t.
$$c+d+m+b = \mathbf{a} + \mathbf{w}h + \tau^{\mathbf{b}\mathbf{q}} + \tau^{\mathbf{s}}, \\ \mathbf{a}' &\equiv \left(1-\delta\right)d + \frac{m}{1+\pi'} + \frac{\left(1+r\right)b}{1+\pi'}, \\ c,d,m &\geq 0, \end{split}$$

where w is the wage rate and $\tau^{\mathbf{bq}}$ is a bequest transfer. In the utility function $\zeta>0$ is a scaling's parameter and $\kappa>0$ determines the Frisch elasticity of labor supply.

• The central bank controls the nominal money supply, M_t , by conducting open market operations. In particular, the central bank can sell or buy government bonds. We denote the stock of bonds held by the central bank as B_t^{cb} .

- The central bank controls the nominal money supply, M_t , by conducting open market operations. In particular, the central bank can sell or buy government bonds. We denote the stock of bonds held by the central bank as $B_t^{\mathbf{cb}}$.
- The use of these open market operations implies that:

$$B_t^{\mathbf{cb}} - B_{t-1}^{\mathbf{cb}} = M_t - M_{t-1}.$$

- The central bank controls the nominal money supply, M_t , by conducting open market operations. In particular, the central bank can sell or buy government bonds. We denote the stock of bonds held by the central bank as $B_t^{\mathbf{cb}}$.
- The use of these open market operations implies that:

$$B_t^{\mathbf{cb}} - B_{t-1}^{\mathbf{cb}} = M_t - M_{t-1}.$$

• The central bank transfers its accounting profit -seigniorage- to the treasury. The remittance, labeled $\tau_t^{\mathbf{cb}}$, is given by:

$$\tau_t^{\mathbf{cb}} = \frac{r_{t-1}b_{t-1}^{\mathbf{cb}}}{1+\pi_t}.$$

- The central bank controls the nominal money supply, M_t , by conducting open market operations. In particular, the central bank can sell or buy government bonds. We denote the stock of bonds held by the central bank as $\mathcal{B}_t^{\mathbf{cb}}$.
- The use of these open market operations implies that:

$$B_t^{\mathbf{cb}} - B_{t-1}^{\mathbf{cb}} = M_t - M_{t-1}.$$

• The central bank transfers its accounting profit -seigniorage- to the treasury. The remittance, labeled $\tau_t^{\mathbf{cb}}$, is given by:

$$\tau_t^{\mathbf{cb}} = \frac{r_{t-1}b_{t-1}^{\mathbf{cb}}}{1+\pi_t}.$$

• To analyze monetary policy shocks, we assume that M_t is driven by an exogenous process subject to stochastic shocks.

• We abstract from government consumption/investment.

- We abstract from government consumption/investment.
- The treasury runs a balanced budget, but starts off with an initial level of bonds $B_{t-1}^{\mathbf{g}}$ (which will be negative). The treasury's budget constraint in real terms is:

$$\frac{r_{t-1}b_{t-1}^{\mathbf{g}}}{1+\pi_{t}}+\boldsymbol{\tau}_{t}^{\mathbf{cb}}=\nu\rho_{o}\boldsymbol{\tau}_{t}^{\mathbf{n}}+\nu\left(1-\rho_{o}\right)\boldsymbol{\tau}_{t}^{\mathbf{y}}+\left(1-\nu\right)\boldsymbol{\tau}_{t}^{\mathbf{o}}$$

where the total amount of transfers is adjusted to balance the government's budget

- We abstract from government consumption/investment.
- The treasury runs a balanced budget, but starts off with an initial level of bonds $B_{t-1}^{\mathbf{g}}$ (which will be negative). The treasury's budget constraint in real terms is:

$$\frac{r_{t-1}b_{t-1}^{\mathbf{g}}}{1+\pi_{t}}+\boldsymbol{\tau}_{t}^{\mathbf{cb}}=\nu\rho_{o}\boldsymbol{\tau}_{t}^{\mathbf{n}}+\nu\left(1-\rho_{o}\right)\boldsymbol{\tau}_{t}^{\mathbf{y}}+\left(1-\nu\right)\boldsymbol{\tau}_{t}^{\mathbf{o}}$$

where the total amount of transfers is adjusted to balance the government's budget

• Net beneficiary is the government. Key how it redistributes gain.

• Retired agents are assumed not to be subject to transfers/taxes, i.e. we set $\tau_t^{\rm o}=0$.

- Retired agents are assumed not to be subject to transfers/taxes, i.e. we set $\tau_t^{\mathbf{o}} = 0$.
- To render the model tractable, we assume that transfers to newborns equal the after tax wealth of pre-existing young agents. This is achieved by setting:

$$\mathbf{a}_t^{\mathbf{y}} + \boldsymbol{\tau}_t^{\mathbf{y}} = \boldsymbol{\tau}_t^{\mathbf{n}}$$

where a_t^y is the average wealth among pre-existing young agents.

- Retired agents are assumed not to be subject to transfers/taxes, i.e. we set $\tau_t^{\mathbf{o}} = 0$.
- To render the model tractable, we assume that transfers to newborns equal the after tax wealth of pre-existing young agents. This is achieved by setting:

$$\mathbf{a}_t^{\mathbf{y}} + \mathbf{ au}_t^{\mathbf{y}} = \mathbf{ au}_t^{\mathbf{n}}$$

where a_t^y is the *average* wealth among pre-existing young agents.

What arises is a representative young agent. We preserve
heterogeneity between old and young agents, as well as heterogeneity
among old agents.

Market clearing

Market clearing constraints durables and non-durables:

$$c_t = \nu c_t^{\mathbf{y}} + (1 - \nu) c_t^{\mathbf{o}}$$

$$d_t = \nu d_t^{\mathbf{y}} + (1 - \nu) d_t^{\mathbf{o}},$$

Resource constraint, clearing conditions for money and bond market:

$$\begin{array}{rcl} c_t + d_t & = & \nu \, h_t^{\mathbf{y}} + (1 - \delta) \, d_{t-1}, \\ m_t & = & \nu \, m_t^{\mathbf{y}} + (1 - \nu) \, m_t^{\mathbf{o}}, \\ 0 & = & b_t^{\mathbf{g}} + b_t^{\mathbf{c}\mathbf{b}} + \nu \, b_t^{\mathbf{y}} + (1 - \nu) \, b_t^{\mathbf{o}} \\ \end{array}$$

Magnitude bequest transfer:

$$\boldsymbol{\tau}_t^{\mathbf{bq}} = \frac{\rho_{\mathbf{x}} \int\limits_{i:\mathbf{s} = \mathbf{o}} \mathbf{a}_{i,t} di + \rho_{o} \rho_{\mathbf{x}} \boldsymbol{\nu} \mathbf{a}_t^{\mathbf{y}}}{\boldsymbol{\nu}}$$

Equilibrium

Definition. A recursive competitive equilibrium is defined by policy rules for non-durable consumption, $c^{\mathbf{s}}(\mathsf{a},\Gamma)$, durable consumption, $d^{\mathbf{s}}(\mathsf{a},\Gamma)$, money holdings, $m^{\mathbf{s}}(\mathsf{a},\Gamma)$, bond holdings, $b^{\mathbf{s}}(\mathsf{a},\Gamma)$, labor supply, $h^{\mathbf{s}}(\mathsf{a},\Gamma)$, with $\mathbf{s}=\mathbf{n},\mathbf{y},\mathbf{o},\mathbf{cb},\mathbf{g}$, as well as laws of motion for inflation, the nominal interest rate and the real wage, such that

- households optimize their expected life-time utility subject to their constraints and the law of motion for the aggregate state,
- the treasury and central banks follow their specified policies,
- the markets for bonds, money, goods and labor clear in every period.

The aggregate state Γ includes the value of the monetary policy shock, the distribution of wealth among agents, as well as the initial holdings of assets by households, the treasury and the central bank.

Representative agent version

ullet If we set $ho_{_{ imes}}=1$ old agents are effectively removed from the model.

Representative agent version

- \bullet If we set $\rho_{\rm x}=1$ old agents are effectively removed from the model.
- Given the transfers to newborns, the model becomes observationally equivalent to one with an infinitely-lived representative agent with subjective discount factor $\widetilde{\beta}=\beta\,(1-\rho_o)$.

Representative agent version

- \bullet If we set $\rho_{\rm x}=1$ old agents are effectively removed from the model.
- Given the transfers to newborns, the model becomes observationally equivalent to one with an infinitely-lived representative agent with subjective discount factor $\widetilde{\beta}=\beta\,(1-\rho_o)$.
- Easy to show that monetary policy becomes neutral with respect to real activity when utility is separable in money and consumption. No wealth effects (Weil (1991)).

Monetary neutrality

- Following arguments similar to Sidrauski (1967) one can show that, provided that money and goods enter the utility function separably, monetary policy does not affect real outcomes.
- To show this, consider the representative agent's first-order conditions for durables, labor supply, and the aggregate resource constraint:

$$\begin{array}{rcl} U_{c,t} & = & U_{d,t} + \widetilde{\beta} \left(1 - \delta\right) \mathbb{E}_t U_{c,t+1} \\ U_{c,t} & = & \zeta h_t^{\kappa} \\ c_t + d_t & = & h_t + \left(1 - \delta\right) d_{t-1} \end{array}$$

where $U_{c,t}$ and $U_{d,t}$ are, respectively, the agents' marginal utilities with respect to non-durables and durables.

 Under preference separability, this is a closed dynamic system of 3 equations and 3 endogenous variables. No nominal variables enter this system.

Adding search and matching frictions

- Diamond-Mortensen-Pissarides style matching friction.
- Young workers live in representative family, as in Merz (1995) and Andolfatto (1996).
- Workers are born without a job, lose job with fixed probability. Search for jobs when unemployed, accept any job offer in equilibrium.
- ⇒ shut off labour supply chanel. Employment determined by firms' endogenous vacancy posting decision. ⇒ worker-firm relationships are durables.

Quantitative implementation

Computation

 Models with wealth heterogeneity and aggregate fluctuations typically difficult to solve, because wealth distribution is part of the economic state (Krusell and Smith (1998)).

Computation

- Models with wealth heterogeneity and aggregate fluctuations typically difficult to solve, because wealth distribution is part of the economic state (Krusell and Smith (1998)).
- Despite the presence of heterogeneity, our model can be solved using standard methods (first-order perturbation), under the following preferences:

$$U(c_{i,t}, d_{i,t}, m_{i,t}) = \frac{u_{i,t}^{1-\sigma} - 1}{1-\sigma},$$

$$u_{i,t} \equiv \left[c_{i,t}^{\frac{\epsilon-1}{\epsilon}} + \eta d_{i,t}^{\frac{\epsilon-1}{\epsilon}} + \mu m_{i,t}^{\frac{\epsilon-1}{\epsilon}}\right]^{\frac{\epsilon}{\epsilon-1}},$$

 σ , ϵ , η , $\mu > 0$. Baseline: $\sigma = \epsilon = 1$ (separability).

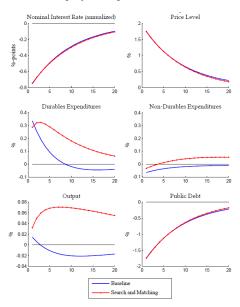
Shock process

Money growth rule:

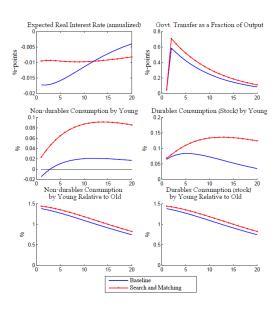
$$\frac{M_t}{M_{t-1}} = 1 + z_t$$

where z_t is a mean reverting process following:

$$z_t = \xi(\overline{m} - m_{t-1}) + \varepsilon_t, \ \xi \in [0, 1),$$

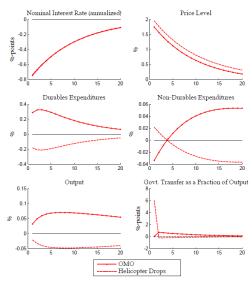

where ε_t is an i.i.d. shock innovation. (Implicit inflation target is zero.)

Parameter values (quarterly model)


Table 1. Parameter values for the baseline model and the Search and Matching (SaM) model.

	baseline	SaM	description	motivation
β	0.9732	0.9755	subjective discount factor	4% s.s. annual interest rate
η	0.31	0.31	durables preference param.	20% s.s. spending on durables (NIPA)
μ	0.0068	0.0049	money preference param.	1.8 s.s. M2 velocity $(\frac{y}{m})$ (FRB/NIPA)
σ	1	1	coef. rel. risk aversion	convention literature
ϵ	1	1	intratemp. elast. of subst.	convention literature
κ	1	_	inv. elasticity labour supply	convention literature
ζ	0.5795	_	disutility of labor	normalize agg. output to one
ρ_o	0.0063	0.0063	ageing probability	avg duration working life 40 years
ρ_x	0.0125	0.0125	death probability	avg duration retirement 20 years
δ	0.04	0.04	depreciation rate durables	Baxter (1996)
b_0^g	-2.4	-2.4	initial bonds Treasury	government debt 60% of annual output
b_0^{cb}	0	0	initial bondsCentral Bank	no initial central bank debt/bonds
ξ	0.2	0.4	coefficient monetary rule	half life nominal interest rate $2.5~{\rm years}$
χ_0	_	0.0044	variable hiring cost	$\chi_1/\chi_0=10$ (Pissarides (2009))
χ_1	_	0.0004	fixed hiring	$\chi_1/\chi_0=10$ (Pissarides (2009))
α	_	0.5	matching function elasticity	convention search literature
ν	_	0.7	scaling matching function	vacancy filling probability 0.74

Expansionary monetary policy shock



Young versus old

Monetary expansion

OMO vs helicopter drop

Conclusions

- Simple life-cycle DSGE model without nominal rigidities
- Responses to monetary policy shocks in line with VAR evidence: key role for durables
 - can help the NK model in fitting the data
- Transmission mechanism: two redistributional channels:
 - Among households
 - Between households and government
- Implementation of monetary policy matters (OMO vs helicopter drop)