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Abstract

We examine optimal normalization strategies for a central bank confronted with
persistent inflationary shocks and a potential de-anchoring of expectations. Our analysis
characterizes optimal monetary policy, when the central bank uses both the short-term
interest rate and the balance sheet, in a framework in which agents’ expectations can
deviate from the rational expectations benchmark. Optimal policy is developed using
a sufficient statistics approach, highlighting the dynamic causal effects of changes in
each policy instrument on the central bank’s targets. Three key insights emerge: first,
the interest rate is identified as the key instrument for managing inflationary pressures,
outperforming balance sheet adjustments. Second, having anchored expectations about
the path of quantitative tightening (QT) is crucial to mitigate economic downturns and
controlling inflation, within the framework of an optimal balance sheet strategy set
under a predefined interest rate rule. Lastly, when both the interest rate and QT are
set optimally, expectations are found to significantly influence the optimal interest rate
trajectory, whereas their impact on the optimal QT path is comparatively minimal.
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1 Introduction

In response to historically low interest rates following the global financial crisis, central
banks in advanced economies adopted unconventional monetary policies, notably large-
scale asset purchase programs, which have been extensively used over the last decade.
Such measures significantly expanded central bank balance sheets and brought them to
historically high levels. Recently, the resurgence of high inflation has prompted central
banks to normalize their monetary policy stance. As a result, they raised their key interest
rates and initiated plans for reducing their enlarged balance sheets (quantitative tightening,
or QT henceforth).

In addition to these challenges, central banks also confronted the risk that inflation
expectations among market participants might become de-anchored. After a decade of per-
sistently below-target inflation, inflation trends during the rate hike phase risked shifting
expectations to the upside. This development led major central banks to closely monitor
expectations during the recent rate hike phase, aware of the risks associated with an inad-
equate policy response that could lead to sustained inflationary pressures. Simultaneously,
the process of reducing their enlarged balance sheets poses additional issues, especially as
rate hikes exert downward pressure on economic activity. In such an environment, mon-
etary policy faces the complex task of finding a suitable combination of short-term rate-
setting and balance sheet strategy. This combination must effectively control inflation and
ensure the softest possible economic landing, all while being robust to various forms of
inflation expectations. This paper grapples with this challenge.

There is a vast literature addressing the importance of expectations formation for the tra-
ditional inflation-output trade-off or for the interest rate setting (see Dennis and Ravenna,
2008; Gaspar et al., 2006, 2010; Gáti, 2023; Molnár and Santoro, 2014; Orphanides and
Williams, 2005, among others). However, the interplay between expectations formation
and normalization policy — encompassing interest rate hikes and the unwinding of central
bank balance sheets — remains less explored. This paper aims to bridge this gap. We ex-
amine optimal normalization policies, involving both interest rates and central bank asset
holdings, under the condition of possibly de-anchored expectations, in a context marked
by rising inflation due to price cost-push shocks.

Our contributions to this question are twofold. First, we analytically characterize policy
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trade-offs for the two monetary policy instruments under both rational expectations (RE)
and de-anchored expectations. We derive optimal policy rules in the form of forecast target-
ing criteria applicable to any economic shock. Second, through numerical simulations, we
investigate how a central bank should optimally respond to price cost-push shocks while in
the process of normalizing its policy stance.

For these purposes, we use the four equation New-Keynesianmodel of Sims et al. (2023),
extended to incorporate a resource cost for central bank bond holdings as in Kabaca et al.
(2023) and Karadi and Nakov (2021). In our model, agents may hold de-anchored expec-
tations, defined as the misperception of the long-run mean of macroeconomic variables,
which are influenced by short-term forecast errors, following the framework of Eusepi et al.
(2020).

We emphasize the following three main takeaways. First, we underscore the primary
role of the short-term policy rate in addressing inflationary pressures, which we regard as
being more effective and less costly than the balance-sheet to curb inflation, independent of
the private sector’s expectations. Second, we emphasize the importance of having anchored
QT expectations, to mitigate economic downturns and control inflation. This aspect is crucial
when determining the optimal balance sheet trajectory for a given interest rate rule. Lastly,
in scenarios in which both policy instruments are set under optimal policy, expectations
exert a considerable influence on the optimal interest rate path, particularly necessitat-
ing greater monetary policy tightening when more agents hold de-anchored expectations.
Conversely, expectations play a limited role in shaping the optimal QT trajectory.

Our analysis begins with an examination of optimal policy for each monetary policy in-
strument, comparing our findings to existing literature on rational and de-anchored expec-
tations. For tractability, we adopt initially a standard ad-hoc dual-mandate loss function in
our analytical derivations. Similar to Gaspar et al. (2010) and Molnár and Santoro (2014),
we show analytically that the central bank faces a more pronounced inflation-output gap
trade-off under de-anchored expectations, when employing only the short-term policy rate
to minimize the dual-mandate optimal policy problem.

Continuing with our analytical study, we establish optimal policy rules using a sufficient
statistics perspective, a method parallel to the approach of McKay and Wolf (2022) and
Barnichon and Mesters (2023), extending it to incorporate behavioral expectations. We
introduce a trade-off matrix as a simple yet effective tool to summarize the dynamic trade-
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off faced by the policymaker over the policy horizon. This matrix, derived from the impulse
responses of inflation (the primary objective in the dual-mandate loss function) and the
output gap (the secondary objective) to policy changes, weighted by their importance in
the central bank’s loss function, offers a clear visual representation of the intertemporal
trade-offs faced by policymakers.

Using this approach, we establish the forecast targeting criterion in the case of an op-
timal QT, for a given interest rate rule. Our findings indicate that the short-term interest
rate is more effective in stabilizing inflation following cost-push shocks, as the trade-off be-
comes more acute under QT. Additionally, our research underscores that in the context of
an optimal dual-mandate balance sheet policy, for a given interest rate rule, central banks
would benefit from adopting a credible commitment strategy. This strategy would involve
an initial reduction in the size of the balance sheet, followed by a subsequent expansion
above its long-run level. Such a course of action is essential to counter the negative effects
on economic activity observed at the initial stages of such policy. In this context, effec-
tive communication regarding the future trajectory of the balance sheet can therefore play
a pivotal role from a macroeconomic stabilization perspective.1 Furthermore, we derive
the optimal trade-offs under both de-anchored and rational expectations for each policy
instrument, to highlight the impact of the expectations formation mechanism.

In the second part of our results, we turn to numerical simulations. In the line with
the methodology of Rotemberg and Woodford (1997), we proceed with the derived model-
consistent welfare criterion from the second-order approximation of the utility functions
of the parent and the child in our extension of Sims et al. (2023). These simulations are
focused on a case in which a central bank is facing persistent price cost-push shocks. Similar
to McKay andWolf (2022), we leverage on our sufficient statistics representation of optimal
policy rules to solve for the interest rate and balance-sheet sequences that implement our
model consistent forecast targeting criteria.

Consistent with our analytical results, our findings suggest that when QT is the sole
instrument used in an optimal setting, it proves to be less effective and more costly eco-
nomically compared to policy rate adjustments. However, our analysis also reveals that the
simultaneous optimization of both the policy rate and the balance sheet leads to a more

1The importance of anchoring QT for setting the stance of monetary policy is discussed in Altavilla et al.
(2023).
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tempered application of each policy tool. This coordinated strategy enhances inflation sta-
bilization, and minimizes adverse effects on the output gap compared to scenarios in which
only QT is set optimally.

We conduct a detailed examination of the role of expectations in this context. Our
primary finding is that the degree of de-anchoring is a critical determinant for setting the
optimal policy rate trajectory, while its impact on QT is comparatively minimal, particularly
when the central bank uses both instruments to minimize the loss function. As described in
the literature (e.g. Gaspar et al., 2010), the central bank needs to be more aggressive in its
optimal interest rate setting decisions when inflation expectations are de-anchored. With
both instruments set optimally, interest rate paths show substantial variation depending
on the degree of de-anchoring of expectations, whereas balance sheet trajectories remain
consistent across the different expectation formation mechanisms. This is a novel insight in
the literature.

Finally, we show that large credit shocks can push central banks to shorten the QT
process, to limit the negative effects on financial stability. Furthermore, we find that when
both monetary instruments are set up to respond optimally to a combination of inflationary
and credit shocks, the central bank uses the policy rate to control inflation, while it uses
the balance sheet to maintain financial stability, aligning each instrument with the shock
for which it is most effective.

As of the writing of this paper, major central banks are still hiking or have concluded,
at least at the moment, their rate hikes. Concurrently, they are continuing their QT pol-
icy by further reducing the sizes of their balance sheets. During their last strategy review,
major central banks reviewed their workhorse models acknowledging the importance of
deviations from the RE benchmark in the analysis of monetary policy transmission.2 This
paper touches thus upon issues lying at the heart of current policy debates.3 It highlights
that the significance of these deviations from RE varies depending on the monetary policy

2In her speech on September 30, 2020, at the ECB and its watchers XXI conference, Christine Lagarde
alluded to the relevance of models that depart from the RE assumption by stating, “while make-up strate-
gies may be less successful when people are not perfectly rational in their decisions—which is probably a good
approximation of the reality we face—the usefulness of such an approach could be examined.”

3ECB staff has analyzed the impact of policy normalization using a suite of models, among them structural
and semi-structural ones (see Motto et al., 2023). A key finding is the uncertainty about the impact of mon-
etary policy normalization on the economy and this is partly due to the sensitivity of the models considered
on the assumptions about the expectations formation mechanism. The significance of anchoring inflation
expectations and demonstrating commitment to achieving the target during recent episodes of inflation has
been emphasized in the recent BIS report from Amatyakul et al. (2023).
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instrument employed.

Related literature:

The ongoing policy normalization of major central banks has given impetus to a growing
literature on optimal monetary policy normalization. Benigno and Benigno (2022) analyze
optimal monetary policy normalization in a linear quadratic framework and show that liq-
uidity provided by the central bank should be withdrawn at an early stage, implying that
QT starts before the liftoff of the policy rate. Additionally, they show that the withdrawal
of liquidity takes place at a slower pace relative to the normalization of the policy rate. In a
similar vein, Karadi and Nakov (2021) analyze optimal asset purchase policies in a model
featuring a banking sector and argue that the optimal exit from large central bank balance
sheets should be gradual due to the induced flattening of the yield curve and the slowing
down of the banking sector recapitalization. Focusing on the portfolio balance channel and
abstracting from a normative analysis, Cantore and Meichtry (2023) provide a quantitative
assessment of the normalization policy in model with borrowers and savers and, contrary to
Benigno and Benigno (2022), show that interest rate hikes should start materializing prior
to QT.

This paper differs from the above contributions in the following aspects. First, we
consider deviations from the RE benchmark whereas the papers above feature RE. Sub-
sequently, we design optimal monetary policy both under RE and under de-anchored ex-
pectations (bounded rationality). Contrary to Benigno and Benigno (2022), we are not
interested in the optimal timing of QT relative to the optimal timing of a liftoff. Instead, we
are interested in the implications of the expectations formation mechanism for the optimal
interest rate setting and the optimal path of the central bank balance sheet. We also analyze
the properties of each monetary policy instrument both in isolation and jointly. That is, by
restricting our focus on cost-push shocks, we derive optimal monetary policy when only the
short-term rate is set optimally, when only the central bank balance sheet is set optimally
and when both instruments are set optimally.

As mentioned in the introduction, there is a vast literature on the design of optimal mon-
etary policy under bounded rationality (see Dennis and Ravenna, 2008; Eusepi and Preston,
2018; Gaspar et al., 2006, 2010; Molnár and Santoro, 2014; Mele et al., 2020; Hommes
et al., 2023, among others). Using our dual-mandate loss function, we corroborate some
established results in the literature, namely that the traditional inflation-output trade-off
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includes an intertemporal nature under de-anchored expectations, originally documented
in Molnár and Santoro (2014) and Gaspar et al. (2010). By deriving a second order ap-
proximation of the welfare of the households in the model, we show that this coincides
with a more aggressive optimal interest rate trajectory, as in Gáti (2023) and Molnár and
Santoro (2014), compared to the RE benchmark. Notably, our model does not incorporate
long-run interest rate expectations, diverging from the findings of Eusepi et al. (2020) who
argue that in their presence, aggressive policy responses can be sub-optimal due to induced
volatility in long-term interest rates. Additionally, different from the existing literature, our
analysis also focuses on the optimal balance sheet policy under de-anchored expectations,
an insight little is known about.

Our study extends the existing body of research by examining the individual and com-
bined effectiveness of two monetary policy instruments – the interest rate and the balance
sheet – in minimizing the central bank’s loss function. This approach allows us to contribute
valuable insights into the literature regarding the interplay and substitutability between
conventional and unconventional monetary policy measures. Specifically, we show that fol-
lowing cost-push shocks, setting only the balance sheet policy optimally - while the policy
rate follows a predefined feedback rule - stabilizes inflation equally well as when only the
policy rate is set optimally, at the expense though of a markedly deeper contraction. No-
tably, we show that this result holds both under RE and under de-anchored expectations.
Embarking on the same model as we do, Sims and Wu (2020) explore the substitutabil-
ity between conventional monetary policy and QE at the effective lower bound (ELB) and
find that, when the policy rate is fixed, QE can indeed serve as an effective substitute and
be utilized to achieve price stability, albeit with different implications for the output gap
compared with conventional policy. Apart from our focus on QT and cost-push shocks, our
paper differs from Sims and Wu (2020) in that it considers de-anchored expectations and
it rests on optimal monetary policy to draw conclusions. Moreover, QT (or QE) in our paper
is costly which gives a more realistic picture about the degrees of freedom that the central
bank has in its ability to adjust its balance sheet. Given that our welfare criterion is model
consistent variations in balance sheet of the central bank become welfare relevant.

Our paper is also linked to the literature on optimal monetary with two policy instru-
ments, namely central bank asset holdings and the policy rate (see Sims et al., 2023; Bon-
ciani and Oh, 2021; Harrison, 2017; Kabaca et al., 2023, among others). The focus of those
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papers though is rather on the design under RE of optimal QE at the ELB and the subsequent
optimal policy rate liftoff rather than on QT away from the ELB.

Our characterization of optimal policy rules leverages on the recent work by McKay and
Wolf (2022), which we extend to a behavioral model. Besides, we introduce the concept
of trade-off matrix, to visually summarize the intertemporal trade-off between the cen-
tral bank targets using sufficient statistics, in the spirit of Barnichon and Mesters (2023).
The sufficient statistics approach can be seen as a key input in the context of forecast-
targeting rules (e.g., Svensson and Woodford, 2004,; Woodford, 2003). Different from
a Taylor (1993)-type instrument rule, a forecast targeting rule specifies that the policy
path must be adjusted such that the forecasts for the policy objectives satisfy the first-order
conditions of optimality. This condition is fully summarized by the trade-off matrix. Our
computational solution relies on the use of sequence-space linear-quadratic policy problems
similar to McKay and Wolf (2023), de Groot et al. (2021) and Hebden and Winkler (2021).

The paper is organized as follows. Section 2 describes the extension of the model by
Sims et al. (2023) to account for costs associated with central bank asset holdings. Section
3 presents analytical results from the design of optimal monetary policy as well as the
extension of the sequence space approach byMcKay andWolf (2022) to a behavioral model.
Section 4 presents our simulations from optimal policy using a model consistent welfare
criterion. Section 5 concludes.

2 Model

The model is based on Sims et al. (2023), which adds a role for central bank’s asset pur-
chases in a standard three-equation New-Keynesian model. The non-reduced framework
consists of two types of households, patient (referred to as the "parent") and impatient (the
"child"), financial intermediaries modeled as in Gertler and Karadi (2011), and a standard
production side of the economy split into three sectors (final output, retail output, and
wholesale output). To this baseline model, we add a cost for QE, as a proxy for unmodeled
distortions and political costs of maintaining a positive central bank balance sheet as in
Karadi and Nakov (2021) and Kabaca et al. (2023). In its log-linearized form, the model
boils down to four endogenous equations. Further details on the model and the introduc-
tion of the QE cost in the baseline model can be found in Appendix A. Equations (1) and
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(2) are the IS and the New Keynesian Philips curves:

xt = Ẽtxt+1 −
1− z

σ

(
rst − Etπt+1 − rft

)
−
(
zb̄cb +

τQE

Y

)(
Ẽtqet+1 − qet

)
− zb̄FI

(
Ẽtθt+1 − θt

)
(1)

πt = βẼtπt+1 + γζxt −
γσ

1− z

(
zb̄cb +

τQE

Y

)
qet −

γσz

1− z
b̄FIθt + cpt (2)

The variable πt denotes inflation, while xt = yt − y∗t is the output gap, with y∗t potential
output.4 The short-term nominal interest rate is denoted rst . The real value of the central
bank bond portfolio is captured by qet.5 The term Ẽt denotes the fact private agents might
have non-rational expectations, which we detail below. The inverse intertemporal elasticity
of substitution is α, β is the subjective discount factor, γ is the elasticity of inflation with
respect to real marginal cost and ζ is the elasticity of real marginal cost with respect to
the output gap. The parameter z ∈ [0, 1) represents the share of impatient households in
the total population, while b̄cb and b̄FI are the steady state long-term bond holdings of the
central bank and the financial intermediaries, respectively, as a share to total outstanding
long-term bonds. The cost for QE/QT is denoted τ , and QE

Y
is the steady state ratio of bond

holdings over quarterly real GDP.
The economy is subject to shocks to the natural rate rft , to price cost-push shocks cpt and

to credit shocks θt. These shock process are exogenous AR(1) processes, with persistence
rhoj and standard deviation sj for j = {f, cp, θ}:

rft = ρfr
f
t−1 + sfεf,t (3)

4Note that, unlike in the standard New Keynesian model, in Sims et al. (2023), the equilibrium level of
potential output is consistent with price flexibility and no credit shocks, as both frictions distort the competitive
equilibrium.

5Although we are interested in normalization policy and hence in QT, we use the notation of Sims et al.
(2023) whose focus instead is on QE. Given our focus on QT, we assume that a central bank has positive
asset holdings at the steady state or above the steady state at the initialization of our simulation exercises
as we explain in detail in section 4.1. In her speech on March 27, 2023, at an event organized by Columbia
University and SGH Macro Advisors, Isabel Schnabel stated that "the size of our balance sheet will not return
to the levels seen before the global financial crisis" and concluded by stating "Ultimately, our obligation to act in
line with the principle of an open market economy implies that, in the steady state, the size of our balance sheet
should only be as large as necessary to ensure sufficient liquidity provision and effectively steer short-term interest
rates towards levels that are consistent with price stability over the medium term". Given the modeling of the
central bank balance sheet in Sims et al. (2023), we treat as plausible the assumption of positive central bank
asset holdings at the steady state.
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cpt = ρcpcpt−1 + scpεcp,t (4)

θt = ρθθt−1 + sθεθ,t (5)

Our analysis primarily focuses on optimal monetary policy rules. However, for certain
scenarios, we examine the optimal path of QT under a predetermined interest rate policy.
In these scenarios, we assume that the central bank employs a Taylor rule (6) for setting the
short-term nominal interest rate, taking into account the ELB. Additionally, when looking
at optimal interest rate policy only, we assume that the balance sheet follows a stationary
AR(1) process (7):6

rst = max
[
0 ;ϕπ(πt − πT ) + ϕx(xt − xT ) + srεr,t

] (6)

qet = ρqeqet−1 + sqεq,t (7)

Expectations

In this model, private agents can have non-rational expectations. The economy is populated
by two types of agents: a first group acts as anchored, and uses the RE (i.e. minimum
state variable, or MSV) solution. Anchored agents have expectations that are well-aligned
with the central bank’s stated targets. Importantly, they understand the communication
(e.g. forward guidance) of the central bank. This understanding allows the policymaker to
commit to a specific policy strategy, which these agents will, at least partially, understand
and factor into their expectations. The higher the fraction of anchored agents, the more the
central bank can rely on a commitment strategy. They forecast the evolution of the economy
following,

Ẽa
t (zt+1) = (a+ byt + cwt) (8)

with zt = [πt, xt, qet, θt]
′ the expectational variables, the vector a represents the constant

terms including the central bank’s inflation target, the matrix b maps the impact of con-
temporaneous variables yt = [πt, xt, qet, r

f
t , cpt, θt]

′, and the matrix c accounts for the effect
of each shock wt = [εf,t, εcp,t, εθ,t, εq,t]

′ on expectations.
6Using an exogenous AR(1) process for QE/QT allows us to isolate the impact of setting the interest rate in

an optimal way. This approach helps to clearly identify the specific effects of optimal interest rate adjustments,
excluding the influence of simultaneous balance sheet changes.
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The remaining share of agents has de-anchored expectations, i.e. they learn to forecast the
long-run mean of endogenous variables through simple constant gain learning, as in Eusepi
et al. (2020) and Molnár and Santoro (2014). The beliefs of de-anchored agents follow :

Ed
t zt+1 ≡ ωz

t = ωz
t−1 + ḡ

(
zt−1 − ωz

t−1

) (9)

in which ḡ is the learning gain parameter, which governs the extent to which expectations
are affected by short-term forecast errors. These agents misperceive the unobserved long-
run mean (or drift) ωz

t of variables zt = [πt, xt, qet, θt]
′, and revise their expectations based

on previous short-term forecast errors (zt−1 − ωz
t−1

). They are therefore backward looking,
and do not necessarily believe that the central bank can credibly commit to reach its an-
nounced target.

Aggregate expectations are therefore the sum of anchored and de-anchored agents’ expec-
tations, weighted by their relative fractions na,z and nd,z:7

Ẽzt+1 = na,z Ẽa (zt+1) + nd,z Ẽd (zt+1)

= na,z
[
a+ byt + cwt

]
+ nd,z

[
ωz
t−1 + ḡ

(
zt−1 − ωz

t−1

) ] (10)

with na,z + nd,z = 1.8

Baseline calibration

For our optimal policy exercises, we mainly parameterize the model following Sims et al.
(2023). The discount factor and elasticity of substitution follow standard values from exist-
ing literature. The consumption share of the child in total consumption z is set to one-third.9

The steady state bond holdings for the central bank and financial intermediaries, b̄cb = 0.3

and b̄FI = 0.7, are derived from the calibrations of other steady state parameters. The pa-
rameters γ and ζ, representing the elasticity of inflation and the output gap to real marginal
cost, are based on structural parameters of the non-linear model, including the Calvo pric-

7In cases in which there are both anchored and de-anchored agents, the matrix b summarizing the effect
of contemporaneous variables on the expectations of anchored households must also include the expectations
ωz

t for each variable z forecasted by de-anchored households yt = [πt, xt, qet, r
f
t , cpt,ω

z
t , θt]

′.
8In this paper, we calibrate these fractions at a fixed level, uniformly applied across all variables.
9Sims et al. (2023) described this parameter as calibrated in such a way that it approximately reflects

the proportion of durable goods consumption and private investment in the overall private non-government
domestic spending.
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ing parameter, as described in Sims et al. (2023).10 The resource cost of QE follows Kabaca
et al. (2023). We set the gain equal to the value estimated in Eusepi et al. (2020), in the
period after 1999. In the baseline case, we set the interest rate rule such that it only tar-
gets inflation with ϕπ = 1.5. We set all standard deviation of shocks equal to 0.01, while
first-order autocorrelation of all shocks are set to 0.8.

Table 1: Calibrated Parameters

Parameter Value or Target Description
β 0.995 Discount Factor
z 0.33 Consumption share of child
σ 1 Inverse elasticity of substitution
b̄cb 0.3 Steady state share of central bank’s LT bond holdings
b̄FI 0.7 Steady state share of fin. intermediary’s LT bond holdings
γ 0.086 Elasticity of inflation with regard to marginal cost
ζ 2.49 Elasticity of marginal cost with regard to output gap
τ 0.01 Resource cost of QE
QE
4Y

0.1 Steady state ratio of QE to annualized output
ϕπ 1.5 Inflation reaction coefficient in the Taylor rule
ϕx 0 Output gap reaction coefficient in the Taylor rule
ρqe 0.8 Peristence of the QE/QT process
ḡ 0.02 Learning gain of de-anchored agents
ρf 0.8 Persistence of natural rate shocks
ρcp 0.8 Persistence of cost push shocks
ρθ 0.8 Persistence of credit shocks

3 Analytical results, in the case of a dual mandate

In this section, we examine how bounded rationality, of the form described in Section 2,
impacts optimal monetary policy, with a particular focus on both interest rate and balance-
sheet policies. Specifically, we explore the extent to which traditional trade-offs, such as the
inflation-output trade-off faced by the central bank under rational expectations, are altered
when agents have de-anchored expectations.

For tractability, we begin our analysis assuming an ad-hoc loss function, in which the
policymaker follows a dual mandate approach. This framework facilitates comparisons

10In particular, γ = (1−ϕ)(1−ϕβ)
ϕ in which ϕ ∈ (0, 1] is the probability of non-price adjustment. Besides,

ζ = χ(1−z)+σ
1−z in which χ is the inverse Frisch labor supply elasticity for the "parent".
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with existing literature on rational expectations (Giannoni and Woodford, 2002), and on
learning or de-anchored expectations (Molnár and Santoro, 2014 and Eusepi et al., 2020).
Our analysis proceeds in two steps. First, we derive the standard forecast targeting criterion
using the structural equations of the model, following the approach of Svensson (2003) and
Woodford (2007). Unlike a Taylor-type rule, formulating the optimal policy problem as a
forecast targeting criterion provides a realistic, forward-looking perspective. It helps handle
shock uncertainty, analyze trade-offs, and address time consistency issues. This approach
therefore offers valuable policy implications and allows for comparative analysis of different
policy rules. We then derive these optimal policy rules using a sufficient statistics approach
similar to McKay and Wolf (2022) and Barnichon and Mesters (2023), in the context of
a behavioral model. This is achieved through the use of an analytical tool we term the
trade-off matrix.

In our subsequent numerical exercises, we derive a model consistent welfare criterion
that the central bank seeks to maximize, obtained from a second order approximation of
the utility of the two types of agents, the "parent" and the "child".

3.1 Deriving the trade-off using the model structural equations

In this section, we derive analytical results showing how fully de-anchored expectations
affect optimal monetary policy relative to the case of fully anchored expectations (i.e., RE).
As mentioned above, we initially assume a simple ad-hoc loss function for the central bank
to keep tractability and to illustrate the impact of de-anchored expectations for optimal
monetary policy in a simpler way. In this section, for the sake of exposition, we assume that
the central bank follows a simple loss function with two objectives, namely inflation and
output gap stabilization:

L =
∞∑
t=0

βt

(
λπ
2
π2
t +

λx
2
x2t

)
(11)

We assume that the central bank always has full knowledge of the actual law of motion of
the economy and the way agents form their expectations, whether they are rational or not,
as in Gaspar et al. (2010) and Gáti (2023). We analyze two extreme scenarios regarding
expectations formation: one in which all agents have anchored expectations, allowing the
central bank to fully commit to a pre-announced plan that agents understand, and another
where all agents have de-anchored expectations, with their forecasts being influenced by
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short-term forecast errors. If the central bank can set the interest rate optimally, it thus
minimizes (11) subject to the Phillips curve equation (2). Under commitment and RE,
minimization of the above loss function subject to the Phillips curve results in the following
trade-off.

−λππt =
λx
γζ

(xt − xt−1) (12)

for t = 1, 2, 3, ..., which is the standard trade-off identified in the literature. By committing
to the above trade-off, the central bank is able under rational expectations to anchor infla-
tion expectations in the case of supply shocks, for instance. Rational agents are fully aware
of the current and future policy path of the central bank. An important element of the opti-
mal targeting criterion under rational expectations is the history dependence, a well-known
result in the literature. This allows it to anchor expectations and to achieve its inflation tar-
get effectively. Agents in this case take into account the entire path of monetary policy as
well as the forecasted path based on a targeting or instrument rule, and given the com-
mitment of the central bank, adjust their expectations accordingly. As argued in Giannoni
(2014), in a model with rational expectations, optimal monetary policy under commitment
targets the price level since it incorporates more history dependence than inflation itself. In
fact, it is easy to show that under rational expectations, the targeting criterion (12) iterated
backwards reads as follows (as also shown in Galí, 2008):

−λπp̂t =
λx
γζ
xt (13)

for t = 0, 1, 2, ..., where p̂t ≡ pt − p−1 is the log-deviation between the price level and an
implicit target given by the price level that prevails a period before the central bank decides
upon its optimal plan, as in Galí (2008). However, is this policy sufficient when agents
have de-anchored expectations? Mistakes in their expectations as well as the backward-
looking element, as described in (9) can potentially complicate an otherwise traditional
inflation-output trade-off. This is because agents’ expectational errors and their associated
persistence may make the objective of inflation stabilization more costly.

As described in Sims et al. (2023), when instead the central bank designs its optimal
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policy under discretion with rational expectations the usual optimal targeting criterion re-
ceives the form:

−λππt =
λx
γζ
xt (14)

which clearly lacks any history dependence given that the central bank takes in this case
agents’ expectations as given. When agents’ have de-anchored expectations instead, their
expectations cannot be taken as given. This is because of the endogenous persistence that
de-anchored expectations introduce to the model. In this case and given its full knowledge,
the central bank knows that its decisions today will have an impact on the economy to-
morrow regardless of whether it forms its policy under commitment or under discretion.
As mentioned above, de-anchored expectations may involve additional costs that a central
bank with full knowledge must take into account. We summarize this possibility in the
following proposition.

Proposition 1. Under de-anchored expectations, the central bank faces an intertemporal trade-
off summarized by the optimal targeting rule:

−λππt +
λx
γζ
ḡβ2

∞∑
s=0

βs (1− ḡ)s xt+s+1 =
λx
γζ
xt (15)

Proof. In appendix B.1

What Proposition 1 states is the well-known result under learning or de-anchored expec-
tations, as also shown in Gaspar et al. (2010), Gáti (2023) and Molnár and Santoro (2014).
That is, the central bank faces an intertemporal trade-off, as opposed to the intratemporal
trade-offs that it faces under rational expectations. In this case, the central bank needs to
consider how its decisions at time t influence inflation expectations and thus the future in-
tratemporal trade-offs. When expectations are de-anchored the effects of a shock build up
gradually, while at the same time, it takes longer until the monetary policy effects are fed
into inflation and output expectations. Agents in this case do not consider the actual law
of motion of the economy ignoring thereby the current or future optimal monetary policy
reaction. Instead, they use past information about their variable of interest, which weakens
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the contemporaneous monetary transmission through expectations.11 The central bank has
to consider this feature when stabilizing current inflation and has thus to account for the
future output gaps. As such it does not have to bear the full trade-off in the current period
only. The central bank thus must take into account the induced expectational errors and
the fact that the effects of its decisions are incorporated into agents’ expectations with a
lag.

As shown in Eusepi et al. (2020), when the Kalman gain parameter ḡ approaches zero,
beliefs nest rational expectations. In this case, the targeting criterion (15) clearly collapses
to (14), namely the discretionary rational expectations solution, a result also discussed in
Molnár and Santoro (2014). De-anchored expectations thus introduce additional costs on
top of those associated with discretionary monetary policy (e.g., the inflation bias). Not only
is optimal policy now subject to an inflation bias, but also inflation stabilization is achieved
at a larger cost (i.e., a larger drop in the output gap).

3.2 The trade-off throughout the policy horizon: a sufficient statistics

approach

In this subsection, we show that optimal policy rules can be characterized using a sufficient
statistics approach, which could be compared to empirically measurable elasticities, similar
to Barnichon and Mesters (2023). We extend the results of McKay and Wolf (2022) and
derive the forecast targeting criterion in a behavioral model with potentially de-anchored
expectations. Using the first-order conditions of the optimal policy problem, we show that,
optimal policy rules in responses to exogenous shocks can be expressed as one measure, de-
noted the trade-off matrix. This matrix takes the dynamic causal effects of a set of monetary
policy shocks on the central bank’s primary objective, inflation, and maps them onto the
dynamic causal effects of the same set of shocks on the secondary objective, the output gap.
These effects are weighted by their relative importance within the loss function. This matrix
summarizes all the complexity of the intertemporal optimal policy problem, and facilitates
the analysis of the role of expectations for policy. Additionally, it offers two key benefits:
i) it delivers a clear visual interpretation of the trade-off faced by the policymaker within

11Similar to our result of an intertemporal trade-off, Gaspar et al. (2006) show that when private expecta-
tions are subject to adaptive learning optimal monetary policy responds more strongly and more persistently
following cost push shocks, the higher is the initial level of perceived inflation persistence by the private sector.
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the policy horizon, ii) it simplifies the comparison with empirical estimates (e.g. from VARs
and LPs).

To obtain this object, we recast the model as a linear-quadratic control problem and use
perfect-foresight transition sequences, similar to McKay and Wolf (2023), de Groot et al.
(2021) and Hebden and Winkler (2021).12 Under perfect foresight, using the Structural
Vector Moving Average (SVMA) representation of the model, we can write the variables of
the model in the sequence space as:

Z = ZB +AZ,εyεy = AZ,εsεs +AZ,εyεy (16)

with ZB =
{
ZB

t

}H
t=0

=
{
ZB

0 , ..., Z
B
H

} a baseline path for each variable over all periods within
some projection horizon H, which consists of impulse responses AZ,εs to a set of structural
shocks εs (e.g., the impulse response to a cost-push shock). The object AZ,εy collects the
impulse responses of each variable Z under the prevailing baseline policy rules, to a set of
contemporaneous and expected (i.e. news) monetary policy shocks εy.13

The problem of dual mandate policymaker under commitment is to choose the path of the
desired policy instrument to minimize the loss function (11), while being subject to the
constraints imposed by the equilibrium relationships between variables in the model, such
as the NKPC equation (2) and the IS curve (1). We re-cast these constraints using their
impulse response form, as expressed in (16).
We can subsequently write the optimal policy problem as follows:

min
{Π,X,εy}

E0

[1
2
Π′ΛΠΠ+X ′ΛXX

+ ΞΠ′ (−Π+ΠB +AΠ,εyεy
)
+ ΞX′ (−X +XB +AX,εyεy

) ] (17)

with Π = {πt}Ht=0 = {π0, ..., πH} the perfect-foresight sequence of inflation, and X =

{xt}Ht=0 = {x0, ..., xH} the perfect-foresight sequence of output gap. Additionally, Ξ ≡
diag

(
1, β, . . . , βT

)
⊗ ξ are the Lagrangemultipliers to both constraints, andΛ ≡ diag

(
1, β, . . . , βT

)
⊗

12As presented in e.g. Fernández-Villaverde et al. (2016) and Auclert et al. (2021), by certainty equivalence,
the first-order perturbation solution of models with aggregate risk is identical to the solution of the model in
linearized perfect-foresight.

13de Groot et al. (2021) show how to obtain these matrices from the state-space representation of the
model.
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λ are the weights associated with each term in the loss function, with discount factor
β ∈ (0, 1).

The first-order conditions of the linear-quadratic problem are:

ΛΠ Π = ΞΠ (18)

ΛX X = ΞX (19)

AΠ,εy ′ ΞΠ +AX,εy ′ ΞX = 0 (20)

Combining them gives:

AΠ,εy ′ (ΛΠ Π) +AX,εy ′ (ΛX X) = 0 (21)

In line with McKay and Wolf (2022), equation (21) summarizes the trade-off faced by
a policymaker, independently of the non-policy shocks hitting the economy. It expresses
how a policymaker can set available policy instruments to align the projected path of key
macroeconomic variables—such as inflation and the output gap—with the central bank’s
objectives. This equation can be reformulated as:

Π+
(
AΠ,εy ′ ΛΠ

)−1 (AX,εy ′ ΛX

)
X = 0 (22)

We denote T εy =
(
AΠ,εy ′ ΛΠ

)−1 (AX,εy ′ ΛX

), as the trade-off matrix, which takes the im-
pulse responses of the central bank’s primary target, inflation AΠ,εy , to a set of current and
contemporaneously announced future policy deviations εy, and maps them to the impulse
responses of the secondary target, the output gap AX,εy , to the same set of shocks. These
impulse responses are weighted by their relative importance in the central bank loss func-
tion stacked in ΛΠ and ΛX . All the required information about the dynamic relationship
between the central bank’s targets under optimal policy is contained within this matrix.
Throughout this subsection, we use this matrix as a sufficient statistic to provide a general
characterization of optimal policy independently of the shocks faced by the economy, under
different expectation formation mechanism (i.e. RE and de-anchored expectations), and for
each policy instrument (i.e. the short-term policy rate and the balance-sheet).

Under rational expectations:
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We start with the case of the interest rate policy, under rational (i.e. fully anchored) expec-
tations. The first-order condition (21) can be expressed as a linear combination of impulse
responses of inflation AΠ,εr and the output gap AX,εr , to a vector of contemporaneous as
well as news (i.e. forward guidance) interest rate shocks εr:

AΠ,εr ′ (ΛΠ Π) +AX,εr ′ (ΛX X) = Π + T εr X = 0 (23)

Figure 1: Trade-off matrix for interest rate policy, under RE
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Notes: Trade-off matrix T εr , in the baseline model. Each row is one period in the sequence, each line shows
a relevant period of the output gap entering in the optimal policy rule. The intensity of the color corresponds
to the magnitude of the trade-off.

The matrix T εr , displayed in Figure 1 summarizes the intertemporal trade-off between in-
flation and economic activity in the context of an optimal interest rate policy based on a
dual mandate loss function, over a selected policy horizon of 20 periods. Each row in the
matrix corresponds to a single period within the optimal policy problem, while each column
reflects the relevance of the corresponding period of the variable X, the output gap, in the
optimal policy rule. In the context of this simple model, as in the textbook New Keynesian
model, the shape of this matrix can be used to directly analyze trade-offs and understand
the role of central bank commitment. Notably, the sign and magnitude of the entries in the
main diagonal provide information on the contemporaneous behavior of the "slack" vari-
able in relation to inflation. Besides, any nonzero values in the lower triangular portion of
this matrix indicate that past information matters for the optimal policy path. Conversely,
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nonzero entries in the upper triangular section emphasize the importance of expectations
in shaping the optimal policy trajectory.

In more details, we can write this equation for a sequence of T = 20 periods. The relation-
ship in the optimal interest rate rule under RE between the time-paths for inflation and the
output gap is therefore summarized by:

{πt}20t=0 + T εr {xt}20t=0 = 0

or: 
π0

π1
...
π20

+ T εr


x0

x1
...
x20

 = 0

In this specific case, the trade-off matrix T εr is such that:

T εr =


λx

γζλπ
0 . . . 0

− λx

γζλπ

λx

γζλπ
. . . 0

... ... ... ...
0 . . . − λx

γζλπ

λx

γζλπ

 (24)

Starting from steady-state, this means that, in period 1, optimal policy must satisfy the
following condition, described in Proposition 1, that depends on inflation in period 1 and
output gap in periods 1 and 0:14

λππ1 +
λx
γζ

(x1 − x0) = 0

This single equation, whose implications are described in Section 3.1, succinctly repre-
sents the trade-off faced by the policymaker in a given period. Examining the entirety of
the rows in the matrix extends this understanding across the entire policy horizon.

Under the framework of rational expectations, analogous conditions can be established
for an optimal balance sheet policy.15 Figure 2 presents the dynamic relationship between

14Since the first two entries of the matrix are nonzero, while the remaining entries are equal to 0.
15In this case, as interest rates are not set freely but follow a Taylor rule, the IS curve would become a

constraint in the optimal policy problem.
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Figure 2: Trade-off matrices for QT, under RE, for a given interest rate rule
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(a) Interest rate rule reacting to inflation only
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(b) Interest rate rule reacting to inflation and output gap

Notes: Trade-off matrices T εqt of an optimal QT policy under a given interest rate rule. Each row is one period
in the sequence, each line shows a relevant period of the output gap entering in the optimal policy rule. The
left panel is with a Taylor rule focusing on inflation only (it = 1.5πt), the right panel is with a dual mandate
Taylor rule (it = 1.5πt + 0.125xt). The intensity of the color corresponds to the magnitude of the trade-off.

inflation and the output gap for an optimal QT policy, contingent on a specific interest rate
policy rule. The left panel is a case in which the underlying, interest rate policy rule focuses
solely of inflation. The right panel, in contrast, presents a case in which the short-term
policy rate depends on both inflation and the output gap.

The results in Figure 2 show that central bank’s trade-off under optimal QT for a given
interest rate rule, are distinct from those where only the interest rate follows an optimal
rule. First, the contemporaneous trade-off is more pronounced (as indicated by the larger
scale in the diagonal entry, in comparison to Figure 1), suggesting that the optimal QT policy
incurs a larger output loss for a given reduction in inflation.16 Second, the role of history
dependence for the trade-off also changes. Unlike in the case of the short-term rate rst , in
the model qet enters both via its value each period, and as an expectation, through their
effects on the long-term rate. Consequently, for optimal QT, the central bank must consider
not only the current output gap but also all past values of the output gap, resulting in a
lower triangular matrix. This history dependence implies that, just as the traditional result
associated with optimal interest rate policy, commitment about future policy decisions plays
an essential role in the context of optimal QT. Lastly, the underlying interest rate policy

16See Appendix B.2 for further detail on the marginal effect of a QT versus and interest rate shock.
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is pivotal in shaping the optimal balance sheet trajectory. A central bank which sets the
interest rate following a Taylor rule with dual mandate (right panel) puts a higher weight
on past periods output gaps, compared to a central bank which solely focuses on inflation
with its interest rate policy rule (left panel).

Under de-anchored expectations:

Figure 3: Trade-off matrices under de-anchored expectations
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(a) Optimal interest rate policy
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(b) Optimal balance sheet policy

Notes: Trade-off matrices for each policy instrument T εy
d under de-anchored expectations. Each row is one

period in the sequence, each line shows a relevant period of the output gap entering in the optimal policy
rule. The central bank is assumed to follow a Taylor rule focusing on inflation only. The left panel shows the
case under interest rate policy, the right panel is the case under balance sheet policy. The intensity of the
color corresponds to the magnitude of the trade-off.

We now examine scenarios in which expectations are de-anchored. In such environments,
the trade-off matrix can be expressed as T εy

d =
(
AΠ,εy ′

d ΛΠ

)−1 (
AX,εy ′

d ΛX

)
, with AZ,εy

d the
impulse responses of the variable Z to a set of policy shocks εy in the model with fully
de-anchored expectations.17 Figure 3 shows the trade-off matrices for each optimal policy
instrument under these conditions.

The left panel of Figure 3 illustrates the optimal interest rate policy. As detailed in Sec-
tion 3.1, the optimal interest rate rule involves managing two trade-offs. An intratemporal

17Note that in this scenario, agents are entirely backward-looking and are therefore influenced solely by
shocks from the point at which they occur, without any anticipation. This contrasts with the case of RE,
in which agents react to anticipated future events. Consequently, in the case of de-anchored expectations,
impulse response matrices are lower triangular.
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trade-off between stabilizing current output alongside current inflation, and a intertempo-
ral trade-off, balancing current inflation against future output gap values. The intratempo-
ral trade-off is reflected in the non-zero values along the main diagonal of the matrix, while
the intertemporal trade-off is represented by the upper triangular.

Similarly, in the case of setting an optimal QT rule with a predetermined interest rate
policy, as depicted in the right-hand panel of Figure 3, the central bank’s trade-off also
includes current inflation and output gap, as well as future output gap values. The structure
of the forecast targeting criterion remains consistent across both policy instruments when
expectations are de-anchored. This uniform structure suggests that, in this scenario, the
central bank’s methodology for addressing these expectations does not change with the
policy instrument. However, a critical observation is the difference in the scale of the main
diagonal between the two panels, suggesting that QT is relatively less effective than the
interest rate, also in the case of de-anchored expectations.

4 Simulations under a model consistent loss function

In this section, we turn to quantitative simulations. In particular, we focus on the effects of
cost-push shocks on the policy decisions of a central bank that has embarked on a normal-
ization of its policy stance. This implies the assumption that the interest rate is above the
ELB, and that the balance sheet is expected to steadily decline. Section 4.1 begins with the
derivation of a welfare loss function, based on a second-order approximation of the utility
functions of the parent and the child, as in Rotemberg and Woodford (1997), and provide
details on our solution method for solving for the sequence of each monetary policy instru-
ment that implements optimal policy. In Section 4.2, we subsequently study the optimal
policy path for the two policy instruments - the short-term policy rate and the balance sheet
- under scenarios of both RE and fully de-anchored expectations In Section 4.3, we analyze
the role of expectations in further details, while in Section 4.4 we focus on optimal policy
when the economy is subject to both price cost-push and negative credit shocks.
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4.1 Ramsey problem and introductory details

We derive the welfare loss function based on a second-order approximation of the utility
functions of the two types of households, the "parent" and the "child". This analysis takes
into account the costs associated with changes in the central bank’s asset holdings, which
are present even at the steady state. Consequently, our optimal policy analysis will be
based on deriving a welfare measure and then designing optimal monetary policy under a
distorted steady state, in the spirit of Benigno and Woodford (2005). The welfare criterion
consists of the sum of utilities of the "parent" and the "child":

Wt = Vt + Vb,t (25)

where now Vt and Vb,t represent second-order approximations of the utility of the "parent"
and the "child", respectively. Our derivation of the welfare loss function is summarized in
the following proposition.

Proposition 2. The discounted sum of the household utilities is given by:

Wt = W − UCY

{
(1− z)

(
C

2

)
c2t + z

(
Cb

2

)
c2b,t +

Y ϵϕ

2(1− ϕβ)(1− ϕ)
π2
t

+
1

2
(υ̃pt )

2 + τ
Qbcb

Y
qet + τQbcb

Qbcb

2Y
qe2t

}
+ t.i.p.+O

(
||ξ3||

)
Proof. In appendix C.1

A couple of important observations stand out from the model-consistent welfare crite-
rion in Proposition 2. First, fluctuations in the consumption of each type are costly on top
of those in aggregate output. Contrary thus to the ad-hoc loss function previously used, the
central bank accounts for those when setting its optimal policy. Second, the central bank’s
bond portfolio, as measured by qet, enters the loss function. Fluctuations in it matter thus
for the central bank and as such they have to be set optimally rather than being set by an
ad-hoc rule, when the central bank minimizes the loss function. But there is an indirect
channel as well which is related to the way changes in central bank’s bond holdings affect
the consumption of each group. If, for instance, the central bank decides to unwind its bal-
ance sheet, the consumption of the child, cb,t, will shrink because the central bank will buy
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less of its bonds and hence the child will will borrow less to finance its consumption ceteris
paribus.18 On the other hand, given that the parent provides full bailout to the child, lower
borrowing implies lower bailout which in turn boosts parent’s consumption. The decision
thereby of the central about its portfolio, qet, determines this trade-off. Observing the loss
function, it is clear that the consumption shares captured by z and 1− z play a key role on
whose consumption fluctuations weigh more in that decision. Clearly, the steady state asset
holdings (i.e. the size of the balance sheet) of the central bank play a key role in the design
of optimal monetary policy, as we will see below as well.
The loss function Lt consistent with the Ramsey problem is:

Lt =

{
(1− z)

(
C

2

)
c2t + z

(
Cb

2

)
c2b,t +

Y ϵϕ

2(1− ϕβ)(1− ϕ)
π2
t

+
1

2
(υ̃pt )

2 + τ
Qbcb

Y
qet + τQbcb

Qbcb

2Y
qe2t

}
(26)

Following our baseline calibration, we can write the weights in the loss function as:

ωC = (1− z)

(
C

2

)
=

0.67

1

(
0.67

2

)
= 0.2244

ωCb
= z

(
Cb

2

)
=

0.33

1

(
0.33

2

)
= 0.0545

ωπ =
Y ϵϕ

2(1− ϕβ)(1− ϕ)
= 65.0246

ωqe = τQbcb
Qbcb

2Y
= 5e− 05

In the optimal rule of the Ramsey planner, inflation stabilization has sizeable role, while
stabilizing the consumption of the parent (i.e. patient household) weights more than sta-
bilizing the consumption of the child (i.e. impatient household). The QE cost introduces a
small weight on the path of the balance sheet.

Introduction for our simulations:

To replicate an environment with a high balance sheet that gradually returns to a steady
state (10% of annualized output), we begin by introducing a persistent positive QE shock.19

18Recall that in the original model, the total stock of long-term bonds issued by the child are held by the
financial intermediaries or the central bank.

19The argument of a positive balance sheet in the steady-state has been recently emphasized in policy
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In period 5, which is four quarters after the initial QE shock, we assume a one standard
deviation price cost-push shock. In the same period, we compute optimal policy in the
different cases. When looking at the effect of a credit shock, we assume that it occurs in
period 9. Each case of optimal policy is therefore analyzed in a context of balance sheet
normalization, representing the transition to a lower central bank’s balance sheet.

Computational details:

As described in 3.2, our linear-quadratic approach to optimal policy, drawing on de Groot
et al. (2021), McKay and Wolf (2023) and Hebden and Winkler (2021), allows us to derive
model-consistent forecast targeting criteria, both under de-anchored and rational expecta-
tions. We leverage on the first-order conditions of our optimal policy formulation, in which
the constraints for each variable are defined using the impulse response representation of
the model. We subsequently solve for the set of monetary policy shocks that satisfies the
optimal policy problem.20 This means that we find the interest rate and balance sheet
sequences that implement with our forecast targeting criteria. Additional details are pre-
sented in Appendix C.2.

4.2 A persistent cost-push shock

First, we analyze how the central bank can implement its monetary policy instruments so
as to minimize our model consistent loss function, in response to a persistent price cost-
push shock that induces upward pressure on inflation. Our analysis begins by examining
the case in which the central bank can optimize its primary instrument, the short-term
nominal interest rate. Then, we turn to the a scenario in which the central bank can only
implement the path of the balance sheet in a optimal way, for a given interest rate rule.
Finally, we look at the way both instruments should be set jointly.
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Figure 4: Optimal interest rate policy only, in response to a cost-push shock
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Notes: Optimizing the interest rate only, in response to a one standard deviation persistent (ρcp = 0.8) cost-
push shock. QT is inactive in the baseline. The solid black line shows the baseline QT trajectory.

4.2.1 Optimal interest rate policy

Figure 4 shows the responses of the short-term policy rate, the balance sheet, inflation
and the output gap, in the case in which only the interest rate is used to minimize our
model-consistent loss function (26).21 The trajectories prescribed in each set up are closely
aligned with the benchmark established in the literature. The case of commitment under
RE, depicted by the solid blue line, presents the standard pattern in the literature e.g. Galí
(2008), Woodford (2003). Optimal interest rate policy under commitment results in a
lower and shorter-lived inflation compared to the policy under discretion, depicted in red
dashed. The forward-looking nature of inflation allows the policymaker to credibly commit
discussions. See, e.g. 9 November 2023, Philip R. Lane, Member of the Executive Board of the ECB, at
the ECB Conference on Money Markets “In particular, the appropriate level of central bank reserves can be
expected to remain much higher and be more volatile in this new steady state compared to the relatively-low
levels that prevailed before the global financial crisis (GFC).”

20Our computations benefit from the extensive work outlined in the COPPs toolkit developed by de Groot
et al. (2021), which provided valuable insights for solving our optimal policy problems. The toolkit can be
accessed here: https://github.com/COPPsToolkit/COPPs.

21In cases in which the interest rate is the sole instrument used optimally, the balance sheet remains inactive,
allowing for a focused examination of the interest rate policy’s impact.
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to reducing both current and future output gaps, mitigating the stabilization bias inherent
in a discretionary policy framework.

Consistent with the findings of Molnár and Santoro (2014) and Gáti (2023) our ana-
lytical results described in Section 3 underscore an intertemporal trade-off introduced by
de-anchored expectations. In line with these studies and as highlighted in Figure 4, this
situation necessitates a more aggressive increase in the interest rate by policymakers under
de-anchored expectations.22 While the trajectory of inflation remains similar to scenarios
with discretionary policy, a dampening of inflation under de-anchored expectations results
in heightened output losses due to the more pronounced and persistent interest rate adjust-
ments.

4.2.2 Optimal QT policy for a given interest rate rule

Figure 5: Optimal balance sheet policy, in response to a cost-push shock
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Notes: Optimizing QT only, in response to a one standard deviation persistent (ρcp = 0.8) cost-push shock.
Interest rates follow the baseline Taylor rule reacting to inflation only. The solid black line shows the baseline
QT trajectory.

22In our model, expectations about interest rates do not play a role. However, when agents misperceive the
long-term mean of interest rates as well, as Eusepi et al. (2020) show, they tend to inherit the volatility of
inflation expectations, particularly when the central bank’s response is aggressive. Consequently, under these
conditions, optimal interest rate policy tends to be less aggressive than in scenarios with rational expectations.
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Turning to QT, how should the central bank optimally conduct its balance sheet policy
in response to a persistent cost-push shock, for a given interest rate rule? We analyze this
question in an environment in which the central bank adheres to a standard Taylor rule
exclusively targeting inflation, while exploring the optimal path for its balance sheet.

Figure 5 presents the optimal balance policy projections for commitment and discretion
under RE, and de-anchored expectations. The analysis reveals that, in response to a cost-
push shock, the central bank is required to significantly contract the size of its balance
sheet when QT is the sole tool used to minimize our model-consistent loss function. As a
consequence, this reduction in the balance sheet size dampens inflation; however, it comes
at the expense of considerable output reductions. These findings align with the discussions
in Section 3.2, in which we established that QT, although set optimally, is less effective and
a more costly instrument than the interest rate to fight inflationary pressures.

Furthermore, the trajectories under commitment with RE or de-anchored expectations,
exhibit important differences. In the RE framework, the central bank can offset the initial
fall in the output gap by sustaining a balance sheet above the steady-state once inflation
approaches the target. In contrast, with de-anchored expectations, the central bank balance
sheet remains below the steady-state throughout the policy horizon, perpetuating a lower
output gap. Therefore, the central bank can commit to future positive output gap recovery
as inflation decreases, provided that past reductions have been sufficient. In the case of de-
anchored expectations, such commitment is not feasible, thus necessitating a consistently
lower balance sheet, with no subsequent elevation above the steady-state.23

Figure 6 provides further details on the mechanism through which an optimal QT strat-
egy affects inflation and the output gap, emphasizing the role of expectations in shaping the
effectiveness of the policy. When expectations are well-anchored, agents’ perception track
precisely the announced path by the central bank, enabling the central bank to effectively
manage long-term rates.24 This precise control allows the central bank to calibrate QT to
the necessary degree, tightening long-term rates just enough to counteract the elevated in-
flation. However, this is associated with a high output cost for a relatively modest reduction
in inflation.

23This results from the fact that the trade-off matrix is lower triangular and has positive entries for past
output gaps.

24As detailed in Appendix A, real long term rates are determined by the expected changes in the balance
sheet Etr

b
t+1 − Etπt+1 = σ [Etcb,t+1 − cb,t] = σ

[
b̄FI (Etθt+1 − θt) + b̄cb (Etqet+1 − qet)

].
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Figure 6: Optimal balance sheet policy, QT expectations
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Notes: The dynamics of QT expectations when only the path of the balance-sheet is set optimally for a given
(baseline) interest rate rule, in response to a one standard deviation persistent (ρcp = 0.8) cost-push shock.
The solid black line shows the baseline QT trajectory.

In the case of de-anchored expectations, expectations are sluggish and agents do not
understand the central bank’s announcement of the balance sheet reduction path. This
results in a significant rise in long-term rates due to the misalignment between the actual
QT level and its expectation. Consequently, while inflation falls, output suffers a substantial
decline.

Importantly, in the case of an optimal QT strategy, the path of the long-term interest rate
resembles the pattern of the short-term policy rate under optimal interest rate policy. Under
RE, the long-term rate path is hump-shaped and quickly reverts to the steady state, while it
rises quickly and stays elevated under de-anchored expectations. Therefore, although the
central bank does not set the level of long-term rates explicitly, it can exert influence over
them when expectations are well-anchored. By communicating the anticipated trajectory
of its balance sheet, the central bank can shape market expectations, effectively guiding the
long-term rates through its balance sheet policy. This highlights the importance of having
anchored QT expectations, allowing the central bank to significantly influence real economic
transmission through its forward guidance on balance sheet policies.
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Figure 7: Optimal balance sheet policy in the case of a dual-mandate interest rate policy
rule
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Notes: Optimizing QT only, in response to a one standard deviation persistent (ρcp = 0.8) cost-push shock.
The solid line shows the scenario with interest rates which follow the baseline Taylor rule reacting to inflation
(it = 1.5πt). The dashed line shows an interest rate policy which follows a standard Taylor rule reacting to
inflation and the output gap (it = 1.5πt + 0.125xt). The solid black line shows the baseline QT trajectory.

As detailed in Section 3.2, the form of the systematic short-term interest rate policy rule
is crucial for the conduct of optimal balance sheet policy, as it increases the importance
of output gap recovery through the commitment device. In the baseline case, depicted in
Figure 5, the central bank solely focuses on inflation in the interest rate rule (it = 1.5πt).
However, when the central bank’s interest rate rule incorporates a response to the output
gap (it = 1.5πt+0.125xt), the commitment strategy with anchored expectations necessitates
a less aggressive QT trajectory, as shown in Figure 7. In practice, this translates into a more
pronounced initial reduction in the size of the balance sheet, followed by a steeper rise
above the steady state value. This approach induces a more substantial but transient spike
in the long-term interest rate, fostering a quicker rebound in economic activity.
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4.2.3 Optimal monetary policy mix

Figure 8: Optimal monetary policy mix, in response to a cost-push shock
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Notes: Optimizing QT and the interest rate, in response to a one standard deviation persistent (ρcp = 0.8)
cost-push shock. The solid black line shows the baseline QT trajectory.

The ideal approach for a central bank would be to determine the optimal combination
of its monetary policy instruments.25 Figure 8 presents the effects of jointly setting the
interest rate and the balance sheet policy to solve for the optimal Ramsey problem. It reveals
that optimal interest rate policy remains slightly below the level when set independently,
especially under de-anchored expectations. The balance sheet contraction is also contained,
settling closer to the steady-state value, thereby further mitigating inflation with a smaller
impact on economic activity. Within this policy mix, the short-term interest rate is proving
to be a more powerful tool for controlling inflation. However, a measured application of
QT can contribute to the moderation of inflationary pressures with a reduced impact on the
output gap.26

25In this situation, as in the case of an optimal interest rate policy, the central bank is not constrained by
the IS equation.

26 Additionally, optimally setting both instruments minimizes the disparities in the consumption between
the two types of household, as depicted in Appendix C.4. Moreover, we find that the loss function is minimized
more effectively with the optimal mix of instruments. Specifically, when comparing the loss in the case of the
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Figure 9 provides a deeper analysis of how an optimal Ramsey mix of monetary pol-
icy tools operates. When the central bank concurrently optimizes both interest rate and
balance sheet policies, as opposed to relying solely on an optimal QT, it necessitates a less
pronounced increase in the long-term rate to achieve its objectives. Importantly, in this case,
the expectations formation of the private sector about the QT trajectory is of relatively low
importance. The intuition for this result is that, in this case, smaller adjustments in the
long-term rate are required under a dual-instrument approach, irrespective of the prevail-
ing expectation formation scenario. Consequently, any variations in the long-term rate are
a direct consequence of changes in QT expectations rather than the central bank’s actions
per se.

Figure 9: Optimal monetary policy mix, QT expectations
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Notes: The dynamics of QT expectations when both instruments are set optimally, in response to a one stan-
dard deviation persistent (ρcp = 0.8) cost-push shock. The solid black line shows the baseline QT trajectory.

Overall, we emphasize the following three main takeaways about the optimal normal-
ization policy when a central bank is facing positive price cost-push shocks, consistent with
our analytical findings derived in Section 3. First, the interest rate stands out as the primary
optimal mix to that of the optimal interest rate policy only, the ratio is Lmix

LIR
= 32%. Similarly, when comparing

it to the loss in the case of the optimal balance sheet policy only, the ratio is Lmix

LQT
= 26%.
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instrument for macroeconomic stabilization, due to its higher efficacy in tempering infla-
tionary pressures. Second, in scenarios in which QT is the sole policy tool employed, the
anchoring of QT expectations becomes critical. Properly managed expectations allow the
central bank to not only reduce inflation more effectively in the present but also to mitigate
the adverse effects on the output gap throughout the policy horizon, thereby smoothing
the economic adjustment process. Third, when both the interest rate and QT are used to
minimize the loss function, the interest rate should take the lead in the policy response.
The optimal strategy involves the interest rate actively responding to economic conditions
while QT is more moderate, and declines less than if the balance sheet only is set so as to
minimize the loss function.

4.3 The role of expectations

Figure 10: Optimal interest rate policy, with heterogeneous expectations
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Notes: Using the interest rate only in response, in response to a one standard deviation persistent (ρcp = 0.8)
cost-push shock. Dashed lines are different levels for the fraction of anchored (i.e., RE) agents. The solid
black line shows the baseline QT trajectory.

Having detailed optimal monetary policy trajectories under our two extremes expectation
scenarios (RE and de-anchored expectations), we now analyze in detail the importance of
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the expectation formation of the private sector. Using both survey and market data, central
banks carefully monitor the risk of de-anchoring of agents’ inflation expectations, recogniz-
ing that they play an essential role in shaping the path of monetary policy going forward. In
this context, we examine how the central bank should implement its normalization strategy,
for different shares of agents having anchored or de-anchored expectations.

Figure 10 - 11 - 12 report the results. The different trajectories depicted reflect varying
proportions of agents having anchored expectations, each signifying a distinct level of con-
fidence in the central bank’s commitment. Figure 10 describes the implications for optimal
interest rate policy. It highlights a crucial dynamic: the degree to which private agents’
expectations are de-anchored significantly influences the path of interest rates. As we move
closer to a scenario in which all agents are de-anchored, represented by the dotted green
line, we see an upward shift in the recommended path for the interest rate. Conversely, a
more anchored environment allows for a more tempered approach.

Figure 11: Optimal balance sheet policy, with heterogeneous expectations
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Notes: Optimizing QT only in response to a one standard deviation persistent (ρcp = 0.8) cost-push shock,
interest rates follow the baseline Taylor rule reacting to inflation. Dashed lines are different levels for the
fraction of anchored (i.e., RE) agents. The solid black line shows the baseline QT trajectory.

Turning to the case of an optimal QT for a given interest rate rule in Figure 11, we find
that the degree of anchored agents is essential for the central bank to effectively mitigate
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inflation and foster the recovery of the output gap, as optimal QT measures prove more
effective when a larger fraction of agents hold anchored expectations. As the percentage
of anchored agents decreases, the central bank must enact more pronounced balance sheet
adjustments to stabilize inflation and the output gap, underscoring the challenges posed by
de-anchored expectations.

Figure 12: Optimal monetary policy mix, with heterogeneous expectations
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Notes: Optimizing QT and the interest rate, in response to a one standard deviation persistent (ρcp = 0.8)
cost-push shock. Dashed lines are different levels for the fraction of anchored (i.e., RE) agents. The solid
black line shows the baseline QT trajectory.

Lastly, Figure 12 presents the role of expectations for the optimal Ramsey monetary
policy mix. This figure confirms that while expectations anchoring significantly affects the
interest rate path, the QT policy path remains consistent across different expectation pro-
files. This invariance indicates that the central bank’s QT strategy is robust to variations
in the degree of expectations anchoring. In essence, whether a larger fraction of agents
are fully anchored or not, the monetary policy adjustments that the central bank must im-
plement do not vary, highlighting a clear distinction in the sensitivity of monetary policy
instruments to the anchoring of expectations, under the optimal Ramsey policy mix in this
model.
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4.4 Facing multiple shocks, the effects of credit disturbances

Figure 13: Optimal QT policy, in response to a cosh-push and a credit shock
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Notes: Optimizing QT only, in response to a one standard deviation persistent (ρcp = 0.8) cost-push shock,
and a five standard deviation persistent (ρθ = 0.8) credit shock. Interest rates follow the baseline Taylor rule
reacting to inflation. The vertical dashed line represents the period when the credit shock hits. The solid
colored lines are optimal policy when facing a cost-push only, while the dashed colored lines are when facing
a cost-push and a credit shock. The solid black line shows the baseline QT trajectory.

Balance sheet policies are also frequently used as a way to stabilize stressed financial
markets. When addressing inflationary shocks during monetary policy normalization, pol-
icymakers may concurrently face shocks affecting the financial system.27 How should poli-
cymakers respond optimally to such a combination of disturbances?

This section explores optimal policy responses to substantial credit shocks occurring
one year after initial cost-push inflation shocks, depicted in Figure 13 and Figure 14. These
credit shocks, represented by dashed lines, resemble a severe tightening of financial inter-
mediaries’ balance sheets, akin to a credit crunch.

Compared to a case with inflationary shocks only (depicted with solid lines), we find that
large credit disturbances can push the central bank to slow down and even partially re-

27A recent example is the Federal Reserve’s intervention in the wake of the failure of Silicon Valley Bank
and Signature Bank.
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Figure 14: Optimal monetary policy mix, in response to a cosh-push and a credit shock
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Notes: Optimizing QT and the interest rate, in response to a one standard deviation persistent (ρcp = 0.8)
cost-push shock, and a five standard deviation persistent (ρθ = 0.8) credit shock. Interest rates follow a
standard Taylor rule reacting to inflation. The vertical dashed line represents the period when the credit
shock hits. The solid colored lines are optimal policy when facing a cost-push only, while the dashed colored
lines are when facing a cost-push and a credit shock. The solid black line shows the baseline QT trajectory.

verse their normalization efforts. Results are consistent across the different specifications,
commitment and discretion under RE, as well as with optimal policy under de-anchored ex-
pectations. Notably, as depicted in Figure 14, in which the central bank optimizes the use
of both its policy instruments, the balance sheet becomes the primary tool for responding to
the credit shock. Meanwhile, the trajectories of the policy rate remain broadly aligned with
cases involving only a price cost-push shock. Therefore, this shows that, when confronted
with such a combination of shocks and employing both policy instruments in an optimal
way, the central bank’s approach is to tailor each tool to respond to a specific shock: the pol-
icy rate is primarily focused on controlling inflationary pressures, while the balance sheet
is deployed to stabilize financial markets in response to the credit shock.
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5 Conclusion

This paper is motivated by the recent rate hikes implemented by major central banks, partly
in response to supply shocks, and by the ongoing unwinding of their large balance sheets.
Given the importance attached to expectations formation mechanisms in central banks’ re-
cent strategy review, this study aims to analyze their implications for the design of optimal
normalization policy. Our key finding is that, when both monetary policy instruments (i.e.
policy rate and asset holdings) are set optimally, the expectations formation mechanism
matters largely for the policy rate while its importance drops for the decisions about un-
winding of the balance sheet.

We design optimal normalization policy in the four equation model of Sims et al. (2023)
under rational and de-anchored expectations assumingQT entails quadratic efficiency costs.
Looking at how each monetary policy instrument (i.e. the interest rate and central bank
asset holdings) can be set such as to follow an optimal rule, we have shown that both can
succeed in taming inflation following persistent cost-push shocks. However, when only the
central bank asset holdings are set optimally, inflation stabilization entails larger output gap
losses. Hence, setting the policy rate optimally using a model consistent welfare criterion
proves to be a superior strategy for the central bank.

The finding that the expectations formation mechanism matters substantially less for
the optimal decision about the path of the asset holdings, when both instruments are set
optimally, carries important implications for the design of QT of major central banks. Es-
sentially, this result shows that communication about the future intentions regarding the
path of their balance sheet is less restricted, in the sense that it does not seem to be subject
to front loading or to affect agents’ optimal decisions in a substantially different manner
conditioning on the way they form their expectations.

We acknowledge however that our conclusions are drawn in a rather simplified frame-
work and, as such, a richer model featuring additional transmission channels is deemed
necessary. At the same time, this is a first attempt to incorporate state-of-the art techniques
to compute optimal normalization policy in a model with bounded rationality.
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A Extending the Sims et al. (2023) with a quadratic effi-

ciency cost

In this section, we present an extension of the original model by Sims et al. (2023) with a
quadratic efficiency cost.28

The model makes several simplifying assumptions in this section to get allow the model
to reduce to four equations in the log-linearized form. The quantitative implications of the
four equation model are similar to more complicated models.

The economy is populated by the following agents: two types of households (parent
and child, with respective shares of z and 1 − z), a representative financial intermediary,
production firms, and a central bank. As detailed in Sims et al. (2023), the dynamics of the
child’s consumption in our model are in-line with the behavior of investment in Sims and
Wu (2021).

A.1 Households

A.1.1 Parent, or patient household

A representative parent maximizes its discounted lifetime utility from consumption, Ct and
labor Lt:

maxE0

∞∑
t=0

βt

[
C1−σ

s,t − 1

1− σ
− ψ

L1+χ
s,t

1 + χ

]
(A.1)

with σ > 0 is the inverse elasticity of intertemporal substitution, χ ≥ 0 is the inverse Frisch
elasticity, and ψ > 0 is a scaling parameter.

The parent’s budget constraint is:

PtCt + St ≤ WtLt +Rs
t−1St−1 + PtDt + PtD

FI
t + PtTt − PtX

b
t − PtX

FI
t (A.2)

in which Pt is the nominal price of consumption. The parent earns income from Wt the
nominal wage, Dt dividends from ownership in firms, DFI

t dividends from ownership in
financial intermediaries, and from lump-sum transfers from the tax authority Tt. It can
save in nominal short-term bonds St−1 which pays a gross interest rate Rs

t−1. Finally, it
28For simplicity, we present the model under rational expectations, as in the original paper by Sims et al.

(2023). The inclusion of boundedly rational expectations are discussed in the main text, in Section 2.
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makes transfers to the child Xb
t , as well as a transfer, XFI

t to financial intermediaries, each
period. The first-order conditions for Ct, Lt and St are:

ψLχ
t = C−σ

t wt (A.3)

Λt−1,t = β

(
Ct

Ct−1

)−σ

(A.4)

1 = Rs
tEtΛt,t+1Π

−1
t+1 (A.5)

with Λt−1,t the stochastic discount factor of the parent, wt =
Wt

Pt
the real wage and Πt =

Pt

Pt−1

the gross inflation rate.

A.1.2 Child, or impatient household

The child does not supply labor, he thus only gets utility from consumption, Cb,t:

maxE0

∞∑
t=0

βt
b

[
C1−σ

s,t − 1

1− σ

]
(A.6)

It is less patient than the parent, i.e. βb < β.

The child can borrow/save using long-term bonds Bt. As in Woodford (2001), long-term
bonds are modelled as perpetuities with geometrically decaying coupon payments. Coupon
payments decay at rate denoted by κ ∈ [0, 1]. Issuing agent a bond in time t leads to
payments of 1, κ, κ2, . . . in the following periods. Using decaying coupon bonds allows
to only keep track of the total outstanding bonds, rather than individual issues. The new
issuance of long-term bond is:

NBt = Bt − κBt−1 (A.7)

Newly issued bonds trade at market price Qt, such that the total value of the bond portfolio
equals QtBt. The gross return on the long bond is defined by:

Rb
t =

1 + κQt

Qt−1

(A.8)

The child has the following budget constraint:

PtCb,t +Bt−1 ≤ Qt (Bt − κBt−1) + PtX
b
t (A.9)
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This means that the sum of the nominal value of consumption and coupon payments on
outstanding debt cannot exceed the value of new bond issuances plus the nominal value of
the transfer from the parent.

First-order conditions for the consumption of the child and the long-term bond give:

Λb,t−1,t = βb

(
Cb,t

Cb,t−1

)−σ

(A.10)

1 = EtΛb,t,t+1R
b
t+1Π

−1
t+1 (A.11)

A.2 Financial Intermediaries

Unlike Gertler and Karadi (2011), and Sims and Wu (2021), Sims et al. (2023) assume for
simplicity and tractability that the representative financial intermediary (FI) is born each
period and exits the industry in the subsequent period. It receives an exogenous amount of
net worth from the parent household, PtX

FI
t :

PtX
FI
t = PtX̄

FI + κQtB
FI
t−1 (A.12)

It consists of two components: fixed amount of new equity X̄FI , and outstanding long-
bonds inherited from past intermediaries κQtB

FI
t−1.

The FI has the following balancing condition:

QtB
FI
t +REFI

t = SFI
t + PtX

FI
t (A.13)

The left-hand side of this equations corresponds to the assets of the FI, i.e. long-term lending
to the child QtB

FI
t and central bank’s reserves REFI

t . The right-hand side, the liabilities, is
comprised of short-term deposits from the parent SFI

t and the transfer PtX
FI
t .

The FI pays interest, Rs
t , on short-term debt. It earns interest, Rre

t , on reserves, as well
as a return on long-term bonds Rb

t+1. Upon exiting after period t, the FI’s dividend to the
parent household are therefore equal to:

Pt+1D
FI
t+1 =

(
Rb

t+1 −Rs
t

)
QtB

FI
t + (Rre

t −Rs
t )RE

FI
t +Rs

tPtX
FI
t (A.14)
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The FI maximises expected dividends, which are discounted by the nominal stochastic dis-
count factor of the parent Λt,t+1, subject to a risk-weighted leverage constraint in which
long-term bonds receive a risk weight of unity, while reserves on account with the central
bank have a risk weight of zero:

QtB
FI
t ≤ ΘtPtX̄

FI (A.15)

This states that the value of the long-term loans to the child cannot be larger than a multiple
Θt of the value of its equity. Θt is viewed as a credit shock, and obeys an AR(1) process.

The first-order conditions of the FI with respect to its choice variables, the quantity of long
bonds and reserves are:

EtΛt,t+1Π
−1
t+1

(
Rb

t+1 −Rs
t

)
= Ωt (A.16)

EtΛt,t+1Π
−1
t+1 (R

re
t −Rs

t ) = 0 (A.17)

with Ωt the multiplier on the leverage constraint. The binding constraint, i.e. Ωt > 0,
generates excess returns between the expected return on long bonds and the cost of funds.

A.3 Production

The production side of the economy consists of three sectors: final output, retail output, and
wholesale output. There is a representative final good firm and representative wholesale
producer. There are a continuum of retailers, indexed by f ∈ [0, 1].

Final output:

Each final output firm faces a downward-sloping demand function given by:

Yt(f) =

(
Pt(f)

Pt

)−ϵ

Yt (A.18)

with ϵ > 1 the elasticity of substitution.

This gives rise to an aggregate price index:

Pt =

[∫ 1

0

Pt(f)
1−ϵdf

] 1
1−ϵ

(A.19)
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Retail output:

Retailers purchase wholesale output at price Pm,t, which can be viewed as nominal marginal
cost and repackage it for sale at Pt(f). Retailers are subject to a Calvo (1983) pricing
friction. Each period, there is a probability 1 − ϕ that a retailer adjusts its price, with
ϕ ∈ [0, 1].

When a retailer does adjust its prices, it picks a price to maximize the present value
of expected profits, discounted by the stochastic discount factor of the parent household.
Optimization results in an optimal reset price, P∗,t, that is common across updating retailers.
Denote real marginal cost as pm,t =

Pm,t

Pt
, the optimal reset price then satisfies:

P∗,t =
ϵ

ϵ− 1

X1,t

X2,t

(A.20)

X1,t = P ϵ
t pm,tYt + ϕEtΛt,t+1X1,t+1 (A.21)

X2,t = P ϵ−1
t Yt + ϕEtΛt,t+1X2,t+1 (A.22)

Wholesale output:

The wholesale firm produces output Ym,t using a production function which takes labor as
input:

Ym,t = AtLt (A.23)

with At an exogenous productivity disturbance following a known stochastic process.

Real wages wt =
Wt

Pt
are determined by:

wt = pm,tAt (A.24)

A.4 The central bank

The central bank has two instruments, namely the policy rate, Rs
t , and its portfolio of long-

term bonds issued by the child, Bcb
t . The policy rate evolves according to a simple Taylor
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rule subject to the ELB:

lnRs
t = max [0 ; ϕπ (lnΠt − lnΠ) + ϕx (lnYt − lnY ∗

t ) + srεr,t] (A.25)

The central bank finances its portfolio of long-term bonds via the creation of reserves REt.
Its balance sheet condition is:

QtB
cb
t = REt (A.26)

QE is defined as the real value of the central bank’s bond portfolio:29

QEt = Qtb
cb
t (A.27)

where bcbt =
Bcb

t

Pt
.

In their original specification, Sims et al. (2023) assume that QE is costless. We follow
Gertler and Karadi (2011), Karadi and Nakov (2021) and Kabaca et al. (2023) and assume
that the central bank pays an efficiency cost, Γt, whenever it conducts QE or QT. In this
case, the central bank earns a surplus on its asset holdings which is transferred lump-sum
to the parent household and receives the following form, in real terms:

Tt =
Rb

tQt−1

πt
bcbt−1 −

Rt−1

πt
ret−1 − Γt (A.28)

where ret = REt/Pt, with

Γt =
τ

2

(
Qtb

cb
t

)2 (A.29)

As in Kabaca et al. (2023), these costs reflect the notion that the central bank faces sev-
eral distortions, such as political costs and other implementation constraints (e.g., costs
of maintaining a large balance sheet or identifying preferred government sector markets)
when purchasing or selling long-term government bonds. Given its quadratic structure,
both QE and QT incur costs to the central bank. We think of QT as active and passive, in
the sense that it coincides with active selling of central bank asset holdings and with no
re-investments of the proceeds of maturing bonds.

29In our baseline calibration of the model, the QE policy follows a simple AR(1) process.
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A.5 Aggregate conditions

Market clearing requires the following conditions:

REt = REFI
t (A.30)

St = SFI
t (A.31)

St = SFI
t (A.32)

Bt = BFI
t +Bcb

t (A.33)

Ytv
p
t = AtLt (A.34)

A key feature of Sims et al. (2023) is that they assume that the transfer from parent to
child,Xb

t , is time-varying, but that neither the parent nor the child behaves as though it can
influence the value:

PtX
b
t = (1 + κQt)Bt−1 (A.35)

This assumption, referred to as the "full-bailout"30 implies that, even though the child solves
a dynamic problem and has a forward-looking Euler equation, its consumption is in fact
static:

PtCb,t = QtBt (A.36)

This assumption by Sims et al. (2023) on the parent-child transfer allows one to elimi-
nate a state variable and simplifies the system to four equations, although it is not crucial
for the qualitative or quantitative properties of the model.

In our model, due to the introduction of the QE cost, the aggregate resource constraint of
the economy changes. Considering the budget constraint of the parent and plugging in
dividends from firm financial intermediary ownership as well as the expression for nominal
remittances (A.28), we obtain:

30At each period, the parent pays off the child’s debt. Sims et al. (2023) provide evidence that relaxing this
assumption does not fundamentally alter the behavior of the model in response to shocks.
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PtCt = RS
t−1St−1 + PtYt +

(
Rb

t −RS
t−1

)
Qt−1B

FI
t−1 +

(
RRE

t−1 −RS
t−1

)
REFI

t−1

+RS
t−1Pt−1X

FI
t−1 +Rb

tQt−1B
CB
t−1 −RRE

t−1REt−1 − PtΓt − (1 + κQt)Bt−1

−QtB
FI
t −REFI

t (A.37)

Using the definition of the balance sheet of the financial intermediary (A.13), we can
substitute out for Pt−1X

FI
t−1 in (A.37) above and then simplify to get:

PtCt = PtYt +Rb
tQt−1Bt−1 − (1 + κQt)Bt−1 − PtΓt −QtB

FI
t −REFI

t (A.38)

Accounting for the fact that long-term rates are defined as Rb
t =

1+κQt

Qt−1
and using the bonds

market clearing condition (A.33), the balance sheet of the central bank (A.26) and the fact
that the full bailout condition (A.36), we arrive at:

Ct + Cb,t = Yt − Γt (A.39)

Using the definition of for QEt in (A.27), we may rewrite the efficiency cost expression for
Γt as follows:

Γt =
τ

2
QE2

t (A.40)

This allows us to rewrite the resource constraint (A.39) as follows:

Yt = Ct + Cb,t +
τ

2
QE2

t (A.41)

At and Θt obey conventional log AR(1) processes. Potential output Y∗,t is defined as the
equilibrium level of output consistent with price flexibility (i.e. ϕ = 0) and where the credit
shock is constant, i.e. Θt = 0. The natural rate of interest, Rf

t , is the gross real short-term
interest rate consistent with this level of output. Xt =

Yt

Y∗,t
is the output gap.
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A.6 The full log-linearized model

We write below all log-linearized conditions of the model, under rational expectations. The
majority of these equations are similar to Sims et al. (2023), with the exception of the
introduction of the QE cost. Lowercase variables denote log, i.e. percentage change, devi-
ations from steady state. We use a “hat” when the corresponding level variable is already
lower-case. Variables without a time subscript denote non-stochastic steady state values.
The model is linearized around a steady state with zero trend inflation (i.e. Π = 1) where
the leverage constraint on intermediaries binds.

χlt = −σct + ŵt (A.42)

λt−1,t = −σ (ct − ct−1) (A.43)

0 = Etλt,t+1 + rst − Etπt+1 (A.44)

λb,t−1,t = −σ (cb,t − cb,t−1) (A.45)

rbt =
κ

Rb
qt − qt−1 (A.46)

0 = Etλb,t,t+1 + Etr
b
t+1 − Etπt+1 (A.47)

qt + b̂FI
t = θt (A.48)[

QbFI(1− κ)
]
qt +QbFI b̂FI

t − κQbFI b̂FI
t−1 + κQbFIπt + re · r̂et = s · ŝt (A.49)

Etλt,t+1 − Etπt+1 +
Rb

sp
Etr

b
t+1 −

Rs

sp
rst = ωt (A.50)

rret = rst (A.51)

p̂∗,t = x̂1,t − x̂2,t (A.52)

x̂1,t = (1− ϕβ)p̂m,t + (1− ϕβ)yt + ϕβEtλt,t+1 + ϵϕβEtπt+1 + ϕβEtx̂1,t+1 (A.53)

x̂2,t = (1− ϕβ)yt + ϕβEtλt,t+1 + (ϵ− 1)ϕβEtπt+1 + ϕβEtx̂2,t+1 (A.54)

ŵt = p̂m,t + at (A.55)

(1− z)ct + zcb,t +

(
τQE

Y

)
qet = yt (A.56)
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v̂pt + yt = at + lt (A.57)

v̂pt = 0 (A.58)

πt =
1− ϕ

ϕ
p̂∗,t (A.59)

qt + b̂cbt = r̂et (A.60)

b̂t =
bFI

b
b̂FI
t +

bcb

b
b̂cbt (A.61)

cb,t = qt + b̂t (A.62)

at = ρaat−1 + sAεA,t (A.63)

θt = ρθθt−1 + sθεθ,t (A.64)

rst = max
[
0 ; ϕπ(πt − πT ) + ϕx(xt − xT ) + srεr,t

] (A.65)

qet = r̂et (A.66)

xt = yt − y∗t (A.67)

A.7 Updated IS and Phillips Curve Equations

In this subsection we reduce the system of log-linearized equations to get to the four equa-
tions presented in the main model.

To obtain the IS curve. We start by combining first-order conditions on consumption of each
type of households and interest rates (A.43)-(A.45) and (A.47) with the aggregate resource
constraint (A.56):

yt = Etyt+1 −
1− z

σ
(rst − Etπt+1)−

z

σ

(
Etr

b
t+1 − Etπt+1

)
−
(
τQE

Y

)
[qet+1 − qet] (A.68)

Combining (A.60)-(A.62) with (A.66) and the binding leverage constraint (A.48) allows us
to write the consumption of the child as a function of credit shocks and QE:

cb,t =
bFI

b

(
qt + b̂FI

t

)
+
bcb

b
qet = b̄FIθt + b̄cbqet (A.69)

53



with b̄FI = bFI/b and b̄cb = bcb/b the steady state fraction of total bonds held by financial
intermediaries and the central bank, respectively.

Using the child’s first-order condition we get:

Etr
b
t+1 − Etπt+1 = σ [Etcb,t+1 − cb,t] = σ

[
b̄FI (Etθt+1 − θt) + b̄cb (Etqet+1 − qet)

] (A.70)

Combining these two equations we get:

yt = Etyt+1 −
1− z

σ
(rst − Etπt+1)−

(
zb̄cb +

τQE

Y

)
(Etqet+1 − qet)

− zb̄FI (Etθt+1 − θt) (A.71)

This equation can also be written as a function of the interest rate spread:

yt = Etyt+1 −
1

σ
(rst − Etπt+1)−

z

σ

(
Etr

b
t+1 − rst

)
−
(
τQE

Y

)
[qet+1 − qet] (A.72)

Define the hypothetical natural rate of output, y∗t , as the level of output consistent with
flexible prices and no credit market shocks. That is, y∗t is the level of output consistent with
p̂m,t = θt = qet = 0, or:

y∗t =
(1 + χ)(1− z)

χ(1− z) + σ
at (A.73)

The natural rate of interest, rft , is the real rate consistent with the IS equation holding at
the natural rate of output absent credit shocks. It can be expressed as:

rft =
σ

1− z

(
Ety

∗
t+1 − y∗t

)
=
σ (ρA − 1)

1− z
y∗t (A.74)

Using (A.67), this allows to express the IS curve as a function of the output gap:

xt = Etxt+1 −
1− z

σ

(
rst − Etπt+1 − rft

)
−
(
zb̄cb +

τQE

Y

)
(Etqet+1 − qet)

− zb̄FI (Etθt+1 − θt) (A.75)
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The Phillips curve can be derived as follows. First, we can combine (A.52)-(A.54) such as to
have an equation linking prices and marginal costs:

πt = γp̂m,t + βEtπt+1 (A.76)

with γ = (1−ϕ)(1−ϕβ)
ϕ

. Combining (A.42) with (A.55) and (A.57), making note of the fact
that v̂pt = 0 around a zero inflation steady state, gives an expression for the marginal costs:

p̂m,t = χyt − (1 + χ)at + σct (A.77)

Using the aggregate resource constraint (A.56) allows us to write this as:

p̂m,t =
χ(1− z) + σ

1− z
yt − (1 + χ)at −

σz

1− z
cb,t −

σ

(1− z)

τQE

Y
qet (A.78)

Using the definition for cbt derived in (A.69):

p̂m,t =
χ(1− z) + σ

1− z
yt − (1 + χ)at −

σz

1− z

[
b̄FIθt + b̄cbqet

]
− σ

(1− z)

τQE

Y
qet (A.79)

This can be expressed as a function of output gap, using (A.73):

p̂m,t =
χ(1− z) + σ

1− z
xt −

σz

1− z

[
b̄FIθt + b̄cbqet

]
− σ

(1− z)

τQE

Y
qet (A.80)

Plugging this equation into (A.76), and defining ζ = χ(1−z)+σ
1−z

gives the Phillips curve in this
four equation model.

πt = βEtπt+1 + γζxt −
γσ

1− z

(
zb̄cb +

τQE

Y

)
qet −

γσz

1− z
b̄FIθt + cpt (A.81)

To this equation we add an ad-hoc price cost-push shock cpt.

B Supplementary analytical details

This appendix provides additional details to complement Section 3. In this Appendix B.1,
we provide a proof of Proposition 1. Appendix B.2 shows the impulse responses to a per-
sistent restrictive policy shock for both monetary policy instruments, while Appendix B.3
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presents the resulting trade-off matrices in the case optimal policy for both the interest rate
and the balance sheet, in the case of heterogeneous expectations.

B.1 Proof of Proposition 1

Before formulating the minimization problem of the central bank under commitment in
the presence of de-anchored expectations it is useful to work on inflation and output gap
expectations. Exploiting the law of motion of de-anchored expectations (9), and iterating
backwards we may write the law of motion of inflation expectations as follows:

ωπ
t ≈ ḡ

∞∑
s=0

(1− ḡ)s πt−s−1 (B.1)

The Phillips curve under de-anchored expectations reads as follows:

πt = βωπ
t + γζxt −

γσ

1− z

(
zb̄cb +

τQE

Y

)
qet −

γσz

1− z
b̄FIθt + cpt (B.2)

where we can plug in expression (B.1) for inflation expectations. Theminimization problem
of the central bank under commitment and de-anchored expectations reads as follows:31

min
πt,xt

Et

∞∑
t=1

[
λπ
2
π2
t +

λ

2
x2t

− ξπ,t

(
πt − β

(
ḡ

∞∑
s=0

(1− ḡ)s πt−s−1

)
− γζxt +

γσ

1− z

(
zb̄cb +

τQE

Y

)
qet +

γσz

1− z
b̄FIθt − cpt

)]
(B.3)

where ξπ,t is the Lagrange multiplier on the Phillips curve. The FOC are summarized as:

πt : λππt − ξπ,t + ḡβEt

∞∑
s=0

ξπ,t+s+1β
s+1 (1− ḡ)s = 0 (B.4)

xt : λxxt + ξπ,tγζ = 0 (B.5)
31Note that the expectation operator in the minimization problem of the central bank corresponds to the

expectations of the central bank itself. As mentioned in the main body of the text, we have assumed that the
central bank is rational and has full knowledge of the actual law of motion of the economy and the way agents
form their expectations. As a result, the expectations of the central bank are model-consistent.
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where solving for ξπ,t in (B.5), we receive:

ξπ,t = −λx
γζ
xt, ∀t. (B.6)

and substituting in (B.4) for the current and the future lagrange multipliers, we end up to
the following expression:

λππt = −λx
γζ

(
xt − ḡβ2Et

∞∑
s=0

βs(1− ḡ)sxt+s+1

)
(B.7)

B.2 Impulse Responses to policy shocks

In this appendix, we present the impulse responses to a persistent restrictive policy shock
for both monetary policy instruments. Figure 15 shows that, both in the anchored and
de-anchored models, the interest rate shock brings inflation down for substantially lower
output gap loss compared to the QT shock. The implied trade-off for both policy instruments
is amplified under de-anchored expectations.
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Figure 15: IRFs to a Monetary Policy and a QT shock in the RE and de-anchored models
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(a) Rational expectations model
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(b) De-anchored expectations model

Notes: Impulse response functions to a one standard deviation short-term interest rate shock, and a one
standard deviation QT shock delivering the same initial impact on inflation. The top panel is the RE model,
the bottom panel is the de-anchored model.

B.3 Trade-off matrices under heterogeneous expectations

The presence of both de-anchored and anchored agents leads to a role for past (i.e. lower
triangular), current (i.e. main diagonal) and future output gap (i.e. upper triangular)
values. This is depicted in Figure 16.
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Figure 16: Trade-off matrices under heterogeneous expectations
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(a) Optimal interest rate policy
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(b) Optimal balance sheet policy

Notes: Trade-off matrices for optimal interest rate (left panel) T εr and balance sheet (right panel) T εqe

polices, in a case in which 50% of agents are de-anchored. Each row is one period in the sequence, each
line shows a relevant period of the output gap entering in the optimal policy rule. The intensity of the color
corresponds to the magnitude of the trade-off.

C Supplementary details on the optimal policy simulations

This appendix presents supplementary material for our quantitative optimal policy analysis
described in Section 4. Appendix C.1 derives our model-consistent loss function. In Ap-
pendix C.2, we provide additional details on the solution method we used to construct the
optimal interest and balance sheet trajectories. Appendix C.3 explores how the gain param-
eter in the forecasting process of de-anchored agents influences our findings. Finally, C.4
shows the path of the consumption of the two types of households, in the case of optimal
policy under commitment and rational expectations.

C.1 Derivation of the welfare criterion

We define aggregate welfare as the sum of the utility functions of the parent and the child:

Wt = Vt + Vb,t (C.1)

We follow the approach of Rotemberg and Woodford (1997) and take a second-order
approximation of the utility function of the parent and the child, respectively.
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A second-order approximation of the utility function of the child reads as follows:

Vb,t = Vb + UCb
Cb

(
cb,t +

1

2
(1 +

UCbCb
Cb

UCb

)c2b,t

)
(C.2)

A second-order approximation of the utility function of the parent reads as follows:

Vt = V + UCC

(
ct +

1

2
(1 +

UCCC

UC

)c2t

)
− ULL

(
lt +

1

2
(1 +

ULLL

UL

)l2t

)
(C.3)

where UCb
= UC = C−σ, UCbCb

= UCC = −σC−σ−1, UL = Lχ and ULL = χLχ−1. Log-
linearizing the aggregate production function, we get that yt = αt + υ̂pt + lt.32 Taking
instead a second-order Taylor approximation of the production function around the zero
steady-state inflation, we receive:

lt = yt +
Y

2
y2t +

1

2
(υ̂pt )

2 − L

2
l2t + t.i.p. (C.4)

where t.i.p. stands for terms irrelevant of policy, such as the productivity shock in this case.
Note that in this case υ̂pt = log(υpt )− log(υp). From ch. 6 of Woodford (2003) we can write,
under a Calvo price setting mechanism:

y2t = ϵvar(p∗,t) (C.5)

and, in turn, the variance of optimal relative prices reads as follows:

∞∑
t=0

βtvar(log(p∗,t)) =
1

1− ϕβ

∞∑
t=0

βt

[
ϕ

1− ϕ
π2
t

]
+ t.i.p.+O

(
||ξ3||

) (C.6)

Substituting (C.4) in (C.3), we receive:

Vt = V + UCC

(
ct +

1

2
(1− σ)c2t

)
− ULL

(
yt +

Y

2
y2t +

1

2
(υ̃pt )

2 − L

2
l2t

)
− 1

2
ULL(1 + χ)l2t + t.i.p. (C.7)

32Note that we are log-linearizing around the zero steady-state inflation, which implies that price dispersion
is irrelevant up to first order.
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Note that from equations (C.5) and (C.6), we have:

y2t =
ϵϕ

(1− ϕβ)(1− ϕ)
π2
t + t.i.p.+O

(
||ξ3||

) (C.8)

where O (||ξ3||) captures terms of order higher than two. Substituting the above expression
in (C.7), we receive:

Vt = V + UCC

(
ct +

1

2
(1− σ)c2t

)
− ULL

Y ϵϕ

2(1− ϕβ)(1− ϕ)
π2
t

− ULL

(
yt +

1

2
(υ̃pt )

2 − L

2
l2t

)
− 1

2
ULL(1 + χ)l2t + t.i.p.+O

(
||ξ3||

) (C.9)

Note that from the first order condition of the Parent’s household problem with respect to
labor supply (and after normalizing steady state real wage to one), we have that ψUL = UC .
We may thus rewrite (C.9) as follows:

Vt = V + UCY

{(
C

Y
ct +

C

2Y
(1− σ)c2t

)
− Y ϵϕ

2ψ(1− ϕβ)(1− ϕ)
π2
t

− 1

ψ

(
yt +

1

2
(υ̃pt )

2 − L

2
y2t

)
− 1

2ψ
(1 + χ)y2t

}
+ t.i.p.+O

(
||ξ3||

) (C.10)

where we have used the square of the expression (C.4) to substitute out for l2t . We now
normalize steady state output to one. Gathering terms and setting ψ = 1, we can write:

Vt = V + UCY

{(
C

Y
ct +

C

2Y
(1− σ)c2t

)
− Y ϵϕ

2(1− ϕβ)(1− ϕ)
π2
t

− yt −
1

2
(υ̃pt )

2 − χ

2
y2t

}
+ t.i.p.+O

(
||ξ3||

) (C.11)

Taking a second order approximation of the resource constraint (A.41), we can write:

yt −
C

Y
ct −

Cb

Y
cb,t = −Y

2
y2t + C

C

2Y
c2t + Cb

Cb

2Y
c2b,t + τ

bcb

Y
qet + bcbE

τbcb

2Y
qe2t (C.12)

Returning now to the welfare of the child, we can rewrite it as follows, using the marginal
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utility of consumption and the marginal disutility from labor at the steady state:

Vb,t = Vb + UCb
Y

(
Cb

Y
cb,t +

Cb

2Y
(1− σ)c2b,t

)
(C.13)

Assuming that at the steady state UC = UCb
, and plugging (C.11) and (C.13) in (C.1), we

receive:

Wt = W − UCY

{
C

Y

(
C − 1 + σ

2

)
c2t +

Cb

Y

(
Cb − 1 + σ

2

)
c2b,t +

Y ϵϕ

2(1− ϕβ)(1− ϕ)
π2
t

+
χ− Y

2
y2t +

1

2
(υ̃pt )

2 + τ
Qbcb

Y
qet + τQbcb

Qbcb

2Y
qe2t

}
+ t.i.p.+O

(
||ξ3||

) (C.14)

Clearly, by using the calibration of Sims et al. (2023), where σ = χ = 1 and accounting for
a normalization of output at the steady state, Y = 1, we can simplify further to get:

Wt = W − UCY

{
C

Y

(
C

2

)
c2t +

Cb

Y

(
Cb

2

)
c2b,t +

Y ϵϕ

2(1− ϕβ)(1− ϕ)
π2
t

+
1

2
(υ̃pt )

2 + τ
Qbcb

Y
qet + τQbcb

Qbcb

2Y
qe2t

}
+ t.i.p.+O

(
||ξ3||

) (C.15)

Note that the linear term, qet, in the loss function above arises because in our extension of
the model to allow for quadratic efficiency costs of QE/QT, the steady state is inefficient,
since QE ̸= 0 at the steady state. As shown in Benigno and Woodford (2005), linear terms
show up in the welfare criterion.

Following Sims et al. (2023), we can write the weights in the loss function as:

ωC =
C

Y

(
C

2

)
=

0.67

1

(
0.67

2

)
= 0.2244

ωCb
=
Cb

Y

(
Cb

2

)
=

0.33

1

(
0.33

2

)
= 0.0545

ωπ =
Y ϵϕ

2(1− ϕβ)(1− ϕ)
= 65.0246
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ωqe = τQbcb
Qbcb

2Y
= 5e− 05

C.2 Computational details

When solving for optimal policy, we use a method similar to de Groot et al. (2021), McKay
and Wolf (2022) and Hebden and Winkler (2021) and construct sequence-space linear-
quadratic policy problems. Doing so, we use IRFs to policy shocks from a specified model,
and a baseline (which is here the response to a cost-push shock in the same model as the
one used for the IRFs). Similar solution methods can be found in McKay and Wolf (2023)
and Barnichon and Mesters (2023) using both IRFs from VARs and Local Projections.

As regularly discussed in the literature (e.g. Fernández-Villaverde et al., 2016 and Auclert
et al., 2021), by certainty equivalence, the first-order perturbation solution of models with
aggregate risk is identical to the solution of the model in linearized perfect-foresight. Under
perfect foresight, each variable can be written in the sequence space as:

Z = ZB +Az,εy εy

with ZB the baseline path over all periods, and Az,εy the matrix that collects the impulse
responses of the variable of interest over all periods, to a sequence of contemporaneous and
news policy shocks εy, under a baseline policy rule.33

Identifying the optimal trajectory of the desired policy instrument requires solving for a
sequence of policy deviations that satisfy the first-order conditions of the optimal policy
problem, as defined in a sequence space representation:34

min
{Π,C,Cb,QE,εy}

E0

[1
2
Π′ΩΠΠ+ C ′ΩCC + C ′

bΩC,bCb +QE ′ΩQEQE

+ ΞΠ′ (−Π+ΠB +AΠ,εyεy
)
+ ΞC′ (−C + CB +AC,εyεy

)
+ ΞC′

b

(
−Cb + CB

b +ACb,εyεy
)
+ ΞQE′ (−QE +QEB +AQEεy

) ]
33We expose the solution for one policy instrument, but it is straightforward to extend it to allow for multiple

instruments.
34We omit the linear qet term from the loss function in our analysis, considering its impact to be marginal.

The inclusion of this term would introduce only a minor adjustment (a "shifter") to the optimal policy rule,
which would be insignificant for the scope of our results.
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Ξ ≡ diag
(
1, β, . . . , βT

)
⊗Λwith Λ the Lagrange multipliers, and Ω ≡ diag

(
1, β, . . . , βT

)
⊗ω

the weights associated with each term in the loss function.

The first-order conditions are:
ΩΠ Π = ΞΠ

ΩC C = ΞC

ΩCb
Cb = ΞCb

ΩQE QE = ΞQE

AΠ,εy ′ ΞΠ +AC,εy ′ ΞC +ACb,εy ′ ΞCb +AQE,εy ′ ΞQE = 0

Combining them gives:

AΠ,εy ,′ (ΩΠ Π) +AC,εy ,′ (ΩC C) +ACb,εy ,′ (ΩCb
Cb) +AQE,εy ,′ (ΩQE QE) = 0

Substituting for the law of motion of all endogenous variables in the loss function:

AΠ,εy ′
(
ΩΠ

(
ΠB +AΠ,εyεy

))
+AC,εy ′

(
ΩC

(
CB +AC,εyεy

))
+

ACb,εy ′
(
ΩCb

(
CB

b +ACb,εyεy
))

+AQE,εy ′
(
ΩQE

(
QEB +AQE,εyεy

))
= 0

We can then solve for the optimal sequence of policy shocks ε̃y. For simplicity, stacking all
loss function variables into Zl and all weights into Ω gives:

ε̃y = −
(
AZl,εy ′ΩAZl,εy

)−1 (AZl,εy ′ΩZB
l

) (C.16)

Optimal deviations ε̃y to the baseline path of the policy instrument y is set to offset as well
as possible (in a weighted least-squares sense) the deviations of the policy targets incurred
by the exogenous shocks.

C.3 Role of the gain

The impact of varying the gain parameter in the forecasting rule for de-anchored agents is
an important aspect of our model. Unlike the endogenous gain approach in Gáti (2023)
or Carvalho et al. (2023), we calibrate this parameter at a fixed value. But what would
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be the impacts of a different gain? Figures 17 and 18 presents the outcomes for different
gain calibrations. We compare our baseline calibration with a gain of ḡ = 0.02, to a higher
gain of ḡ = 0.05, which close to the estimated value in the sample pre-1999 in Eusepi et al.
(2020), and also consider the scenario with a zero gain ḡ = 0.

As the gain parameter increases, indicating a greater influence of recent forecast errors
on the forecasts of agents with de-anchored expectations, there is a notable amplification
in macroeconomic fluctuations. Inflation and the output gap deviate further from their
targets, leading the central bank to react more vigorously.

More specifically, policy rate and balance sheet adjustments are becoming more pro-
nounced, as the central bank seeks to counter increased volatility and maintain economic
stability. The long-term interest rate and therefore the spread also reflect this dynamic,
adjusting in line with the degree of de-anchoring of expectations. Overall, central bank
optimal policy instruments are calibrated more aggressively to mitigate the destabilizing
effects of higher gain values.
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Figure 17: Optimal interest rate and balance sheet policies, in response to a cost-push shock,
with different gains
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(a) Optimal interest rate policy
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(b) Optimal QT policy, for a given interest rate rule

Notes: Optimizing the interest rate only (top panel) or QT only (bottom panel) in response to a one standard
deviation persistent (ρcp = 0.8) cost-push shock. In the case of optimal QT only, interest rates follow the
baseline Taylor rule reacting to inflation only. Calibration of the loss function follows the welfare criterion.
Each line shows a different level for the gain parameter. The solid black line shows the baseline QT trajectory.
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Figure 18: Optimal monetary policy mix, in response to a cost-push shock, with different
gains
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Notes: Optimizing both instruments in response to a one standard deviation persistent (ρcp = 0.8) cost-push
shock, interest rates follow the baseline Taylor rule reacting to inflation only. Calibration of the loss function
follows the welfare criterion. Each line shows a different level for the gain parameter. The solid black line
shows the baseline QT trajectory.

C.4 The role of each monetary policy instrument on the optimal con-

sumption paths

Figure 19 depicts the consumption patterns of the "parent" (patient) and "child" (impatient)
households under various optimal combinations of monetary policy instrument. The key
observation is that optimally setting both the interest rate and the balance sheet minimizes
consumption disparities between the two household types. When only the interest rate is
optimized, the "parent" is more negatively affected, as it is more sensitive to changes in the
short-term interest rate. Conversely, optimizing only the balance sheet negatively impacts
the "child" household’s consumption, due to the full bailout assumption linking it directly
to balance sheet reductions.
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Figure 19: Responses of the consumption of the two types of households
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Notes: Optimal trajectories of the consumption of the two types of households, the "parent" and the "child"
under commitment and RE, in response to a persistent (ρcp = 0.8) cost-push shock. Calibration of the loss
function follows the welfare criterion.
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