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Abstract

We propose a new theory of price rigidity based on firms’ Knightian uncertainty

about their competitive environment. This uncertainty has two key implications.

First, firms learn about the shape of their demand function from past observations

of quantities sold. This learning gives rise to kinks in the expected profit function

at previously observed prices, making those prices both sticky and more likely to

reoccur. Second, uncertainty about the relationship between aggregate and industry-

level inflation ensures nominal rigidity. We prove the main insights analytically and also

quantify the effects of our mechanism. Our estimated quantitative model is consistent

with a wide range of micro-level pricing facts that are typically challenging to match

jointly, and implies significant monetary non-neutrality.
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1 Introduction

Macroeconomists have long recognized that incomplete price adjustment plays a crucial role

in the amplification and propagation of macroeconomic shocks. On the one hand, there is

ample evidence that inflation responds only slowly to monetary shocks (e.g. Christiano et al.

(2005)). On the other, numerous studies have shown that at the micro-level prices are not

just sticky, but also display a number of other characteristics that could play a crucial macro

role as well, and are thus important to match (e.g. Bils and Klenow (2004)).

In this paper, we propose a new theory of price rigidity based on firms’ Knightian

uncertainty about the demand for their product. This uncertainty endogenously generates an

as-if kink in expected profits, and hence a first-order cost of moving away from a previously

posted price. The mechanism not only leads to price stickiness, but also explains a number

of additional micro-level pricing facts, and implies significant monetary non-neutrality.

Our economy is composed of a continuum of industries, each populated with monopolistic

firms who face uncertainty about their competitive environment. In order to evaluate how

demand changes as a function of the nominal price they post, firms need to jointly assess (1)

the unknown demand curve, as a function of the relevant relative price; and (2) the relative

price itself, which equals the firm’s nominal price minus the unobserved industry price index.

Uncertainty about both jointly leads to nominal rigidity.

Standard models abstract from such uncertainty, typically assuming that firms know

the structure of the economy and observe competitors’ prices. In contrast, we assume

firms face specification doubts about the model of demand. We capture such doubts by

drawing on the large experimental and theoretical work motivated by Ellsberg (1961) that

distinguishes between risk (uncertainty with known odds) and ambiguity, or Knightian

uncertainty (unknown odds). In particular, we model the aversion to ambiguity using

the recursive multiple priors preferences axiomatized by Epstein and Schneider (2003), and

characterize the firm’s lack of confidence through a set of possible prior distributions over

both the unknown demand shape and the unknown relative price.

We aim to put on equal footing the decision maker and an econometrician who is analyzing

data from an unknown data generating process.1 To this end, we assume the firm estimates

its unknown demand function from past observations of quantities sold and prices. In doing

so, the firm knows demand is a smooth, downward-sloping function, but is not confident (i)

that it belongs to a particular parametric family of functions, and (ii) in a unique probability

measure over the space of demand functions.

Moreover, the firm has two sources of information on the unknown industry price. One

1This equal-footing approach addresses a general desideratum proposed in Hansen (2014).
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is unambiguous: it comes from periodically conducting marketing reviews that reveal the

current value of the industry price level. Second, the firm has full access to the aggregate

price, but perceives the link between industry and aggregate prices as ambiguous – while the

firm understands that the two indices are cointegrated in the long run, it is not confident

about their short-run relationship. In particular, over short horizons, observing a change in

the aggregate price level does not convince the firm that the industry price has evolved in

the same way. We model this lack of confidence as a set of potential relationships, resulting

in a set of conditional beliefs about the current industry price.2

The firm knows that its demand is the sum of a price-sensitive component and a

temporary shock, but faces a signal extraction problem because it does not observe each

separately. The firm uses the history of observations of total quantity sold at past prices,

together with its set of priors, to form a set of conditional beliefs about its demand function.

In the face of ambiguity about both the demand function and the relative price, the

firm optimally selects a nominal price as if nature draws the joint prior distribution that

implies the lowest (i.e. worst-case) conditional expected demand. A key result is that this

joint worst-case belief changes endogenously around the level of previously posted prices

adjusted for the revision in the industry price review signals – i.e. the change is around the

unambiguous estimate of the firm’s relative price. The reason is intuitive: a price increase sets

in motion a concern for a “double whammy” – that nature draws (1) the most locally-elastic

demand function allowed by the prior set and (2) the largest decrease in the unobserved

industry price given the relevant set of conditional beliefs. Hence, the firm fears the increase

in its relative price is larger than expected and that demand is especially sensitive to it. The

opposite concern occurs in the case of a decrease in price – the firm fears that demand is

inelastic and the industry price index rose.

This endogenous switch in the worst-case scenario is at the heart of our mechanism,

and results in kinks in expected demand and thus price rigidity.3 An unambiguous change

in the relative price would move the firm away from the safety of previously accumulated

information, and therefore expose it to increased uncertainty about the shape of demand.

When interacted with ambiguity about the industry price, and therefore uncertainty about

the relative price achieved by a specific choice of nominal price, the rigidity becomes nominal.

The key is that the optimal choice robust to the joint uncertainty is to price as-if short-run

2Using the BLS’ most disaggregated 130 CPI indices as well as aggregate CPI, we present evidence that
an econometrician would generally have very little confidence that short-run aggregate inflation is related to
industry-level inflation, even though she can be confident that the two are cointegrated in the long-run.

3Such endogeneity is the defining feature of the Ellsberg experiment: when the agent evaluates a bet
on either a black or a white ball from the ambiguous urn, he does so as if the probability of drawing that
ball is less than 0.5 in either case. This behavior is inconsistent with any single probability measure on the
associated state space, but can be explained by the multiple-priors model.
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industry inflation is not forecastable, and thus keep nominal prices rigid to take advantage of

the perceived kinks in demand. Intuitively, a directly observed change in the industry price

index would lead to an immediate adjustment in the nominal price, as such an observation

has an unambiguous effect on the relative price. In contrast, the effect of aggregate inflation

on the underlying industry price level is ambiguous: if the firm assumes a positive link and

responds by increasing its nominal price, this would be precisely the wrong action in case

the industry price actually fell, and vice versa if it were to act under the belief that the two

are negatively correlated. These fears make aggregate (or other) indexation sub-optimal.

An unambiguous change in the relative price away from a previously observed value

incurs an endogenous, time-varying cost in terms of expected profits, whose properties we

derive analytically. First, this cost is locally first-order, so that a firm has an incentive to

keep its estimated relative price constant even when hit with marginal-cost shocks. Second,

conditional on changing, the firm is inclined to repeat a price it has already posted in the

past – such previously estimated relative prices are associated with kinks in expected profits,

and become ‘reference’ price points. Third, the cost is perceived to be larger for prices that

have been observed more often in the past, as higher signal-to-noise ratios deepen the kinks.

Fourth, given the resulting time-variation in the first-order cost, the firm may find it optimal

to implement small or large price changes. Fifth, the perceived cost of changing a posted

price increases with the value of the demand shock at that price. Sixth, even though firms

are forward-looking, the optimal experimentation strategy may in fact reinforce stickiness.

Since the worst-case belief is that aggregate inflation is uninformative about industry

prices, it follows that between review periods, the firm faces a first-order cost of nominal

adjustment with similar properties. This results in what looks like “price plans”, where the

price series generally tends to bounce around a few reference prices. When a new review

signal arrives, the whole price plan shifts accordingly.

In addition to the analytical results, we evaluate the model quantitatively. We solve

numerically for its stochastic steady state and estimate the parameters by targeting standard

micro-level pricing moments from the IRI Marketing Dataset. We then show that our

learning mechanism is quantitatively consistent with a rich set of additional moments that

are typically considered challenging to match jointly : (i) memory in prices; (ii) co-existence

of small and large price changes; (iii) pricing behavior over the product’s life-cycle; (iv)

downward-sloping hazard function of price changes; as well as a novel implication that (v) a

price with a positive demand innovation is less likely to change.4

4Given the importance of controlling for unobserved heterogeneity in recovering the hazard function facts,
and the novelty of the role of demand signals for pricing decisions, our detailed documentations of these two
particular conditional moments is of independent empirical interest for the pricing literature.
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We conclude the paper by showing that our quantitative model predicts large and

persistent real effects from an aggregate nominal spending shock. These effects occur even

though the model is consistent with the observed high frequency and large median absolute

size of price changes, typically taken to imply low monetary non-neutrality in standard

state-dependent models due to the selection effect analyzed in Golosov and Lucas (2007).

This happens because the mechanism has additional important and empirically relevant

implications for price dynamics. In particular, as in the data, our model interprets a large

part of the observed price flexibility as a combination of (i) both small and large price changes;

(ii) outcomes purely related to learning, such as life-cycle experimentation or realized demand

signals, that are essentially decoupled from the standard targeting of real markups; and (iii)

movements to and from between previously established kinks. These forces weaken the

selection effect and allow our model to generate a high degree of money non-neutrality.

In Section 2 we review the literature. Section 3 derives analytical results in a real model,

while Section 4 expands them to a nominal model. Section 5 quantifies the mechanism.

2 Relation to literature

By connecting learning under ambiguity to the problem of a firm setting prices, this paper

relates to multiple literature strands. First is the extensive body of work on theories of real

and nominal price rigidity. With respect to the former, it relates to work on kinked demand

curves, including Stigler (1947), Stiglitz (1979), Ball and Romer (1990), Kimball (1995) and

Dupraz (2016). The key novelty is that while in these models the kinks are a feature of the

true demand curve, in our setup they arise only as a result of uncertainty about the shape of

the demand, and an econometrician would not be expected to find evidence of actual kinks.

On nominal rigidity, we connect to a large and growing literature that emphasizes the role

of imperfect information in generating prices that adjust slowly to aggregate nominal shocks,

including early work such as Mankiw and Reis (2002), Sims (2003), Woodford (2003), Reis

(2006) and Mackowiak and Wiederholt (2009). However, in order to generate prices that

are constant over multiple periods, as observed in the data, these models typically require

additional frictions, for example in the form of a menu cost or costly memory of calendar

time.5 In contrast, we show that imperfect information alone can lead to inaction.

We follow the spirit of a broad literature that documents stylized facts aimed at disci-

5Bonomo and Carvalho (2004) and Knotek and Edward (2010) are early examples of merging information
frictions with a physical cost or an exogenous probability of price adjustment. Recent models of rational
inattention, such as Woodford (2009) or Stevens (2014), assume that memory, including the passage of time,
is subject to costly processing. Therefore, in periods when the firm is inattentive, it does not index to
aggregate inflation as this requires paying costly attention to calendar time.
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plining theoretical models of rigidity, such as Bils and Klenow (2004), Klenow and Kryvtsov

(2008), Nakamura and Steinsson (2008), Klenow and Malin (2010) and Campbell and Eden

(2014), among many. By testing our mechanism against a set of overidentifying restrictions,

we connect to several subsets of the literature on theoretical and quantitative pricing models.

First, in our model, prices tend to return to previously observed values, giving rise to

discreteness and memory in prices. As such, we relate to the work of Eichenbaum et al.

(2011), Kehoe and Midrigan (2015) and Stevens (2014) who find ubiquitous evidence of

‘reference prices’ in micro price data and highlight the importance of this empirical regularity

for macroeconomic fluctuations. In particular, they show that the degree of aggregate

nominal rigidity is not only a function of the unconditional price flexibility, but also of

how likely prices tend to return to previous ‘reference’ values, conditional on a change.

The prediction that prices have memory constitutes a challenge to standard models

because typical state-dependent pricing theories rely on a fixed cost of change that does

not depend on the specific location of the price. To address this challenge, Eichenbaum

et al. (2011) assume a price-specific cost of changing it through an exogenously defined price

plan, while Kehoe and Midrigan (2015) build a model with heterogeneous menu costs where

it is more expensive to change the regular price than the sale price. A recent complementary

approach based on rational inattention emphasizes the discrete nature of optimal signal

structures, as in Matějka (2015) and Stevens (2014).6 In these ‘reference price’ models,

the resulting heterogeneous costs of changing associated with different prices lead not only

to memory, but also to some other features shared with our framework. In particular,

Matějka (2015) analyzes the theoretical prediction of a decreasing hazard function, while in

the quantitative model of Stevens (2014) both small and large price changes may arise.

While there are many parallels to be drawn between our model and those of the ‘reference

price’ family, our mechanism is distinct in two fundamental ways. The first difference lies

in its novel micro-foundation, that is consistent with the four stylized facts discussed above

(i.e. rigidity, memory, decreasing hazard and small price changes) even in the absence of

discrete signal structures or technological differences in menu costs across prices. Second,

our mechanism suggests further testable implications that speak to the role of information

accumulation about demand. One prediction is that the frequency and size of price changes

fall with the product’s age, consistent with the evidence produced by Argente and Yeh

(2017). Another is that the firm is more reluctant to change a price that experienced a

positive demand shock. We find empirical support for this implication in the micro data,

6Given restrictions on the objective function and the prior uncertainty, that work studies how the firm may
choose a discrete price distribution to economize on the costs of acquiring information about the unobserved
states. We show that even when the firm conditions on signals drawn from standard continuous distributions,
a lack of confidence in the firm’s model of the world, and hence priors, leads to inaction and discreteness.
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providing in the process a novel moment restriction to the literature on price setting.

The second set of related models is on pricing under demand uncertainty. The standard

approach has been to analyze learning about a parametric demand curve under expected

utility.7 Unlike our environment, learning about parametric functions, such as linear demand

curves, does not result in kinks in conditional beliefs, unless the assumed function is itself non-

differentiable. Indeed, the objective in introducing learning in existing quantitative models

has not been to generate nominal price stickiness or memory, but instead to match some

additional facts, such as the hazard function shape (Bachmann and Moscarini (2011), Baley

and Blanco (2018)) or the pricing behavior over the life-cycle (Argente and Yeh (2017)).

A third subset of related quantitative work extends the standard menu cost model to

match some of the stylized facts that our model speaks to. Often, an extension is offered to

address a few specific restrictions from the data. For example, Midrigan (2011) documents

the co-existence of small and large price changes and explains it with economies of scope in

a multi-product menu cost model. Alvarez et al. (2011) studies how a menu cost model with

observation costs can generate both that empirical fact and a potentially decreasing hazard.

Our work differs in the theoretical mechanism behind price stickiness in general, but is also

simultaneously consistent with other important empirical observations, such as memory.

At its core, our theoretical framework fits within a large literature motivated by the classic

work of Ellsberg (1961), and as such we build on previous contributions that include Gilboa

and Schmeidler (1989), Dow and Werlang (1992), and Epstein and Schneider (2003). In this

context, we are related to work in the industrial organization literature on ambiguity over

demand. For example, Bergemann and Schlag (2011) studies a static pricing problem where

the firm has multiple priors over the distribution of buyers’ valuations, while Handel and

Misra (2015) extends that analysis to a two-period model with maxmin regret that allows for

various forms of consumer heterogeneity. In related work, Handel et al. (2013) uses a static

model to inject ambiguity into a standard panel data discrete choice framework in order

to incorporate partially identified preferences. Compared to this literature, we simplify the

consumer’s side of the market and instead develop a tractable learning environment to study

how the accumulation of information about a non-parametric set of demand curves leads to

pricing behavior that is empirically supported and of interest for macroeconomic models.

3 Analytical Model

In this section, we lay out and analyze the key mechanism in a smaller, analytically-tractable

real model. We present the full nominal model in Section 4.

7An early contribution is Rothschild (1974), who frames the learning process as a two-arm bandit problem.
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We study a monopolistic firm that each period sells a single good, facing a log demand:

q(pt) = x(pt) + zt, (1)

where pt is the log of the real posted price. Demand consists of two components, the price-

sensitive and price-insensitive parts, denoted by x(pt) and zt, respectively. The firm’s time-t

realized profit is:

υt = (ept − ect) eq(pt), (2)

where we have assumed a linear cost function, with ct denoting the time-t log marginal cost.

The decomposition of demand in (1) serves two purposes. First, it generates a motive

for signal extraction. In this respect we assume that the firm only observes total quantity

sold, q(pt), but not the underlying x(pt) and zt separately. Furthermore, we model zt as iid,

and thus past demand realizations q(pt) are noisy signals about the unknown function x(p).

The second purpose is to differentiate between risk and ambiguity. We model zt as purely

risky, and give the firm full confidence that it is iid and drawn from the known Gaussian

distribution zt ∼ N(0, σ2
z). On the other hand, the x(pt) component is ambiguous, meaning

that the firm is not fully confident in the distribution from which it has been drawn and does

not have a unique prior over it. Instead, the firm entertains a whole set of possible priors,

Υ0, which is not restricted to a given parametric family.

Each individual prior in the set Υ0 is a Gaussian Process distribution, GP (m(p), K(p, pt)),

with mean function m(p) and covariance function K(p, pt). A Gaussian Process distribution

is the generalization of the Gaussian distribution to infinite-sized collections of real-valued

random variables, and is a convenient choice of a prior for doing Bayesian inference on

function spaces. It has the defining feature that any finite sub-collection of random variables

has a multivariate Gaussian distribution.8 Thus, for any finite vector of prices p =

[p1, ..., pN ]′, the corresponding vector of demands x(p) is distributed as

x(p) ∼ N



m(p1)

...

m(pN)

 ,

K(p1, p1) . . . K(p1, pN)

...
. . .

...

K(pN , p1) . . . K(pN , pN)


 ,

where the mean function m(·) controls the average slope of the underlying functions x(p), and

the covariance function K(·, ·) controls their smoothness. In other words, this distribution

is a cloud of functions dispersed around m(p), according to the covariance function K(·, ·).
8Intuitively, we can think of a function as an infinite collection of variables, and the GP distribution defines

a measure over such infinite-length random vectors by defining the distribution of any finite sub-collection.
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We model ambiguity by assuming that all priors have the same covariance function, but

different mean functions. We assume that the covariance function is of the widely-used

squared exponential class (see Rasmussen and Williams (2006)):

K(p, pt) = Cov(x(p), x(pt)) = σ2
xe
−ψ(p−pt)2 . (3)

The function has two parameters: σ2
x measures the prior variance about demand at any

given price, and ψ > 0 controls the extent to which information about demand at some

price p is informative about its value at a different price pt. The larger is ψ, the faster

the correlation between quantity demanded at different prices declines with the distance

between those prices.9 This covariance function parsimoniously, yet flexibly, captures the

natural prior view that there is an imperfect and declining correlation between demand at

difference prices. Additionally, this prior puts zero probability on demand functions that are

not infinitely differentiable. Thus, we have selected a very conservative class of priors for our

purposes, as in this case any non-differentiability in the firm’s perceptions about demand

would be fully attributable to our ambiguity-aversion mechanism.

The multiple priors differ in their mean function m(p). We assume that the set of

entertained m(p) is centered around the true DGP of a standard log-linear demand function,

xDGP (p) = −bp, (4)

so that the entertained m(p) lie within the interval xDGP (p)± γ,

m(p) ∈ [−γ − bp, γ − bp]. (5)

The parameter γ > 0 gives the size of perceived ambiguity and captures the firm’s lack of

confidence in assigning probability assessments over the mean demand at a given price p.

In addition, to preclude any ex-ante built-in non-differentiability, we also bound the local

variability of admissible m(p). The firm only entertains differentiable m(p) functions with a

derivative that lies within an interval centered around the derivative of the true DGP,

m′(p) ∈ [−b− δ,−b+ δ], (6)

with δ > 0 controlling the size of that interval. Throughout we assume that δ ≤ b, hence

the firm is at least confident that demand is weakly downward-sloping.

9A Gaussian Process with a higher ψ has a higher rate of change (i.e. larger derivative) and its value is
more likely to experience a bigger change for the same change in p. For example, it can be shown that the
mean number of zero-crossings over a unit interval is given by ψ√

2π
.
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3

Figure 1: Illustrative set of priors for mean demand

Figure 1 provides an illustration of the set of admissible m(p). The overall interpretation

is that the firm has some a-priori information on the true demand, but is not confident in

a single probabilistic weighting of the potential demand schedules (i.e. a single prior), nor

is it able to restrict attention to a particular parametric family of demand functions. Still,

while it faces uncertainty, its beliefs are centered around the truth.

The parametrization of ambiguity characterizing the sets (5) and (6) serves two purposes.

First, it avoids overparameterizing Υ0, so that we represent the ambiguity over a non-

parametric family of functions using only two parameters, γ and δ. Second, it contains

the minimal ingredients necessary for our main results. In particular, note that when γ = 0,

the set Υ0 collapses to a singleton, hence the firm has a unique prior and there is no ambiguity

at all. On the other hand, with δ = 0 the firm faces no ambiguity about the shape of the

demand function, which is the key ingredient of our theory. The bounds on the derivative

of m(p) are not necessary, but they will help us show that the mechanism does not rely on

discontinuities, but only on non-differentiability in the perceived expected demand, which

we will see is the natural result of an endogenous switch in the worst-case demand elasticity.

3.1 Information and Preferences

The timing of choices and revelation of information is as follows: We assume that ct is known

at the end of t − 1 and that it is a continuous random variable following a Markov process

with a conditional density function g(ct|ct−1). The firm enters period t with information on

the history of all previously-sold quantities qt−1 = [q(p1), ..., q(pt−1)]′ and the corresponding

prices at which those were observed pt−1 = [p1, ..., pt−1]′, where a superscript denotes history

up to that time. It updates its beliefs about demand conditional on εt−1 = {qt−1, pt−1},
observes ct and posts a price pt that maximizes its objective, specified further below. At

the end of period t, the idiosyncratic demand shock zt is realized and the firm updates its

9



information set with the observed quantity sold q(pt) and cost ct+1.

The firm uses the available data εt−1 to update the set of initial priors Υ0. Learning

occurs through standard Bayesian updating, but measure-by-measure to account for the

initial ambiguity. Thus, for each prior in the initial set Υ0, the firm uses the new information

and Bayes’ Rule to obtain a posterior distribution. Given that there is a set of priors, the

Bayesian update results in a set of posteriors. In particular, we denote by xt−1(p;m(p)) the

posterior Gaussian distribution of x(p), conditional on εt−1 and a particular prior m(p). We

denote the conditional mean and variance of demand as:

x̂t−1(pt;m(p)) := E
[
x(p)|εt−1;m(p)

]
(7)

σ̂2
t−1(p) := V ar

[
x(p)|εt−1

]
. (8)

While the conditional expectation depends on the prior m(p), the variance is the same for

all priors, as they differ only in their means. The evolution of beliefs is analytically tractable

and follows the standard Bayesian-updating formulas derived in Online Appendix A.1.

The monopolistic firm is owned by an agent that is ambiguity-averse and has recursive

multiple priors utility10, so that she values the firm’s profits as:

V
(
εt−1, ct

)
= max

pt
min

m(p)∈Υ0

E

[
υ(εt, ct) + βV

(
εt, ct+1

) ∣∣∣∣εt−1, ct

]
, (9)

where υ(εt, ct) is the per-period profit defined in (2), a function of the beginning-of-period t

price and end-of-period realized demand q(pt). The firm forms its conditional beliefs as well

as evaluates the expected profits and continuation utility using the available information εt−1

and the prior m∗(p; pt) that achieves the worst-case belief, given a pricing choice pt.

Importantly, the minimization is conditional on an entertained choice of pt. We conjecture

and verify that the minimizing prior m∗(p; pt) is such that, for a given price pt and history

εt−1, it implies the lowest admissible expected demand x̂t−1(pt;m
∗(p; pt)) at that price pt.

Thus, for any price pt, the firm worries that the underlying demand is low, given the data it

has seen, and hence maximizes over pt under the worst-case belief x̂t−1(pt;m
∗(p; pt)).

3.2 As-if kinks in demand from learning

To gain intuition on how updating and the basic mechanism work, we start by considering

the simplest case, where the information set εt−1 contains only observations of demand at

a single price point p0 that has been seen N0 times, and has an associated average demand

10Epstein and Schneider (2003) develop axiomatic foundations for the recursive multiple priors utility.
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realization q0 = x(p0) + 1
N0

∑N0

i=1 zi. For a given prior m(p), the joint distribution of the

signal and the unknown demand function x(.) at any price p is:[
x(p)

q0

]
∼ N

([
m(p)

m(p0)

]
,

[
σ2
x σ2

xe
−ψ(p−p0)2

σ2
xe
−ψ(p−p0)2 σ2

x + σ2
z/N0

])
.

The distribution of x(p) conditional on q0 is also Gaussian, and its expectation and variance

are given by the familiar prior plus signal-updating formulas:

E(x(p)|q0,m(p)) = m(p) + αt−1(p) [q0 −m(p0)] (10)

V ar(x(p)|q0) = σ2
x(1− αt−1(p)), (11)

where the signal-to-noise ratio used to update beliefs of demand at a given price p is

αt−1(p) =
σ2
x

σ2
x + σ2

z/N0

e−ψ(p−p0)2 . (12)

Thus, the Bayesian update of the conditional expectation in equation (10) combines the prior

for demand at that price, m(p), with the information revealed by the difference between the

observed signal q0, and the prior expected demand at that price, m(p0). Also note that with

ψ > 0, the signal-to-noise ratio αt−1(p) and the resulting reduction in uncertainty is largest

right at the observed price p0: as the correlation of quantity demanded at different prices

decreases with the distance between them, the information obtained from the signal at p0 is

most useful in updating the firm’s beliefs about demand around that price.

Worst-case prior

The firm minimizes the conditional expectation of demand over the priors m(p) ∈ Υ0.

The resulting worst-case priorm∗(p; pt) depends on the price pt at which the firm computes its

expected demand. From equation (10) we see that the conditional expectation of demand at

pt = p0 is decreasing in m(p0), since αt−1(p) ∈ (0, 1). Hence, the worst-case belief corresponds

to the prior with the lowest value of m(p0), so m∗(p0; pt) = −γ − bp0 by equation (5).

When updating demand at a price pt 6= p0, the firm minimizes over m(pt) and m(p0), as

both appear in the updating equation. It is useful to re-write equation (10) as

E(x(pt)|q0,m(p)) = (1− αt−1(pt))m(pt)︸ ︷︷ ︸
Prior demand at pt

+ αt−1(pt)(q0 +m(pt)−m(p0))︸ ︷︷ ︸
Signal at p0 + ∆ in Demand between pt and p0

,

since it makes clear that uncertainty over the prior m(p) affects both the overall level of

expected demand (through the first term), and how the firm interprets its signal q0 (second
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term). The uncertainty about the shape of the demand function implies a lack of confidence

in how information about demand at p0 translates into information about the quantity

demanded at pt. Consequently, the firm minimizes over both the prior level of demand at pt

and its likely change between pt and p0, the position of the observed signal.

First, minimizing over the prior at the entertained price, m(pt), is straightforward – the

worst-case is that it lies at the lower bound of the set Υ0, so that

m∗(pt; pt) = −γ − bpt. (13)

Second, and crucially, the firm is worried that demand falls as it changes its price from p0

to pt, so that the signal q0 is bad news for demand at pt. Since the worst-case m(pt) is at the

lower bound of Υ0, the worst-case for m(p0) is to be as high as possible given the constraints

on the level and derivatives of the admissible m(p). Given those constraints, the implied fall

in demand does not have to be drastic; what is required is a switch in the worst-cast demand

shape, depending on whether the firm considers a price increase or a decrease.

Hence, conditional on a price increase, pt > p0, the worst-case is that demand is elastic,

since this generates a larger drop in demand. The drop from m(p0) to m(pt) is disciplined by

the constraints on Υ0, which restrict both the derivative (thus the highest local elasticity)

of m(p) at any price p, and the maximal level of m(p0). Therefore, the worst-case prior is

m∗(p0; pt) = min [γ − bp0,−γ − bpt + (b+ δ)(pt − p0)] . (14)

On the other hand, when the firm considers a price cut, pt < p0, it worries that demand is

inelastic and that the price decrease generates as small of an increase in demand as possible.

The worst-case is again restricted by the constraints on Υ0, but in this case, the relevant

derivative restriction is the lower bound in (6), as the firm worries demand is flat to the left

of p0. Hence, the worst-case m∗(p0; pt) is now

m∗(p0; pt) = min [γ − bp0,−γ − bpt + (b− δ)(pt − p0)] . (15)

Worst-case conditional expectation and kinks

Having characterized the worst-case prior, we can now plug it in equation (10) to obtain

the worst-case conditional expectation at any entertained price pt. Since the worst-case

prior changes depending on whether pt is above or below p0, the conditional expectation

12



x̂∗t−1(pt) ≡ E(x(pt)|q0,m
∗(p; pt)) equals the following piecewise function

x̂∗t−1(pt) =

{
−γ − bpt + αt−1(pt)[q0 − (−γ − bp0)]− αt−1(pt)δ|pt − p0| if pt ∈ [p, p̄]

−γ − bpt + αt−1(pt) [q0 − (γ − bp0)] if pt /∈ [p, p̄]
(16)

where p = p0 − 2γ
δ

and p̄ = p0 + 2γ
δ

. For prices pt ∈ [p, p̄], the worst-case prior demand at p0

is obtained by moving away from m∗(pt; pt) = −γ− bpt along the steepest (flattest) possible

demand curve, when pt is higher (lower) than p0. At the threshold prices p, p̄, moving along

these worst-case elasticities intersects the upper bound of the set Υ0, so the solution to the

worst-case prior in equations (14) and (15) for prices pt outside [p, p̄] is given by γ − bp0.

Thus, the multiple priors endogenously generate a kink in expected demand at p0, as

captured by the absolute value term |pt − p0| in (16). In essence, the overall worst-case

expectation is the result of splicing two different priors together – an elastic one to the right

of p0, and an inelastic one to its left – which creates a kink, even though all individual priors

are differentiable. Panel (a) of Figure 2 illustrates the resulting, kinked worst-case expected

demand, conditional on seeing a signal equal to the true DGP, at a single price point p0.

Updating beliefs when εt−1 contains observations at more than one price point is an

extension of the discussion so far. Online Appendix A.1 describes the general formulas and

an analytical approach to finding the worst-case prior. The intuition is the same as for the

single observed price case: the worst-case is to set the prior at the entertained pt equal to

the lowest bound of Υ0, and the level of prior demand at the other prices in εt−1 as high as

admissible, given the restrictions on Υ0. The main difference is that because the endogenous

switch in the worst-case priors now applies more generally at all previously-observed prices,

the firm perceives kinks at all of them. For example, Panel (b) of Figure 2 shows the

worst-case expectation when the firm has observed demand signals at two distinct prices.

The firm chooses its price to maximize expected profits under the worst-case beliefs. The

problem is dynamic, as posting a price today affects not only current profits, but also next

period’s information set. Solving the full infinite horizon optimization problem is difficult

numerically, because the size of the state space is unbounded, and explodes as the number

of posted prices increases over time. For this reason, we split our analysis in three parts: In

Section 3.3, we analyze a myopic problem that ignores the continuation value of information,

but provides a tight analytical characterization of the first-order forces at play. Then in

Section 3.4 we provide analytical results for a tractable approximation to the forward-looking

problem, before numerically analyzing it extensively in Section 5.
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(b) Two previously-observed prices

Figure 2: Worst-case Expected Demand

3.3 An as-if cost of changing the price

A myopic firm chooses pt to maximize time-t’s worst-case expected profit

max
pt

min
m(p)∈Υ0

E

[
υ(εt, ct)

∣∣∣∣εt−1, ct

]
= max

pt
(ept − ect) ex̂t−1(pt;m∗(p;pt))+.5σ̂2

t−1(pt)+.5σ2
z︸ ︷︷ ︸

=ν∗(εt−1,ct,pt)

. (17)

The optimal behavior crucially hinges on the history of observations εt−1, which is an

endogenous object, as it depends on the past actions of the firm. In order to describe

analytically the key mechanics of the model, in this section we take εt−1 as given. We leave

to Section 5 the analysis of the model when εt−1 is endogenous.

We start with the simplest case as of the previous section: εt−1 contains only a single

price p0, observed for N0 number of times with an average quantity sold of q0. As showed

before, the key implication is a kink in the as-if expected demand. We now study the firm’s

incentives to keep its price rigid when faced with variations in costs. To do so, we perform

a log-linear approximation of expected profits around p0, evaluated at any given ct, and

describe a local first-order loss when moving away from p0, as formalized in Proposition 1.

Proposition 1. Define δ∗ = δ sgn (pt − p0). For a given realization of ct, the difference in

worst-case expected profits at pt and p0, up to a first-order approximation around p0, is

ln υ∗(εt−1, ct, pt)− ln υ∗0(εt−1, ct, p0) ≈
[

ep0

ep0 − ect
− (b+ αt−1(p0)δ∗)

]
(pt − p0) .

Proof. The sign switch in δ∗ follows from the worst-case expected demand in (16). Also, the
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marginal effect ∂αt−1(pt)
∂pt

= 0 at pt = p0. For details, see Online Appendix A.2.

Proposition 1 shows the locally-evaluated tradeoff of moving the price away from p0. The

first term in the squared brackets is the direct effect of a change in price, holding demand

constant. The second term is the demand effect of a price change, by moving along the

perceived demand elasticity. The fact that the elasticity switches by αt−1(p0)δ∗ around p0,

as indicated by the signum function, is the key mechanism in our model. We now describe

the main results that stem from this property.

Result #1: There exists an inaction region around previously-posted prices

Given the first-order loss arising from the switch in elasticity, an implication of Proposi-

tion 1, is that, as derived explicitly in Corollary 1, there is a positive interval of ct realizations,

around c0 = p0− ln
(

b
b−1

)
, for which the firm prefers to keep its current price fixed at pt = p0.

Corollary 1. Under the first-order approximation in Proposition 1, p0 is a local maximizer

for any ct in the interval (ct−1,0, ct−1,0), where ct−1,0 = c0 + ln
[

b
b−1

b−αt−1(p0)δ−1
b−αt−1(p0)δ

]
and ct−1,0 =

c0 + ln
[

b
b−1

b+αt−1(p0)δ−1
b+αt−1(p0)δ

]
.

Proof. For any ct ∈ (ct−1,0, ct−1,0) we have ep0
ep0−ect ∈ (b− αt−1(p0)δ, b+ αt−1(p0)δ) . Thus, the

derivative in Proposition 1 is negative for pt > p0, when δ∗ = δ, and positive for pt < p0, when

δ∗ = −δ. This gives the necessary and sufficient conditions for p0 to be a local maximizer.

To gain intuition, consider an increase in cost to some ct > c0. This lowers the markup

when keeping the price constant at p0, which gives the firm a reason to consider an increase

in the price. However, when the firm entertains a higher price pt > p0, it perceives a discrete

increase in demand elasticity to b + αt−1(p0)δ, which lowers the target markup. As long as

costs do not increase too much, so that ct ≤ c̄t−1,0, the implied markup at p0 is in fact still

higher than the new target markup. Hence, the firm finds it optimal to keep its price fixed

and let the markup decline. If the cost eventually moves higher than that threshold, the fall

in markup is too big, and this induces the firm to change its price.

The logic is similar for a decrease in cost from c0. As the firm entertains lowering its

price from p0, it perceives the discretely-flatter elasticity b− αt−1(p0)δ. Facing this decrease

in elasticity, the firm finds it optimal to keep its price fixed and let the markup increase

until ct falls to the lower bound ct−1,0. Only for a cost realization below this threshold is the

implied increase in markup big enough to incentivize the firm to lower its price and move

along the flatter demand curve it perceives below p0.

Proposition 1 implies that rigidity arises if and only if there is ambiguity about the

demand shape. If that is not the case, i.e. δ = 0, the interval of costs for which p0 is the
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local optimizer is the singleton set {c̄0}. Since ct is a continuous random variable, in this

case the probability that p0 is a local maximizer becomes zero. Instead, with ambiguity, this

probability is strictly positive, and can be computed using the density function g(ct|ct−1) as:

Pr [p∗t = p0|p0, N0, q0] =

ct−1,0∫
ct−1,0

g(ct|ct−1)dct > 0, (18)

where p∗t is the optimal choice for pt under the approximation in Proposition 1.

Unlike a fixed cost of changing the price, the as-if first-order perceived cost that emerges

in our model is history-dependent. There are two fundamental dimensions along which past

information matters for this perception, which we now turn our attention to.

Result #2: The inaction region widens as a price gets observed more often

The first dimension is that the perceived demand loss of changing the price increases with

the signal-to-noise ratio αt−1(p0) (see Proposition 1). Intuitively, increasing the precision of

information available at p0 makes the firm more confident in its estimate of x(p0), effectively

amplifying the perceived increase in uncertainty when moving away from p0. This translates

in a larger difference between the worst-case demand elasticities on either side of p0, which

in turn raises the first-order loss of changing prices. Since αt−1(p0) increases with N0, by

equation (12), it follows that, holding everything else constant, having seen the price p0 more

often in the past leads to a larger inaction region, as summarized in Corollary 2.

Corollary 2. The interval, defined in Corollary 1, of cost shock realizations ct for which p0

is a local maximizer widens with N0 :

∂ct−1,0

∂N0

< 0;
∂ct−1,0

∂N0

> 0

Proof. Follows from Corollary 1 and from ∂αt−1(pt)
∂N0

> 0 in equation (12).

A larger inaction region makes the probability of p0 being a local maximizer, conditional

on a history in which p0 has been posted more often in the past N ′0 > N0, strictly larger:

Pr [p∗t = p0|{p0, N
′
0, q0}] > Pr [p∗t = p0|{p0, N0, q0}] .

Result #3: Prices display memory

Another crucial property of history dependence is that when past information εt−1

contains more than one unique price point, the general updating formulas discussed in

16



Section 3.2 imply that there exist kinks in the as-if expected demand around each previously

observed price point pi ∈ εt−1. These kinks lead to qualitatively similar first-order losses in

the expected profit around all such prices. This result is formalized in Proposition 2.

Proposition 2. Define δ∗i = δ sgn (pt − pi) for all pi ∈ εt−1. For a given realization of ct,

up to a first-order approximation around each such pi ∈ εt−1:

ln υ∗(εt−1, ct, pt)− ln υ∗0(εt−1, ct, pi) ≈
[

epi

epi − ect
− (b+ αt−1(pi)δ

∗)

]
(pt − pi) .

Proof. The switch in δ∗ follows from the construction of the worst-case expected demand

detailed in Online Appendix A.1.

Letting ci = pi − ln
(

b
b−1

)
for all pi ∈ εt−1, a direct counterpart to Corollary 1 follows.

Corollary 3. Under the first-order approximation in Proposition 2, for each pi ∈ εt−1 there

exists the interval (ct−1,i, ct−1,i), where ct−1,i = ci + ln
[

b
b−1

b−αt−1(pi)δ−1
b−αt−1(pi)δ

]
and ct−1,i = ci +

ln
[

b
b−1

b+αt−1(pi)δ−1
b+αt−1(pi)δ

]
, such that for all ct ∈ (ct−1,i, ct−1,i) pi is a local maximizer.

Proof. For any ct in this interval, the first order derivative of the change in profits in

Proposition 2 is negative for pt > pi and positive for pt < pi, for all pi ∈ εt−1.

Propositions 1 and 2 imply that the firm is not only reluctant to change its current price,

but is in general inclined to repeat a price it has already seen in the recent past, a form of

‘memory’ in prices. These previously observed past prices, at which there are kinks in the

profit function, become ‘reference’ prices.

So far the analysis has been local, focusing on the first-order effect of price deviations

around any of the pi ∈ εt−1 and showing that the corner solution of keeping the price fixed is

a local optimum. However, to find the global optimum of equation (17), we need to compare

the worst-case expected profits at all such local optima against the interior optimum price.

This comparison involves a novel force arising from the intrinsic non-linearity of the

expected demand in equation (16). In our setting, the signal-to-noise ratio αt−1(p) declines

with the distance between p and pi. Intuitively, because the levels of demand at different

prices are imperfectly correlated, the information about demand at a price p is most useful

for updating beliefs at prices in its neighborhood. This naturally arises from the fact

that demand does not come from a particular parametric family – when learning non-

parametrically, information is inherently local, as it does not update beliefs about parameters

that control the underlying function globally. The non-linearity of α is of second-order locally,

but matters when thinking about the global maximum.
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Let us consider the second derivative of the worst-case expected demand, derived in

Proposition 3, where we define by ẑ0 = q0 − (−γ − bp0) the perceived innovation at p0.

Proposition 3. The second partial derivative of x̂t−1(pt;m
∗(p; pt)) with respect to pt is

2ψαt−1(pt) [−ẑ0 + 2δ(pt − p0)] sgn(pt − p0).

Proof. Follows from the price derivatives in equations (12) and (16).

There are two distinct economic forces at play, corresponding to the two terms in the

squared brackets above. The first force, the δ term, simply reflects that as more distant

prices are entertained, the concern that demand has changed for the worse from p0 to pt

becomes less important, as the signal at p0 loses informational content at far away prices.

Result #4: Good demand signals make a price change less likely

For the second effect, we formalize it in its own separate Corollary 4, as it forms the basis

for a specific model implication that we test in the data.

Corollary 4. The derivative of the worst-case expected demand to the right (left) of p0

becomes more negative (positive) as the perceived innovation ẑ0 increases.

Proposition 3 shows that the effects of the endogenous switch in the worst-case demand

elasticity are amplified by the local effect of the perceived innovation ẑ0. Intuitively, positive

demand news ẑ0 > 0 shift up the conditional belief about demand at all prices, but the

update has a weight, αt−1(pt), that decreases with |pt − p0| . Thus, following positive news,

beliefs about demand in the neighborhood of p0 shift up the most and expected demand

becomes effectively steeper (flatter) for prices to the right (left) of p0.

3.4 Incorporating forward-looking behavior

Next, we consider how forward-looking behavior affects optimal pricing, and stickiness in

particular. The current price choice and demand realization become state variables in next

period’s problem, as they get incorporated in the future information set εt. This gives rise

to a new incentive: posting a price for the sake of obtaining new information.11

To characterize this exploration motive, we need to analyze the continuation value in (9).

This presents a technical problem – the relevant state εt−1 is the whole history of prices and

demand realizations, which is infinitely long, thus making the general form of the dynamic

11Conceptually, our environment is related to the multi-arm bandit literature. Here the payoffs of the
arms (i.e. price choices) are correlated since ψ > 0, and evaluated under multiple priors. See Bergemann
and Valimaki (2008) for a survey of related applications of bandit problems studied under expected utility.
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problem intractable. To get around this, we assume the firm understands that its action

today (time t) will change its information set in the future, but thinks that none of its future

pricing decisions (t + k) will affect its information set again – that is, εt+k = εt ,∀k ≥ 1.

We denote the resulting continuation value of the recursive problem from t + 1 onward,

when the firm does not face any more changes in the endogenous state εt, but still faces the

fluctuations in exogenous cost process ct+k, as Ṽ (.).12 Plugging it into (9), the firm solves

V (εt−1, ct) = max
pt

min
m(p)∈Υ0

E

[
ν(εt, ct) + β

∫
Ṽ (εt, ct+1)g(ct+1|ct)dct+1

∣∣∣∣εt−1

]
(19)

This approximation makes the dynamic problem tractable, while featuring two important

conceptual advantages. First, the firm is forward-looking into the discounted infinite future

in terms of the cost process ct+k, hence does not only consider the likely cost next period as

it would in a simple two-period model. Second, the approximation leaves the history εt−1

completely unrestricted. Thus, it avoids any ad-hoc assumptions limiting the firms’ memory,

which could lead to built-in conclusions on how firms learn and the resulting pricing decisions.

Instead, leaving it unrestricted allows us to evaluate in Section 5 the long-run properties of

the model at its stochastic steady state, where that history is fully endogenous.

In this section, however, we will focus on analyzing the qualitative features of the

economic forces shaping the exploration motive and treat the history εt−1 as given.

Option value

The experimentation motive is underpinned by an important option-value effect that is

central to our analysis. To see its origin, notice that the worst-case expected demand at time

t+ k is conditional on εt, hence depends on the choice of pt and realization of qt:

x̂t(pt+k;m
∗(p; pt+k)) = x̂t−1(pt+k;m

∗(p; pt+k)) + αt(pt+k; pt)(qt − x̂t−1(pt;m
∗(p; pt+k))︸ ︷︷ ︸

=ẑt

)

where ẑt is the perceived innovation in the signal qt. Conditional on time t− 1 information,

it is a mean-zero Gaussian variable with variance σ̂2
t−1(pt) + σ2

z .

The stochasticity of ẑt underpins the option value of exploration. It makes the future

expected demand (which incorporates the new signal qt) uncertain at time t, with variance

Var(x̂t(pt+k;m
∗(p; pt+k))|εt−1, pt) = αt(pt+k; pt)

2(σ̂2
t−1(pt) + σ2

z).

12Ṽ (.) is the solution to the following recursive problem, with details presented in Online Appendix A.3

Ṽ (εt, ct+1) = max
pt+1

min
m(p)∈Υ0

E

[
ν(εt+1, ct+1) + β

∫
Ṽ (εt, ct+2)g(ct+2|ct+1)dct+2

∣∣∣∣εt]
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The firm likes this variance to be high because if the new information about demand at

pt is bad (i.e. ẑt < 0), it has the option of selecting a future price pt+k away from pt, lowering

αt(pt+k; pt) and minimizing the effect of the bad news on future profits – this option lowers

the downside of new information. On the one hand, this gives the firm an incentive to choose

a pt in an unexplored part of the demand curve where uncertainty is the highest (so that the

variance of ẑt is high). On the other hand, the weight αt(pt+k; pt) on the signal qt decreases

in the distance between pt and the future choice pt+k. Intuitively, the firm values relevant

information, i.e. signals that would affect beliefs about demand near prices that are likely to

be posted in the future. The balance of these two forces, together with the location of prior

information determines whether the exploration incentives lead to selection of a brand new

price pt or revisiting one of the previously observed prices.

Analytical results

To gain insight, we assume i) ψ = ∞, so beliefs about demand at different prices are

uncorrelated, i.e. Cov(x(p), x(p′)) = 0 if p 6= p′; and ii) perfect foresight about future costs,

i.e. ct+k = c for all k ≥ 1, where we keep the cost value c > 0 arbitrary. Under these

assumptions, we characterize the expected continuation value E

[
Ṽ ({εt−1, pt, qt}, c)

∣∣∣∣εt−1, pt

]
as a function of pt (the expectation is over the realizations of the new signal qt, whose

uncertainty underpins the key option value effect), and show two analytical results that

illustrate how the exploration incentive could be maximized either away from or exactly at

one of the previously observed prices. Thus forward-looking behavior could both counter-act

or reinforce the stickiness emerging from the static maximization discussed earlier. Which

effect dominates and when is a quantitative question we take up in Section 5.

The key to whether the optimal exploration strategy is to stay put or try something new is

the composition of the history of observations εt−1. To illustrate, we consider two cases that

would help us understand the numerical results in Section 5 where εt−1 is endogenous. First,

let εt−1 = ε0 contain demand realizations at only one distinct price level p0. To make the

point stark, we assume that the observed signal q0 is good enough (i.e. q0 > −γ− bp0 + σ2
x

2
),

so that when c = c0 = p0 − ln( b
b−1

), p0 is not just locally optimal (recall Corollary 1), but

that it is the global static maximizer conditional on ε0. In Proposition 4 we characterize the

current price pt that maximizes the expected continuation value when c = c0.

Proposition 4. The expected continuation value E

[
Ṽ ({ε0, pt, qt}, c0)

∣∣∣∣ε0, pt

]
achieves its

maximum at

p∗t = arg min
p

(p− p0)2 s.t. p 6= p0.

Proof. We provide intuition in the text below, see Online Appendix A.3 for details.
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Intuitively, choosing p∗t today ensures that the new signal qt will be informative about a

price as close as possible to the ex-ante expected optimal p0 – this makes the new information

highly relevant. As a result, if the realization ẑt at the new signal is above a threshold z̄t(p
∗
t ),

characterized in the proof, then the firm will stick with this price in the future, set pt+k = p∗t ,

and take advantage of the unexpectedly high demand at that price while remaining near its

ex-ante optimal markup level. On the other hand, if the signal realization happens to be bad,

the firm can safely switch back to the ex-ante optimal p0, where the belief about demand is

not affected by ẑt, and still offers lower uncertainty and the preferred markup.

The reason for not picking pt = p0 is that a bad realization of the new signal erodes the

ex-ante best pricing option, p0, while the firm does not have a good fall-back alternative, as

it has no observations of demand at other prices. Because of this, it is best to experiment

with a brand new price, though the desire for relevant information keeps the firm near p0.

Proposition 4 describes a case where the value of new information is maximized away

from p0. However, next we show that this is not a general result, but depends on whether

the firm has seen one or more distinct prices in the past. In particular, let εt−1 = ε1 contain

demand realizations at two distinct prior prices, p0 and p1. Also, to simplify the exposition

we assume that the information received at these prices is of the same quality – demand at

each price has been observed the same number of times (N1 = N0), and the observed signals,

q0 and q1, imply equally-good news, i.e. the same perceived innovation: ẑ0 = ẑ1 = ẑ.

Proposition 5 shows that when the previously observed demand at p0 and p1 has been

good enough, the continuation value is maximized at p0 for a range of cost shocks around

c̄0. Thus, forward-looking behavior reinforces the static stickiness result (Corollary 1).

Proposition 5. There is a non-singleton interval of costs (c, c̄) around c̄0, and a threshold

χ > 0, such that if ẑ > χ, then for any c ∈ (c, c̄):

p0 = arg max
pt

E

[
Ṽ ({ε1, pt, qt}, c)

∣∣∣∣ε1

]
.

Moreover, the threshold χ is decreasing in |p1 − p0|.

Proof. We provide intuition in the text below, see Online Appendix A.3 for details.

The reason for this result is two-fold. First, information about demand at p0 is the

most relevant since that is the price expected to be optimal in the future (with perfect

foresight on future costs, the firm essentially faces a static maximization problem, hence

Corollary 1 applies). Second, even if the firm receives a bad new signal qt at p0, it has a

good fall-back option as it has also accumulated information (and thus reduced uncertainty)

at p1. Thus, the firm can set pt = p0 and further reduce uncertainty about demand at the
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most likely future price, safe with the knowledge that it has a good alternative in case the

new information is bad. The value of the fall-back option is important – in particular, the

perceived innovation in the average past demand realization at p1 must exceed a threshold

χ (which we characterize in the proof). This threshold is lower when p0 and p1 are closer

to each other, because then their implied markups are more similar, making the two price

choices closer substitutes, and thus p1 a more attractive fall-back option.

Our analytical results show that forward-looking behavior can both counteract or rein-

force the previous stickiness result derived from static maximization. The resulting overall

effect depends crucially on the structure of the prior history εt−1, which highlights the

importance of taking into account the endogeneity of that history. To that end, Section

5 numerically analyzes the stochastic steady state of a general version of our forward-looking

model, with ψ < ∞ and stochastic cost shocks. We find that experimentation is not only

consistent with significant price stickiness, but also helps generate an empirically relevant

(i) life-cycle profile of pricing behavior and (ii) size distribution of price changes.

4 Quantitative Model and Nominal Rigidity

In this section we embed our mechanism in a typical macroeconomic model with monopolistic

competition in which a typical firm needs to make a joint assessment about (i) its demand

curve as a function of the relevant relative price and (ii) the relative price itself. We first

show analytically that this two-dimensional uncertainty gives rise to as-if kinks in demand

in terms of nominal prices. Second, we quantify the ability of our mechanism to match

micro-level moments and generate monetary non-neutrality.

4.1 Economic Framework

There are two layers of demand. First, a competitive final-good producer buys from a

continuum of industries indexed by j and sells to a representative household. Second, each

industry itself is composed of a competitive final-good producer that aggregates over a

continuum of intermediate monopolistic firms indexed by i. The motivation for having a

layer of demand between the intermediate good firms and aggregate demand, is to capture

the broad observation that the relevant competitors’ price index for a specific firm is typically

not the economy-wide aggregate price index.

The representative household consumes and works according to

max
ct+k,Li,t+k

∞∑
k=0

Et

(
βt+k

[
ct+k −

∫
Li,t+kdi

])
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where ct denotes log consumption of the aggregate good, subject to the budget constraint∫
epj,t+cj,tdj + Etqt+1dt+1 = dt + ept+wt

∫
Li,tdi+

∫
υi,tdi,

where qt+1 is the stochastic discount factor, dt are state contingent claims on the aggregate

shocks, υi,t is the profit from the monopolistic intermediaries and wt is the log real wage.

The consumption basket and the associated aggregate price index are:

ct =
b

b− 1
log

(∫
ecj,t

b−1
b dj

)
, pt =

1

1− b
log

(∫
epj,t(1−b)dj

)
, (20)

where pj,t represent the log price indices of the distinct industries.

Each industry j has a representative final-good firm that produces by aggregating over

the continuum of intermediate goods i with the technology

ecj,t = f−1
j

(∫
fj(e

ci,j,t)gj(e
zi,t)di

)
, (21)

where zi,t is an idiosyncratic demand shock for good i, distributed as N(0, σ2
z). Each industry

j has potentially different production functions fj and gj, and price index pj,t such that

epj,t+cj,t =
∫
epi,t+ci,j,tdi, where ci,j,t is the log amount of good i in the final product of

industry j. Solving the cost-minimization problem of the final good firm in industry j yields

ci,j,t = log

[
f ′−1
j

(
epi,t−pj,t

f ′j (ecj,t)

gj(ezi,t)

)]
≡ hj

(
epi,t−pj,t , cj,t, zi,t

)
. (22)

This is a generalization of the typical CES production structure, with the familiar result

that the demand of industry j for a given intermediate good i is a function of the relative log

price pi,t − pj,t, overall industry output cj,t, and demand shocks zi,t. We denote the effective

demand function hj and note that it is a transformation of the functions fj and gj. Lastly,

we assume that each intermediate good producer i sells to only one industry j.13

An intermediate-good firm produces variety i using the production function yi,t =

ωi,t + at + logLi,t, where ωi,t and at are an idiosyncratic and aggregate productivity shock,

respectively, and Li,t is hours hired by firm i. The processes for these shocks are known:

ωi,t = ρωωi,t−1 + εωi,t; at = ρaat−1 + εat

where εωi,t is iid N(0, σ2
ω) and εat is iid N(0, σ2

a). Therefore, using the household’s labor supply

13As a result, firms are indexed by both i and j. However, for ease of notation we drop the j subscript
with the understanding that each firm i is unique to a given industry.
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decision wt = ct, and the market clearing condition ct = yt, the real flow profit of firm i is

υi,t =
(
epi,t−pt − eyt−ωi,t

)
eyi,t . (23)

Finally, log nominal aggregate spending st = pt + ct follows a random walk with drift,

st = µ+ st−1 + εst , where εst is iid N(0, σ2
s).

4.2 Information structure

We assume that the information available to intermediate-good firms is imperfect in three

ways. First, firms do not know the functional forms of the industry-level production

technologies fj and gj, and hence the effective demand function hj that they face. Second,

firms have imperfect information on the prices and quantities of their direct competitors –

we assume that they observe the relevant industry-level prices and quantities pj,t and cj,t

only infrequently, and do not directly observe the individual prices of all intermediate goods.

They do, however, observe the full history of their own prices and quantities, pi,t and yi,t,

as well as the aggregate output and price level, yt and pt. Lastly, firms do not observe the

idiosyncratic demand shocks zi,t, but perfectly observe the productivity shocks ωi,t and at.

The firm does not know the specific functional form of its demand function and estimates

it using its observables. Here, for tractability, we assume the firm understands that the

aggregate industry demand cj,t and the demand shocks zi,t enter multiplicatively in the

unknown function hj in equation (22).14 Moreover, firms know the structure of the aggregate

consumption basket, and can use that to substitute out industry output via cj,t = yt−b(pj,t−
pt), and thus obtain their own, individual good demand schedules

yi,t = hj(pi,t − pj,t) + yt − b(pj,t − pt) + zi,t. (24)

4.2.1 Ambiguity about competition

Ambiguity about the demand function hj is modeled as in equations (5) and (6). There is a

set of multiple priors, each of which is a GP distribution with mean function m(ri) so that

m(ri) ∈ [−γ − bri, γ − bri]; m′(ri) ∈ [−b− δ,−b+ δ], (25)

where we define the relative price ri,t ≡ pi,t−pj,t. This price is not only the relevant argument

of the unknown demand function hj, but is also not perfectly observed itself – the firm

14Our learning framework extends to the case of learning about demand as a function of multiple variables
without conceptual differences. We make this assumption to transparently focus on the main mechanism.
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observes and sets its nominal price pi,t, but is uncertain about the industry price level pj,t.

The firm has two sources of information on the unknown industry price pj,t. First, it

conducts infrequent marketing reviews that reveal the current period industry price pj,t. We

model the frequency of reviews by assuming that they occur with some exogenous probability

λT . We are implicitly assuming that there are some technological constraints on the ability

to perform frequent reviews (e.g. the necessary data may not be observed every period), or

simply that reviews are costly and so the firm does not want to perform them frequently.15

Second, between reviews, the firm estimates pj,t based on the observed aggregate informa-

tion. Since its direct competitors form a small portion of the overall economy, the firm knows

that pj,t 6= pt, where pt is the aggregate, fully-observable price. Still, the firm understands

that industry-level and aggregate prices are cointegrated, and hence there is information in

pt about pj,t. However, since the firm does not know the exact industrial structure (i.e. hj),

it does not know the functional form of that cointegration relationship – different industry

production functions imply different structural relationships between pt about pj,t. Lastly,

due to the ambiguity about hj, the firm is similarly not confident in any single cointegration

relationship and entertains a non-singleton set of potential relationships φ(.) such that

pj,t = p̃j,t + φ(pt − p̃j,t), (26)

where p̃j,t is the most recent review signal as of time t. Thus, the uncertainty about φ

translates into uncertainty about how to best use pt to forecast pj,t.

Ambiguity about the cointegrating function is modeled with the same tools as the

uncertainty about the demand function hj. We assume that the priors on φ are GP

distributions, with mean functions that lie in a set Ωφ around the true DGP φ(pt − p̃j,t) =

pt− p̃j,t. For tractability, we focus on the limiting case in which the variance function of the

GP distributions over φ goes to zero almost everywhere. Given the resulting Dirac priors,

we can simplify notation and specify the set of priors directly as a set of φ’s.

To model the idea that firms are uncertain about the short-run relationship between

industry and aggregate prices, even though the two are cointegrated, we specify that for

small |pt − p̃j,t|, i.e. small inflationary pressure, the function φ lies in the interval

φ(pt − p̃j,t) ∈ [−γp, γp], for |pt − p̃j,t| ≤ Γ. (27)

And since firms correctly realize that aggregate and industry inflation are cointegrated

15As long as reviews do not happen every period, using deterministic or state-dependent review lags would
not change our analysis significantly. The modeling advantage over deterministic timing is computational:
we find that stochastic review times achieve faster convergence towards the stationary distribution. The
advantage over state-dependent times is tractability, as it avoids modeling a cost-benefit analysis of reviews.
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in the long-run, we make the set of potential φ grow with pt − pj,t at higher inflation levels

φ(pt− p̃j,t) ∈ [−γp+pt− p̃j,t−Γ sgn(pt− p̃j,t), γp+pt− p̃j,t−Γ sgn(pt− p̃j,t)], for |pt− p̃j,t| ≥ Γ.

Note that all admissible priors imply that the price ratio pj,t − pt is stationary with

probability one, but allow for potentially complex, non-linear relationships locally. In Online

Appendix B.1, we document that such uncertainty about the local relationship between

aggregate and industry inflation is well supported by the data. Thus, our model essentially

assumes that the firms have no special advantage over real-world econometricians and cannot

ex-ante eliminate the uncertainty inherent to the short-run inflation relationship.

To make a transparent comparison between our model and the usual rational expectations

benchmark we assume a simple true DGP where each industry j has the same CES functions

fj and gj in (21): fj(e
cj,t) = (ecj,t)

b−1
b and gj(e

zi,t) = ezi,t/b. These aggregators lead to a

standard demand schedule cj,i,t = zi,t + cj,t − b (pi,t − pj,t) . Substituting out the aggregate

demand for industry output cj,t, it follows that a RE firm has full knowledge that its demand

is yi,t = yt + b(pt − pi,t) + zi,t. The resulting optimal RE nominal price takes the familiar

form pREi,t = log b
b−1

+ pt−ωi,t, where the aggregate price (up to a constant) is pREt = st− at.

4.3 Optimization problem

The firm enters period t with knowledge of the history of all its previous quantities sold,

yt−1
i = [yi,1, ..., yi,t−1]′ , the corresponding nominal prices at which those quantities were

observed pt−1
i = [pi,1, ...pi,t−1]′, and its history of industry price review signals, p̃t−1

j =

[p̃j,1, ...p̃j,t−1]′. In addition, the firm sees the history of aggregate prices pt−1 = [p1, ...pt]
′ and

output yt−1 = [y1, ..., yt]
′ . We denote the collection of all this information by εt−1. At the

start of t, the idiosyncratic productivity ωi,t and aggregates (pt, yt) are observed. Finally, the

firm’s current review signal p̃j,t equals pj,t if a new review is conducted, and p̃j,t−1 otherwise.

Therefore, given a history of observables εt−1 and current states st = {ωi,t, pt, yt, p̃j,t}, the

firm’s problem is to optimize over its action, pi,t, taking into account the ambiguity about

both the demand curve and the effective relative price:

V
(
εt−1, st

)
= max

pi,t
min

m(r),φ(pt−p̃j,t)
E
[
υ(εt, st) + βV

(
εt, st+1

)]
, (28)

where υ(εt, st) is real profit (epi,t−pt − eyt−ωi,t) eyi,t and log-demand is given by

yi,t = hj [pi,t − p̃j,t − φ(pt − p̃j,t)]− bφ(pt − p̃j,t) + yt − b(p̃j,t − pt) + zi,t, (29)
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where we have substituted out pj,t in the demand equation (24) by using its law of motion

in (26). At the end of period t, the idiosyncratic demand shock zi,t is realized and the firm

updates its information set with the observed realized quantity sold yi,t.

The aggregate price level pt affects real profits through three channels. The first is the

standard effect of deflating nominal profits by pt. The second is as a demand shifter bpt

in (29): everything else constant, a larger pt increases demand for the industry j’s final

good, which in turn translates into a higher demand for firm i. The third channel is that pt

affects beliefs about pj,t through its impact on φ(pt− p̃j,t), but this relationship is uncertain.

Finally, the firm needs to conjecture a law of motion of pt to forecast future profits. Here we

assume that there is a measure zero of ambiguity-averse firms, while the rest of the economy

is populated by rational-expectations firms, hence the equilibrium pt is given by pREt .16

4.3.1 Joint worst-case beliefs

To illustrate the key insights, for the rest of this section we focus on a myopic firm born

at time t = 0 that is in its second period of life (i.e. t = 1). Hence, its information set

contains yi,0, the quantity sold at just one price point, pi,0.17 In addition, the firm observes

the history of aggregates, {y0, y1, p0, p1}, and signals on the industry price level, {p̃j,0, p̃j,1}.
The firm forms beliefs about profits at any price pi,1 under the worst-case scenario of low

demand. Abstracting from the known component y1 − b(p̃j,1 − p1), expected demand is

m (ri,1)− bφ(p1 − p̃j,1) + α {yi,0 − [m (ri,0)− bφ(p0 − p̃j,0)]} , (30)

where α = σ2
x

σ2
x+σ2

z
.18 Thus, expected demand depends on the joint worst-case priors for both

the demand curve, m(.), and the cointegration relationship φ(.).

It is convenient to rewrite equation (30) so as to separate the effects of uncertainty on

the level of demand at the relative price ri,1 and the change in demand between ri,1 and ri,0:

(1−α)

m(ri,1)− bφ(p1 − p̃j,1)︸ ︷︷ ︸
Prior of demand at ri,1

+α

yi,0 −
 m (ri,0)−m(ri,1)︸ ︷︷ ︸

Prior on change in demand

−b (φ(p1 − p̃j,1)− φ(p0 − p̃j,0))︸ ︷︷ ︸
Perceived change in industry price




The analysis of the worst-case beliefs follows the same basic logic as in the real model.

16This benchmark provides an upper bound for the degree of price neutrality compared to the case of a
measure one of ambiguity-averse firms, as it ignores strategic complementaries in price setting.

17In Online Appendix B.2 we show how the conceptual analysis is extended to multiple prices, and Section
5 shows numerical results for the general case.

18To simplify notation and the analysis, for the rest of this section we suppress the local information effects
by working with ψ = 0. We relax this assumption in Section 5.
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However, while in the real model the relative price was uniquely determined by the firm’s

action, here this is not the case. The relative price ri,t = pi,t − p̃j,t − φ(pt − p̃j,t) has two

known components, pi,t and p̃j,t, but also an ambiguous one, in the form of φ (pt − p̃j,t) . The

firm takes an action robust to both sources of ambiguity, hence it minimizes (30) jointly over

the prior about the demand shape, m(.), and the prior of the cointegration relationship φ(.)

– which affects perceptions about both pj,0 (the industry price at the time the signal yi,0 was

realized) and pj,1 (the industry price that determines the current effective relative price).

The worst-case scenario for m(ri,1) is straightforward – it is equal to the lower bound

of (25). Notice that substituting in this worst-case form of m(ri,1) cancels out bφ(p1 − p̃j,1)

from the first term. Thus, what is left to do is to pick the joint worst-case for the change of

demand between ri,0 and ri,1 and the perceived change in the industry price, as implied by the

observation of the aggregate price and the cointegration relationship φ. Once the relevant

constraints on the admissible functions m and φ are taken into account, determining the

joint worst-case reduces to solving the following minimization problem:

min
δ′∈[−δ,δ]

min
φ(pt−p̃j,t)∈[−γp,γp]

−δ′ {(pi,1 − p̃j,1)− (pi,0 − p̃j,0)− [φ(p1 − p̃j,1)− φ(p0 − p̃j,0)]} . (31)

The joint worst-case prior beliefs depend on whether the firm considers raising pi,1− p̃j,1
relative to pi,0 − p̃j,0. Therefore, for notational purposes, we define r̃i,t ≡ pi,t − p̃j,t and note

that this object is the unambiguous estimate of the relative price at time t. This estimate is

based on two observables: the firm’s own nominal price and the unambiguous signal of the

unknown industry price index pj,t. When the firm entertains increasing its estimated relative

price r̃i,t, it sets in motion a concern that its effective demand is sensitive to this action.

This concern manifests itself in a joint worst-case belief that both (i) the unknown demand

curve m(.) is steep, i.e. δ∗ = δ, and that (ii) there was a decline in the unknown price index

of its competition. Hence, if r̃i,1 ≥ r̃i,0, then the minimizing priors are

δ∗ = δ; φ∗(p1 − p̃j,1) = −γp; φ∗(p0 − p̃j,0) = γp. (32)

In contrast, when the firm entertains decreasing its estimated relative price r̃i,1, it worries

about the opposite situation, where (i) its unknown demand curve is flat (i.e. δ∗ = −δ),
and (ii) it is facing an increase in the unknown price index of the competition, so that if

r̃i,1 ≤ r̃i,0
19 the minimizing priors instead switch to

δ∗ = −δ; φ(p1 − p̃j,1) = γp; φ(p0 − p̃j,0) = −γp. (33)

19When pi,1 − p̃j,1 = pi,0 − p̃j,0 the objective in equation (31) equals −2δγp, arising from (32) or (33).
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Note that the worst-case belief about the change in the industry price index pj,t is not

always that the firm’s competition has lowered prices. The reason is that the industry

price affects the firm’s demand in two ways: i) it determines the relevant relative price

(the argument of the ambiguous component of demand hj(.)), and ii) acts as a demand

shifter since lower overall prices in industry j boosts demand for all firms inside the industry

(through the term −bpj,t). These two effects go in opposite directions, and which one

dominates depends on the perceived elasticity of the intra-industry demand function hj(.). As

a result, the worst-case belief about φ(.) depends on the firm’s action r̃i,1, and endogenously

changes depending on whether the firm is contemplating a price increase or a price decrease.

The key implication from equations (32) and (33) is that the joint worst-case beliefs

generate a kink in expected profits at the previous unambiguous relative price estimate r̃i,0,

an important result that we state formally in Proposition 6 below.

Proposition 6. Let δ∗ = δ sgn (r̃i,1 − r̃i,0). The joint worst-case beliefs over the demand

curve and the cointegration relationship induce a worst-case conditional demand schedule in

the space of the unambiguous estimate of relative prices, r̃i,t, given by

(−γ − br̃i,1) + α [yi,0 − (−γ − br̃i,0)− δ∗ (r̃i,1 − r̃i,0)− 2δγp] (34)

Proof. Follows from substituting the worst-case beliefs, given by m∗(ri,1) = −γ − br̃i,1 and

the joint solution in equations (32) and (33), in the expected demand of equation (30).

There are two important results derived by this Proposition. First, it shows that the

relevant argument of the worst-case expected demand is the unambiguous relative price

r̃i,t. Intuitively, the firm is facing an identification problem, as it is uncertain about both

the argument and the shape of the demand function. Proposition 6 proves that the robust

solution is to estimate the demand curve in terms of the best available, unambiguous estimate

of the relative price r̃i,t. Second, due to the uncertainty about the local shape of the demand

function, there is a kink at the previously observed r̃i,0.

4.4 Learning and nominal rigidity

The kink in the worst-case expected demand (eq. (34)) leads to a first-order loss of having

an estimated relative price r̃i,1 different from r̃i,0, and hence a first-order cost of posting a

nominal price pi,1 away from p̃j,1 + r̃i,0. Between reviews of the industry price level, when

p̃j,1 = p̃j,0, this leads to a rigid optimal nominal price p∗i,1. In particular, it may stay fixed at

its previous value pi,0 even as the aggregate price changes. We center our discussion around

this result, but note that similar rigidity is obtained for changes in the other state variables.
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4.4.1 Nominal prices respond infrequently to the aggregate price level

Due to the kink in (34), there is an interval of the aggregate price level p1 for which it is

optimal for the firm to keep the estimated relative price fixed at r̃i,0. In order to implement

r̃i,1 = r̃i,0, however, the firm needs to keep its nominal price pi,1 equal to p̃j,1 + r̃i,0. In

contrast, under full information there is only one such value of the aggregate price level:

p1 = p̃j,1 + r̃i,0 + ωi,1 − ln
(

b
b−1

)
.

Proposition 7. The nominal price pi,1 = p̃j,1 + r̃i,0 is a local maximizer of the worst-case

expected profits for any aggregate price p1 ∈ (p1 + ln
(

b
b−1

b−αδ−1
b−αδ

)
, p1 + ln

(
b
b−1

b+αδ−1
b+αδ

)
).

Proof. Let υ∗(ε0, s1, pi,1) denote the expected profit, conditional on history ε0, state s1 =

{ωi,1, p1, y1, p̃j,1} , and some pi,1, with its associated worst-case demand in eq. (34). Then for

any p1 in the interval above, the derivative of ln
υ∗(ε0,s1,pi,1)

ln υ∗(ε0,s1,p̃j,1+r̃i,0)
is negative to the right of

p̃j,1 + r̃i,0 and positive to its left, due to the kink in (34) and change in sign of r̃i,1− r̃i,0.

The intuition is akin to the one we have seen before. A value of the aggregate price

p1 > p1 lowers the real markup, which leads the firm to ponder raising its nominal price.

However, such a raise would increase the estimated relative price r̃i,1 above the previously

observed r̃i,0, which creates a perceived increase of the demand elasticity (to b + αδ) and

thus a lower target markup. As long as the aggregate price does not increase too much, so

that p1 ≤ p1, the implied real markup at pi,1 = p̃j,1 + r̃i,0 (the nominal price which keeps

r̃i,1 = r̃i,0) is still higher than the markup the firm believes it could achieve if it were to

increase its estimated relative price. Hence, it decides to keep pi,1 = p̃j,1 + r̃i,0 and let the

markup decline. If the aggregate price moves above p1 however, then the fall in markup

is too large to bear and the firm adjusts its price accordingly. A similar logic of inaction

applies for a decrease in the aggregate price level.

Consider now what happens in periods when a new review of the industry price does not

occur, so that p̃j,1 = p̃j,0. In that case, Proposition 7 immediately implies that if the firm

finds it optimal to take advantage of the kink in estimated relative prices, it will do so by

keeping its nominal price fixed, since p̃j,1 + r̃i,0 = pi,0. Thus, when the current and previous

review signals are the same, the desire to maintain an estimated relative price equal to r̃i,0 is

achieved by posting the previous nominal price: pi,1 = pi,0. This makes nominal prices rigid.

This result does not hold if a new industry price review occurs and the firm observes the

industry price, i.e. p̃j,1 = pj,1. Then, the perceived kink at r̃i,0 implies that expected demand

has a kink at the nominal price pi,1 = pi,0 − p̃j,0 + pj,1. To take advantage of the kink, the

firm changes its nominal price in response to the information contained in pj,1 − p̃j,0, and

unless pj,1 = p̃j,0, rigidity in the estimated relative price leads to a nominal adjustment.
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4.4.2 The suboptimality of nominal price indexation

According to Proposition 7, a policy that sees the firm index its nominal price to the observed

aggregate price level has to be suboptimal. Let us formalize this specific result.

Consider the firm setting its current nominal price pindexi,1 equal to the targeted relative

price r̃i,0 plus the aggregate price p1. It follows that if p̃j,1 6= p1, indexation leads to a different

pricing action than the optimal nominal price of r̃i,0 + p̃j,1. Hence, there must be a first-order

loss in expected profits under the indexation rule, whenever p1 6= p̃j,1.

Proposition 8. Let δindex = δ sgn (p1 − p̃j,1). Up to a first-order approximation around

p1 = p̃j,1, the difference ln υ∗(ε0, s1, r̃i,0 + p1)− ln υ∗(ε0, s1, r̃i,0 + p̃j,1) equals[
er̃i,0

er̃i,0 − ey1−ωi,1
− b− αδindex

]
(p1 − p̃j,1) < 0.

Proof. See Online Appendix B.3.

The reason is simple: when p1 6= p̃j,1, indexation leads to a change in the estimated

relative price r̃i,1 away from r̃i,0. This moves the firm away from the perceived kink in

demand, creating a loss in expected profits. Since this loss is first-order, it dominates the

standard markup and aggregate-demand effects from a change in the aggregate price, leading

to a drop in expected profits. This makes indexation strictly suboptimal.

Finally, let us consider a counter-factual economy where the firm is endowed with full

confidence that the true DGP is the unique relationship φ(pt − p̃j,t) = pt − p̃j,t, yet remains

uncertain about the shape of its demand curve h. While the perceived kinks in expected

profits in the space of the estimated relative prices remains, the firm is now confident that

pj,t = pt. In this case, the perceived kink at r̃i,0 implies a kink at the nominal price pi,1 =

pi,0 + p1 − p0. As a result, indexation is now optimal. Hence, while ambiguity about the

shape of demand generates real rigidity, it is its interaction with uncertainty about the link

between aggregate and industry prices that turns it into a nominal rigidity.20

4.4.3 Stickiness and memory in nominal prices

The previous insights carry through once we move beyond the example of a firm in its

second period of life. With an unrestricted history of observations, past nominal prices and

industry-price reviews
{
pt−1
i , p̃t−1

j

}
continue not to matter separately; the sufficient statistic

is the history of estimated relative prices r̃t−1
i . Together with the quantities realized at those

relative prices, it forms the information set used to update beliefs about demand.

20Propositions B.1 and B.2 in Online Appendix B.3 provide the analysis of this counterfactual economy,
as a counterpart to Propositions 7 and 8 for the benchmark economy.
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Proposition 6 extends in a straightforward fashion: given past history r̃t−1
i , worst-case

beliefs feature kinks at all previously observed r̃i ∈ r̃t−1
i . When a review does not occur this

period so that p̃j,t = p̃j,t−1, the kinks in expected demand occur at the same set of nominal

prices as last period: pi,t = r̃m + p̃j,t−1, for any r̃m in the set {r̃1, ..., r̃n} . Thus, between

industry price reviews, nominal prices display both rigidity and memory. In this general

environment, stickiness in nominal prices manifests itself as “price plans”, where the price

series tends to bounce around a few points that look like “reference prices”. When a new

review signal arrives, the firm shifts the whole price plan accordingly.

5 Quantitative evaluation

Next, we evaluate quantitatively the empirical relevance of the model described in the

previous section by testing its implications against a rich set of conditional and unconditional

moments. This requires solving numerically the general decision problem of the ambiguity-

averse firms given in equation (28). As discussed earlier, the dimensionality of the space

grows with the length of the history εt−1, and to handle this problem we use the same Ṽ

approximation as outlined in Section 3.4. The advantage of this approach is that we can leave

εt−1 completely unrestricted, hence do not need to impose any ad-hoc assumptions limiting

the memory of the firms. This way, we can evaluate the performance of our mechanism in

the long-run, at the stochastic steady state of the model, where the history of observations

εt−1 is both endogenous, reflecting past optimal choices, and long.

5.1 Calibration

The model period is a week. We calibrate β = 0.97(1/52) to match an annual interest

rate of 3%. The mean growth rate of nominal spending µ = 0.00046 is set to match

an annual inflation of 2.4%, and we pick the standard deviation σs = 0.0015 to generate

an annual standard deviation of nominal GDP growth of 1.1%. Following the calibration

in Vavra (2014) we set the persistence and standard deviation of aggregate productivity

ρa = 0.91(1/13) = 0.9928 and σa = 0.0017 to match the quarterly persistence and standard

deviation of average labor productivity, as measured by non-farm business output per hour.

We choose an elasticity of substitution of b = 6, implying a (flexible price) markup of 20%.

We choose the remaining parameters by targeting micro-level pricing moments from the

IRI Marketing Dataset. The dataset consists of scanner data for the 2001 to 2011 period

collected from over 2,000 grocery stores and drugstores in 50 U.S. markets. The products

cover a range of almost thirty categories, mainly food and personal care products. For our
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purposes, we focus on nine markets and six product categories.21 Because our model does

not feature a rationale for sales, all reported moments are based on “regular price” series in

which temporary sales are filtered out.22

Learning parameters

Our mechanism emphasizes non-parametric learning under ambiguity, which creates a

rich learning environment characterized by six parameters {δ, γp, γ, σ2
x, ψ, λT}. With a focus

on limiting the associated degrees of freedom, we set two of the learning parameters to values

corresponding to natural limiting cases, and freely estimate the remaining four parameters.

First, regarding ambiguity over the demand function, we assume that the firm is confident

that the mean demand function cannot be locally upward sloping, hence δ ≤ b. To minimize

degrees of freedom, we fix δ = b. Second, in terms of ambiguity over the unobserved

industry price index, the parameter γp controls the size of the entertained set of cointegration

relationships in equation (27). As detailed in Section 4, a positive γp is the reason why the

joint worst-case beliefs about the demand function and the relative price lead to nominal

rigidity in the short run. However, once the worst-case is determined and the firm engages

in learning through the relative price r̃i, the specific value of γp only enters as a price-

independent demand shifter in equation (34). Its quantitative role is therefore limited and

thus we study the limit of γp → 0.23 This leaves four learning parameters {γ, σ2
x, ψ, λT} that

we estimate by targeting micro-level moments, as detailed below.

Firm exit

The only modeling difference relative to the environment described in Section 4 is our

assumption that with probability λφ, firm i exits and a newly-born firm takes its place

in industry j. New firms have no information on the demand function beyond the time-

zero prior, thus exit resets the information capital of firms.24 This assumption serves two

purposes. First, with an infinitely growing history of signals, conditional beliefs are non-

stationary, making it difficult to evaluate behavior at the stochastic steady state. Second, it

21The markets are Atlanta, Boston, Chicago, Dallas, Houston, Los Angeles, New York City, Philadelphia
and San Francisco. The categories are beer, cold cereal, frozen dinner entrees, frozen pizza, salted snacks
and yogurt. A more complete description of the dataset is available in Bronnenberg et al. (2008).

22We use the methodology of Nakamura and Steinsson (2008) which aims to eliminate V-shaped sales.
Also, as is usual with scanner datasets, we obtain the unit price by dividing weekly revenue by quantity
sold. In order to minimize the probability that we identify spurious price changes due to middle-of-the-
week repricing, the use of coupons, loyalty cards, etc., we take the conservative approach of eliminating any
observations that feature a price with fractional cents.

23Relaxing the two assumptions on γp and δ would only allow the model to fit the data better, at the cost
of leaving less room for additional testable implications.

24As such, we interpret reseting the informational capital as a broad concept, which includes any shock
that makes the firm unsure that past observations are still informative, including major changes in the
competitive landscape, the introduction of rival substitutes or technological change.
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allows us to study pricing behavior over the firm’s life-cycle, which serves as an additional

moment restriction on our learning mechanism. Here, we set the exit probability λφ = 0.0075,

following Argente and Yeh (2017), who provide a detailed analysis of the duration of a UPC-

store pair in the same IRI dataset that we use.

Demand and cost shocks

The firm’s quantity sold is subject to demand shocks, with a standard deviation of σz.

We calibrate this parameter by using empirical evidence on the accuracy of predicting one-

period-ahead quantity. This involves estimating the demand regression:

qijt = β0 + β1qi,j,t−1 + β2pijt + β3p
2
ijt + β4cpit + week′tθ1 + store′jθ2 + item′iθ3 + zijt (35)

where qijt and pijt are quantities and prices in logs for item i in store j at time t; cpit is the

(log) consumer price index for food and beverages; while weekt, storej and itemi are vectors

of week, store and item dummies respectively.25,26 We then compute the empirical standard

deviation of the residuals zijt leading us to set σz = 0.613.27

The firm also faces cost shocks. Since we do not have cost data, we estimate the

persistence and volatility of idiosyncratic productivity (respectively ρw and σw).

Simulated method of moments

We estimate the six remaining parameters, {ρw, σw, σx, ψ, λT , γ}, via simulated method of

moments, by targeting the six pricing moments described in Table 2. For the most part, these

are basic pricing moments widely used in the literature to discipline price-setting models.

Throughout, we define the ‘reference price’ as the modal price within a 13-week window

period, as in Gagnon et al. (2012). The last moment, the mean duration of a pricing regime,

appeals to the fact that in our model, the kinks in expected demand turn basic stickiness

into price plans. In both actual and simulated data, we identify these price plans using the

method in Stevens (2014).28 Table 1 presents all parameters values, while Table 2 shows

the outcomes for moments targeted in th estimation.29 The model matches the targeted

25To remain consistent with all the other moments analyzed, the regression is only run on observations
for which the posted price is the regular price: pijt = pregijt and pijt−1 = pregijt−1.

26Given the high (weekly) frequency of our data and the fact that we do not find evidence of middle-of-
the-week price changes, endogeneity is unlikely to be a significant issue here.

27The regression is run and the volatility measure is computed first for each of the 54 category/market
pairs, before being aggregated using revenue weights.

28The methodology modifies the Kolmogorov-Smirnov test to identify shifts in the distribution of price
changes over time. In order to have enough observations from which to identify regimes when applying to
the data, we ignore quote-lines that have missing price data or less than 104 weekly observations (2 years).
We use Stevens (2014)’ standard critical value of 0.61 throughout our regime identification exercises, for
both actual and simulated data. Also, in both cases, we eliminate regular price changes of less than 1%.

29The estimation is based on a simulated panel of 5000 time periods with 1000 active firms in each period.
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moments very well and, naturally, it does so through a positive ambiguity parameter γ,

which is the necessary source for any price stickiness in the model.30

Table 1: Parameter Values

Calibrated Parameters Estimated Parameters

β µs σs ρa σa σz λφ ρw σw σx ψ λT γ
0.9994 0.00046 0.0015 0.993 0.0017 0.613 0.0075 0.998 0.008 0.691 4.609 0.018 0.614

Table 2: Targeted moments - Data vs model

Data Model
Frequency of regular price changes 0.108 0.105
Median size of absolute regular price changes 0.149 0.154
75th pctile of the distribution of non-zero absolute price changes 0.274 0.277
Fraction of non-zero price changes that are increases 0.537 0.533
Frequency of modal price changes (13-week window) 0.027 0.026
Mean duration of pricing regimes 29.90 30.54

5.2 Testable implications

Next, we analyze the ability of the model to match various features of the data that were not

directly targeted in the estimation, yet speak to the mechanisms at the heart of our model.

We start with moments that are more specific to models of the “reference price” family, such

as the behavior of the reference price, as well as memory and discreteness characteristics.

Then we turn our attention towards empirical features that represent a challenge for many

price-setting mechanisms, such as the coexistence of small and large price changes, as well

as the declining hazard function of price changes. Finally, we conclude with moments that

have been less studied or are novel in the literature, such as the behavior of prices over the

life-cycle of a product, or the relationship between demand realizations and price adjustment.

5.2.1 Reference price moments

Panel A of Table 3 shows that the model matches well the empirical behavior of reference

prices. First, it correctly predicts that the typical modal price is generally also the highest

price in a given 13-week window – the probability of that occurring in the data is 82%

vs. 74% in the model. Second, within each 13-week window, we also compute the average

30Online Appendix C.1 shows that the estimated γ implies an empirically plausible amount of ambiguity,
as it generates dispersion in prior demand forecasts that matches the evidence in Gaur et al. (2007).
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Table 3: Untargeted moments - Data vs model

Data Model
Panel A Prob. modal P is max P 0.819 0.740

Fraction of weeks at modal P (13-week window) 0.828 0.880
Prob. price moves to modal P 0.592 0.669

Panel B Prob. visiting old price (26-week window) 0.48 0.414
uni (26-week window) 0.792 0.822

Panel C Avg hazard slope (LPM) -0.011 -0.015
Panel D Old vs. young prices - Average slope

Spell threshold: Γ = 4 -0.090 -0.212
Γ = 5 -0.104 -0.189
Γ = 6 -0.104 -0.173

fraction of weeks that the regular price spends at the reference (modal) price. The simulated

moment compares favorably to its empirical counterpart: while in the data the regular price

spends 83% of the time at the modal price, in the model this fraction equals 88%.

A worry could be that the above result is simply a mechanical artefact of the high degree

of stickiness of modal prices. To show that this is not the case, we compute the probability

that the change of a non-modal regular price ends at the modal price, and not at some

other regular price. This probability is equal to 59% in the data, compared to 67% in the

simulations. It confirms that the ‘attractiveness’ of the modal or reference price is not simply

a by-product of pervasive price stickiness.

5.2.2 Discreteness and memory

In our model, the first-order perceived cost of moving away from any of the previously-

observed prices implies that prices display memory (see Corollary 3). This prediction is

clearly present in our dataset, even with temporary sales filtered out: Panel B of Table 3

reports the probability that, conditional on a price change, the firm posts a regular price

that it has already visited within the last six months (26 weeks) is 48%, once weighted across

markets and categories. In the model, that same probability is 41%, in line with the data.

Note that a standard menu cost or Calvo model would feature no such price memory and the

probability would be 0%, since the firm has no inherent reason to repost a previous price.

A related empirical observation is that firms tend to cycle through a relatively limited,

discrete set of prices as opposed to posting a lot of new unique prices. For example, in the

IRI dataset, the average number of unique prices observed in a window of 26 weeks is only

2.34. This simple statistic, however, is directly impacted by the degree of price stickiness. To

ease interpretation, we produce another statistic: for each product i (a given UPC) sold in a
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specific store j, we compute the number of unique prices and price changes observed within

the 26-week window centered around week t, and denote them by uijt and cijt respectively.

We then define the ratio uniijt ≡ uijt/(cijt + 1).31

This statistic standardizes the number of unique prices observed by the number we would

expect to see if the firm never revisited old prices, given the probability of price change.

Thus, if all price changes end up at a price that had not been visited before within a specific

window, the ratio uniijt would be equal to 1. This is the value we would expect from a

standard price-setting mechanism. Yet, in the data we see that the average value of this

moment is 0.792 across category/market pairs, as reported in Table 3. Our model does an

excellent job of matching this feature of the data as well, implying a value of 0.822.

5.2.3 Size distribution of price changes

In our model, the perceived cost of changing prices is history-dependent and a function of

the absolute size of the price change (see Proposition 3). For instance, if the firm is sitting

at a price where it has accumulated a series of good demand signals, the adjustment away

from that price is typically gradual, generating small price changes.32 As a result, our model

allows for the co-existence of large and small price changes.

This property is evident from Figure 3, which plots the distribution of the size of price

changes in both the model and the data. Focusing on the left panel, we can see that there is a

substantial amount of both small and large price changes in our model, despite the fact that

there is no parameter heterogeneity and all firms are ex-ante identical. Arguably, introducing

such heterogeneity would allow us to better match the empirical distribution (right panel), by

smoothing out the distribution across the whole support. Still, our framework is intrinsically

compatible with the presence of price changes of various sizes.

5.2.4 Hazard function of price changes

A related characteristic of our setup is that, all else equal, the firm is less willing to move

away from a price that it has stayed at for longer and thus acquired more information about

– this is because the perceived cost in terms of expected profits of changing the last posted

price is increasing in the number of times it has been observed (see Corollary 2). This

naturally gives rise to a declining hazard function of price changes: the probability of a price

change conditional on the price having survived τ periods is decreasing in τ .

31In both the data and the model, we drop from the computation any window that features no price
change. We thank an anonymous referee for suggesting this moment to us.

32More details on this behavior will be provided in Section 5.3.
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Figure 3: Distribution of the absolute size of price changes. Data vs. simulations.

The shape of the hazard function has been heavily discussed in the price-setting literature,

and evidence of a declining hazard has been documented in many micro price datasets.

Nakamura and Steinsson (2008), for example, estimate a downward-sloping hazard using

U.S. CPI data, a characteristic that they consider represents a challenge to many popular

price-setting mechanisms. Some, however, have argued that this empirical finding could be

a by-product of not taking proper care of heterogeneity: as noted by Klenow and Kryvtsov

(2008), “[t]he declining pooled hazards could simply reflect a mix of heterogeneous flat

hazards, that is, survivor bias.” In light of this word of caution, we use two approaches to

confirm that it is indeed a robust feature of our dataset.33

Linear probability model

Our first exercise is to run a linear probability model (LPM) with a rich set of fixed effects

to control for heterogeneity in unconditional price change frequencies that may mechanically

generate downward-sloping hazard functions. The LPM is run separately for each of the

54 category/market pairs, allowing for different slopes of the hazard function. The use of

a linear regression circumvents the incidental parameters problem that arises with the use

of fixed effects in non-linear models, such as a proportional hazard framework or a probit.

While this approach is similar in spirit to the one used by Klenow and Kryvtsov (2008)

on CPI micro price data, we are much more aggressive in controlling for heterogeneity: in

their case, only ten fixed effects are employed, one per decile of the price change frequency

distribution. The much larger number of observations in our dataset allows us to control

for product, store and time fixed effects. Note that in line with the literature, we drop all

left-censored spells from the sample. Importantly, in Online Appendix C.2 we apply our

econometric approach to panels of simulated data and show that it allows us to recover the

33Since we use regular instead of posted prices, it implies that temporary sales are not driving the results.
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true value of the slope of the hazard function, even in the presence of pervasive heterogeneity.

For each category/market, we run a separate regression of the type:

1(pi,j,t 6= pi,j,t−1) = α + βτi,j,t + γi + γj + γt + ui,j,t (36)

where the symbol 1(.) denotes the indicator function.34 Since τi,j,t is the length of the price

spell (i.e. the number of weeks since the price has last been changed), the coefficient β

therefore represents the estimate of the slope of the hazard function. Finally, γi, γj and

γt are product, store and week fixed effects respectively. These shifters control for any

systematic heterogeneity in the degree of stickiness across items, outlets and time which, as

we discussed earlier, would bias downwards the slope of the hazard. We run the regression

on spells shorter than or equal to 26 weeks, where the vast majority of observations lie.

A summary of our results is in Panel C of Table 3. For the data, we obtain a slope

estimate β̂ of -0.011, once averaged across the 54 category/market pairs. The estimated slope

coefficients are negative and statistically significant at the 1% level in all category/market

pairs, whether we use unweighted or weighted observations.35 This value implies that each

additional week that a spell survives lowers the probability of observing a price change

by about 1.1 percentage point.36 This evidence of a downward-sloping hazard function is

consistent with that from Nakamura and Steinsson (2008), albeit we apply a more aggressive

treatment of heterogeneity by allowing product- and even store-level shifters.

To evaluate the model’s ability to match the empirical hazard, we estimate the same

LPM regression on the data simulated by the model. At -0.015, the slope of the simulated

hazard is steeper, yet compares well with its empirical counterpart.

Product/store cells

How confident should we be that the fixed-effects method allows us to circumvent the

survivor bias issue? The Monte Carlo analysis in Online Appendix C.2 confirms that the

fixed-effects approach is able to recover the true slope of the hazard function, even in

the presence of pervasive item- and store-level heterogeneity. Yet, one may be worried

that heterogeneity is also present at the item/store-level, or that our estimates could be

biased through some complex interaction, such as between the heterogeneity in price change

frequencies and nonlinear hazard slopes.

To account for these potential biases, we complete our analysis by applying the approach

34We cluster standard errors at the store level, the cluster which yields the highest standard errors.
35In Figure C.1 of the Online Appendix C.3, we plot the distribution of coefficient estimates β̂ across the

54 category/market pairs.
36If we run regressions with sales-weighted observations, the result is very similar at -0.010 for all price

spells (-0.011 unweighted).
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suggested by Campbell and Eden (2014) to our dataset. Following their nomenclature,

we define a “cell” as a specific product (UPC) sold in a given store that has at least 200

observations.37 Then, for each cell, we compute the probability of observing a price change

for young and old prices, where an old price is one that has survived for τ ≥ Γ periods.

We find overwhelming evidence of declining hazards: we vary Γ between 4 and 6 and

show that the vast majority of product/store pairs have price change frequencies that are

lower for older than for younger prices. As indicated in Panel D of Table 3, the weighted

average of the individual slopes ranges from -0.104 to -0.090. The left column of Figure C.2

in Online Appendix C.3 displays the empirical distributions of the hazard slope.

The differences between the price change frequencies of older and younger prices are

statistically significant, too: the fraction of product/stores for which the slope is negative

and statistically significant ranges from 77.1% to 83.3% across the values of Γ, while the

cells with positive and significant slopes account for only 5.9% to 15.2% of the total.38

In line with our regression-based approach, we find that the model generates hazard

slopes that tend to be steeper but still comparable to their empirical counterparts. From

Panel E of Table 3, we can see that for the middle threshold of Γ = 5, the slope is -0.189 in

the simulated sample versus -0.104 in the data. In addition, Figure C.2 in Online Appendix

C.3 shows that the model is able to generate a similar distribution of slopes to that in the

data, despite the fact that the model does not feature any ex-ante heterogeneity.

5.2.5 Pricing behavior over the product life-cycle

Recent work by Argente and Yeh (2017) documents interesting novel facts about the

evolution of micro-level price dynamics over the life-cycle of the typical product. Using

the same dataset as ours, they find that the frequency and size of price changes of the

typical product both decline significantly as the product ages.

In our model, the price behavior over the life-cycle of the product/firm is shaped by

the history dependence of the optimal pricing decision through the interaction of two forces.

First, at the beginning of its life, the firm does not have much information about the demand

curve of the product it sells and has therefore not yet established any deep perceived kink in

expected demand. Second, the fact that the firm has very little information about demand

increases the relative value of experimentation, as discussed in Section 3.4. Both of these

forces imply that price flexibility decreases with age: newly-born firms tend to change prices

more frequently than firms that have been in existence for a while and have accumulated

37Our conclusions are not affected by the choice of the minimal number of observations. In fact, raising
the minimum number of observations tends to generate stronger quantitative results.

38We use the statistical test detailed under footnote 15 of Campbell and Eden (2014).
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significant information capital at past prices. Similarly, the experimentation motive implies

that the average size of price changes for young firms is larger than that of older firms.

We quantify the life-cycle properties of the frequency and size of price changes in our

model by running the following two regressions on the simulated data:

1(pi,t 6= pi,t−1) = βfreq0 + βfreq1 1(agei,t ≤ 26) + εi,t

|∆pit| = βsize0 + βsize1 1(agei,t ≤ 26) + εi,t,

where the coefficients of interest are βfreq1 and βsize1 , which capture respectively the frequency

and size of price changes in the first 6 months of a firm’s life relative to the next half a year.39

In both cases, we find positive and statistically-significant coefficients: β̂1

freq
= 0.23 and

β̂1

size
= 0.09. In other words, our model predicts that both the frequency and size of price

changes fall as a new product ages, in line with the evidence from Argente and Yeh (2017).

5.2.6 Past demand realizations and price-setting decisions

The focus so far has been on price-related moments, as is common in the literature. Yet,

our model also has stark and unique implications about the relationship between quantities

and prices. In particular, the perceived cost of changing the last posted price increases

with the realized value of the demand shock at that price (see Corollary 4): a firm that

observes a particularly good demand realization is more likely to stay put, while bad demand

realizations raise the likelihood of a price reset. We test this prediction of the model by

producing a novel set of results for both simulated and actual data.

As a first step, we extract demand innovations from the data by using regression (35),

as described earlier. The object of interest is the residual zijt, the unexplained or “surprise”

demand component for item i in store j at time t. We then construct two indices that

capture, in light of our model, how attractive a given price may be from the perspective of

the firm. We define the z-score of price pijt as:

zscoreijt =

∑26
τ=0 [validij,t−τ × zij,t−τ ]∑26

τ=0 validij,t−τ
.

The indicator validij,t−τ = 1 if pijt = pij,t−τ , that is, if the price at time t − τ is the same

as the one we compute the z-score for. Conceptually, the z-score of price pijt corresponds to

39Focusing on first 12 months of life helps isolate the life-cycle effects. The estimates are even more
pronounced if we do not censor on the right. As is typical with any moments on the size of price changes,
the second regression only considers time periods with a non-zero price change.
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the average of the demand innovations at that price.40

The zscoreijt includes information up to time t. It is useful to also define a version that

only incorporates demand innovations up to t− 1 (which is what informs price choice at t):

zscorelagijt =

∑26
τ=1 [validij,t−τ × zij,t−τ ]∑26

τ=1 validij,t−τ
.

Finally, we define wscoreijt, which captures how often a price has been posted in the past:

wscoreijt =
26∑
τ=0

validij,t−τ .

In order to test whether the firm is less (more) likely to move away from a price that

experienced an unexpectedly good (bad) demand realization, we run the following regression:

1(pi,j,t 6= pi,j,t−1) = β0 + β1(zscoreij,t−1 − zscorelagij,t−1) + β2wscoreij,t−1 + fij + εijt. (37)

The LHS equals 1 when the price at t is different than at t−1, and 0 otherwise. The regressor

of interest, zscoreij,t−1 − zscorelagij,t−1, corresponds to the change in the z-score of the price

posted at t− 1: a positive value indicates that all else equal, the firm was hit by a relatively

good demand realization at time t−1.41 We also control for the w-score, which is the proper

way of controlling for the declining hazard under the null hypothesis of our mechanism. When

run on the actual data, the panel regression includes either category/market or product/store

fixed effects fij in order to control for the heterogeneity in price change frequency.

For both the model and the data, we run two main regressions. The first one imposes

no additional restrictions. The second uses only observations for which wscoreij,t−1 ≤ 12,

so that the price the firm is considering leaving has been posted for at most half of the

periods within the backward-looking 26-week window. This distinction is driven by our

model prediction that new demand realizations are less likely to influence the decision to

change a price that has been observed more often in the past (high w-score).

Table 4 presents the results of running the regression in equation (37) on both the

actual and simulated data. To ease the interpretation, the coefficients are reported as

marginal effects: the impact of a one-standard-deviation deviation in the z- or w-score on

40We truncate the window to 26 weeks for two reasons. First, from a data standpoint, we want to avoid
losing too many observations through left-censoring. Second, this truncation allows us to capture the idea
that demand realizations very far back are likely to be of little value to the firm. We also tried to geometrically
discount past observations; this has little impact on the results.

41To minimize the risk that changes in the z-score are driven by some complex non-linearity in the demand
function, we focus on observations for which there was no price change at t− 1, i.e. pi,j,t−1 = pi,j,t−2. This
implies that changes in the z-score are driven by recent demand realizations.
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the likelihood of a price change. All coefficients are statistically significant at the 1% level.

Three observations on the z-score effect are worth highlighting.

First, the effect is negative in all regressions: a good (bad) demand realization at the

posted price that lifts (lowers) the z-score decreases (increases) the chance of moving away

from that price. This is in contrast to most state-dependent mechanisms, such as a standard

menu-cost model: in these environments, both positive and negative shocks make the firm

more likely to reprice as they raise the gap between the current and optimal prices.

Second, the effect is indeed larger for more “recent” prices (low w-score): while a one-

standard-deviation change in the z-score decreases the probability of a price change by

between 80 to 90 basis points when we condition on wscoreij,t−1 ≤ 12, the effect is only

around 55 basis points with wscoreij,t−1 ≤ 25. The effects are also economically meaningful,

as a 80bp increase in the probability of a price change is about 10% of the unconditional

probability of a price change in the data.

Third, the z-score effects in the data and the model are similar: for younger prices, the

absolute impact on the price change frequency is 83bp, almost perfectly in line with the 86-

87bp effect in the data. They also compare favorably when conditioning on wscoreij,t−1 ≤ 25

(65bp vs. 57-58bp in the data).

Table 4: Results from the z-score regressions

Data Model

wscoreij,t−1 ≤ x x = 12 x = 25 x = 12 x = 25

zscoreij,t−1 − zscorelagij,t−1 -0.0087 -0.0086 -0.0058 -0.0057 -0.0083 -0.0065

wscoreij,t−1 -0.0373 -0.0290 -0.0466 -0.0264 -0.0253 -0.0195

Category/market FE X X

Product/store FE X X

Note: The dependent variable equals 1 when pi,j,t 6= pi,j,t−1, 0 otherwise. The empirical regressions include

either both category and market fixed effects, or item/store fixed effects. We report marginal effects: the

impact of a one-standard-deviation in the independent variable on the likelihood of a price change. Standard

errors are clustered at the category-market level. All coefficients are statistically significant at 1% level.

5.3 The typical pricing policy at the stochastic steady state

In this section, we analyze the optimal pricing policy at the stochastic steady state. This

serves two main purposes. The first is to show that even after hundreds of periods of

observations, firms still face significant uncertainty over demand – learning proceeds slowly
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in the model. The second is to visualize the typical pricing policy function, which helps

explain how the model generates the moments highlighted in the previous section.

We start by noting that at any point in time, the equilibrium of our model is described by

a whole distribution of beliefs over the unknown demand function, varying across firms. The

reason is that firms have faced different histories of idiosyncratic shocks, and thus have made

different pricing decisions, resulting in heterogeneous histories of signals. To understand the

average behavior, here we analyze the action of a firm at the typical history of observations.

Since firms learn in terms of the estimated relative prices r̃it (as per Section 4), the

information sets of different firms are characterized by the unique r̃it values seen in the past,

together with the resulting demand signals at those prices. A striking characteristic is that

even though the average life span of firms in our model is 133 periods, the histories contain

only 6 unique estimated relative prices on average. Moreover, the most often posted r̃it

accounts, on average, for 74% of all past observations. Hence, the typical history features

one dominant “reference” estimated relative price point that the firm tends to revert to.

To visualize this typical behavior, we average over the histories of observations of the

different firms in order to come up with a “typical” history of observations - the precise

details of the procedure are presented in Online Appendix C.4. We then compute the optimal

pricing policy conditional on having observed this typical price history, as a function of the

level of idiosyncratic productivity, keeping aggregate variables constant at their mean values.

This is true in particular for the gap between the aggregate price level and the unambiguous

signal of the industry price, pt − p̃j,t, which is kept fixed at its average level. Under this

assumption, the statements below about the estimated relative price r̃it are also statements

about the behavior of the nominal posted price pit between industry price reviews.

The resulting pricing policy, plotted in Figure 4, exhibits several key characteristics.

First, it features a large flat spot that covers the middle part of the support for idiosyncratic

productivity (recall E(wit) = 0) – this corresponds to the “dominant” estimated relative

price point (the one that is on average posted 74% of the time) and it occurs at r̃i = 0.11.

It is intuitive that the firm has established a large flat spot at a price that is optimal for

productivity values wit close to the mean, as they are the ones it is most likely to face.

Second, the policy also features five smaller flat spots corresponding to the other previ-

ously observed five price points. Those estimated relative prices are sticky and attractive,

but because each is optimal for fewer and less likely wit realizations, the firm tends to post

these prices less often. Combined with infrequent observations of the industry price pjt,

these features of the policy function generate both stickiness and memory in nominal prices

between reviews. The price is not only likely to be “stuck” at one of the flat spots but, even

conditional on moving, the price is likely to go to one of the other flat spots (since a large
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Figure 4: Optimal pricing policy function at the stochastic SS

part of the productivity support maps to one of them), thus revisiting past values.

Third, there are several jumps in the pricing policy, typically occurring as a switch from

one flat spot to another. The largest jumps, however, correspond to a move from a flat spot

to a brand new estimated relative price further out in the tails, and can be explained by the

experimentation motive: the typical firm has not collected much information about demand

at very high or low values of r̃it. Given this high uncertainty, the firm would generally not like

to price in those regions, but large enough shocks will eventually force it to. However, the high

remaining uncertainty about demand in those parts of the price space makes experimentation

attractive, and rather than extending its pricing decision continuously, the firm finds it

optimal to adjust a lot, thus learning more about the distant regions of the price space.

Fourth, in addition to the jumps, the pricing policy also features several continuous

downward-sloping portions which are behind the small price changes seen in the simulations.

The most pronounced of those continuous portions occurs immediately to the right of the

main flat spot in the middle. Intuitively, when the firm experiences a moderate productivity

shock, it remains in the neighborhood of its “safe” reference price that it knows best instead

of exploring remote price points. This is due to the local nature of learning – the firm has

reduced uncertainty not only right at the reference price, but also in its neighborhood, and

would rather not move far away unless productivity changes by a substantial amount.

Lastly and importantly, the policy function also shows that the average firm has far

from perfect information about its demand curve. This is evident from the significant

difference between the typical policy function and the full information RE policy (dashed

black line). The reason behind this substantial residual demand uncertainty is that the

history of observations is endogenously sparse. The optimal policy leads the firm to often

repeat estimated relative prices, resulting in a history of observations that provides a lot

of information about the average level of demand at those select prices, but leaves the firm
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uncertain about the shape of its demand. Hence our mechanism, which operates specifically

through the uncertainty about the local shape of demand, has a strong bite even at the

steady state of the model, when firms have seen long histories of demand observations.42

5.4 Comparative statics

We now turn to comparative statics. A common theme throughout is the nuanced link

between price flexibility and memory, which as we will see in Section 5.5, is an important

determinant of how micro-data stickiness maps into the effects of monetary policy.

Table 5: Moments - Comparative statics

Benchmark β = 0 ψ = 0 Low δ High σω High b
Freq. regular prices changes 0.105 0.075 0.064 0.207 0.160 0.199
Median size of abs. changes 0.154 0.007 0.015 0.108 0.123 0.015
Freq. modal price changes 0.026 0.028 0.029 0.041 0.037 0.056
Prob. visiting old price 0.414 0.237 0.469 0.444 0.502 0.488

Note: Moments are computed across versions of the model in which only the parameter in the column

header is changed, while all others are kept at their benchmark value. ’Low’ or ’High’ means that we halve

or double, respectively, the corresponding parameter compared to its benchmark value.

First, we model a myopic firm by setting β = 0, which eliminates all experimentation

incentives. The key pricing moments under this parameterization are reported in Table 5,

where we see a drop in both the frequency and median size of price changes. Without a reason

to explore new parts of the demand curve, firms now have less incentives to change prices

often or by large amounts. Furthermore, this leads the firm to concentrate its information

accumulation in the middle range of productivity shocks, leading to a policy function with two

large flat spots in the middle, but no other kinks. As a result, the frequency of modal price

changes rises slightly, but memory falls significantly because there are no other attractive

prices outside of those two. Moreover, in unreported results we find that this myopic version

generates very few large price changes and does not match the product pricing life-cycle

facts, as young firms no longer have an experimentation motive to change prices more often.

Second, we set ψ = 0 to eliminate the local nature of learning. In that case, each signal

carries the same quantity of information for any other price point, irrespective of its distance

from the current price. This setting also kills the experimentation motive (Proposition A.1 in

42In fact, because of the local nature of learning and the endogenous location of demand signals, learning
proceeds so slowly that the mechanism survives even if firms live for thousands of periods. We explore this
implication further in Online Appendix C.5 by setting λφ = 0. In the same appendix we also show that the
accumulation of new information could in fact change the optimal position of some of the reference prices.

46



the Online Appendix A.3), because the new information contained in a signal is not specific to

the position of the price at which the signal was observed. Therefore, the resulting moments

are mostly similar to the ones with β = 0, as can be seen in Table 5. The main difference

is memory, which increases to 47%. This is due to the emergent ergodic policy function,

which now features numerous, smaller kinks as opposed to just two large ones, increasing

the probability of switching between kinks. The intuition can be seen from Proposition 3,

which shows that when ψ = 0 the perceived demand loss of moving away from a kink to a new

price is relatively steeper for larger price changes as compared to smaller adjustments. As

a result, smaller price changes are perceived as relatively safer, leading the firm to establish

several kinks in the same neighborhood, as opposed to just a single one.

Third, we decrease the degree of ambiguity by halving δ. By Proposition 1, this lowers

the as-if cost of moving away from the previously posted price. As a result, price changes

occur more often (both regular and modal), and the size of the resulting price changes is

smaller. Interestingly, this increased flexibility implies more kinks and hence more (but

smaller) flat spots in the pricing policy. The result is higher memory, as there is a higher

number of attractive prices that were set previously.

Fourth, we double the standard deviation of the idiosyncratic productivity shocks, σω.

This raises the frequency of modal and posted price changes, an intuitive result that is shared

with a number of other standard frameworks.43 In our model, however, the increased price

flexibility is also accompanied by higher memory. The reason is that with more frequent

price changes, information accumulation is spread out over a larger set of individual prices,

resulting in a policy function with more steps and thus increased memory. Hence, even

though prices change more frequently, they are also more likely to revert to past price levels

– which we will see can result in a less responsive aggregate price level.

Finally, we increase the average price elasticity of demand by doubling the value of b.

The resulting higher sensitivity to deviations from the optimal markup, now at 9%, leads to

a significantly higher frequency and a smaller absolute size of price changes, as documented

in the last column of Table 5.44 We find that, as in the δ and σw comparative statics,

the increased flexibility comes with higher memory, from having more steps in the policy

function. This positive correlation of frequency and memory is not mechanical, as shown by

the ψ = 0 case where the two moments move in the opposite direction.

43See Klenow and Willis (2016) as an example of a discussion on the role played by the distribution of
shocks in standard price-setting models.

44These results are consistent with Mongey (2018) who reports that products facing more competition are
characterized by a larger frequency of posted prices and smaller absolute price changes.
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5.5 Monetary non-neutrality

We quantify the degree of monetary non-neutrality by computing the impulse response of

output produced by the measure-zero set of ambiguity-averse firms to an innovation in

aggregate nominal spending, st. Note that because all other firms have rational expectations,

our exercise arguably represents a lower bound on the size and persistence of monetary non-

neutrality since it ignores potentially important strategic complementaries in price setting.

We estimate the impulse response via Jorda projections, an approach well suited to the

high degree of non-linearity in our model. In the expression below, the LHS represents the

t+ k output of ambiguity-averse firms, while the RHS corresponds to the nominal shock εst :

ln(

∫
Yi,t+kdi) = αk + βkε

s
t + uj,t+k.

The series of coefficients βk form the impulse response of output to the nominal shock,

and are plotted with the blue line in Figure 5. The x-axis indicates the number of weeks

since the shock, and the y-axis is scaled to represent the output response as a fraction of the

shock. We see that for a 1% shock, real output increases by 0.36% on impact. The effect is

persistent and declines gradually, with a full cumulative output effect of 6.7% after 52 weeks.

We contrast the response with simple menu cost and Calvo models, both calibrated to

match the average frequency of price changes, while keeping the same shock processes.45

For the menu cost version (dashed black line) we find a similar response on impact, but

unlike our model, the effect dies down quickly, disappearing after 7 weeks. The Calvo model

(dash-dotted black line) has a stronger impact effect, but also declines quicker than in our

model. Overall, our cumulative output effect is similar to that in Calvo (at 6.5% after 52

weeks) and is six times larger than in the simple menu cost model (at 1.06% after 52 weeks).

Role of micro-level moments in shaping monetary non-neutrality

Our model features significant and persistent real effects of nominal spending shocks,

despite the fact that it is consistent with two moments that are often taken to imply strong

monetary neutrality: (i) a high frequency of price adjustment (10.5% at the weekly level)

and ii) a large median size of price changes (15%). As we now show, this is due to the fact

that our model is also consistent with two empirical facts that matter fundamentally for

monetary policy effects: i) prices have memory, so that more than 41% of price resets end

up at a previously visited price level; and ii) there are both large and small price changes.

45We leave to future work the analysis of a full general equilibrium version, which would take into account
strategic complementaries that have been shown to magnify the effect of other pricing frictions. Therefore,
in order to facilitate comparisons with standard models, we use versions of the menu cost and Calvo models
that similarly ignore such strategic complementarities.
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Figure 5: Impulse Response to a Monetary Shock

Consider first the impact effect. As we see in Figure 5, the output effect in the menu cost

model is much smaller than for Calvo. This is due to the well-known Golosov and Lucas

(2007) selection effect – the adjusting firms in the Calvo framework are chosen randomly,

but are self-selected in the menu cost model and hence they adjust by a lot on average.

Our model is also state-dependent, as the firms that sit at the threshold of adjustment

respond to the fall in real markups brought upon by the positive nominal shock, as detailed

in Proposition 7. In fact, the significantly larger price changes in our model relative to the

menu cost counterfactual (15% versus 2.5% in absolute terms) might at first look suggest

that the selection effect has even more bite in our case, as the typical price change is larger.

However, two forces weaken this selection, to the point that the effect on output on

impact is similar to the menu cost model. First, a fraction of firms in our model are on the

continuous portion of their policy function (recall Figure 4), and thus change prices only by a

little. This force highlights the importance of having a model consistent with the presence of

both large and small price changes, a point made for example by Midrigan (2011). Second,

many large price changes in our model arise from experimentation motives, as discussed in

Section 5.4, and thus do not depend directly on the change in the real markup.46

Let us now turn to the output effects in the periods following the impact. While in the

Calvo model the effect declines at the exogenous frequency of price changes, in the menu cost

model this persistence is significantly lower because the selection effect leads to large price

adjustments in all periods after the shock. Our model differs from these two counterfactuals

by predicting significantly stronger persistence. The fundamental reason is that optimal

nominal prices have memory, a point emphasized by Eichenbaum et al. (2011) and Kehoe

and Midrigan (2015). In the case of our model, memory generates long-lived real effects

46We share this weakening of the selection effect that arises from experimentation with the parametric
learning model of Argente and Yeh (2017).
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because price movements tend to happen between kinks that have formed prior to the shock.

By the selection effect logic, the firms that raise their prices due to the positive nominal

shock were, to begin with, close to indifferent between the price they just left and their new

one. Importantly, 41% of price changes land at a previously visited price (memory), where

the firm perceives another kink that translates into a flat spot in the optimal policy function

(see Figure 4). Since monetary policy shocks are small, a typical firm that lands on another

kink would again be close to indifferent between the new and previous prices. Thus, as

they face new idiosyncratic shocks in the following periods, these firms are likely to revert

back to their old, lower prices. Essentially, the as-if cost of price change in our model is

asymmetric for a firm that is almost indifferent between two flat spots in its policy function

– it perceives a small cost of changing to the other kink, but a large cost to moving in the

opposite direction. This asymmetry explains why a significant proportion of firms tend to

undo their initial price change. As a result, the real effect of the nominal shock is long-lived,

even as firms exhibit apparent flexibility in their nominal prices.

This discussion indicates that our theory is relevant not only because its micro-level

predictions find strong empirical support, but also because they matter for shaping monetary

policy effects. This makes the model well-suited for counterfactual analysis, a property we

exploit by considering two additional exercises. First, we find that doubling the standard

deviation of the idiosyncratic productivity shock, σω, lowers the cumulative effect of the

nominal shock to 3.6% (from 6.7%). Second, we make the set of demand functions steeper

by doubling the value of b; this lowers the cumulative effect to 5.25%. These predictions

are consistent with Boivin et al. (2009) and Kaufmann and Lein (2013) who empirically find

that monetary non-neutrality decreases with both idiosyncratic volatility and competition.

6 Conclusion

In this paper we show how firms’ specification doubts about their perceived model of demand

leads to a novel theory of price stickiness. We find strong empirical support for the theory

by subjecting the mechanism to a rich set of micro-level implications. The parsimony

and quantitative relevance of the mechanism make it a promising step towards building

macroeconomic models that can be used for counterfactual analysis.
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A Appendix for Section 3

A.1 Updating with more observed prices

We can readily expand the updating formulas that we have developed in Section 3.2 for one

observed price. Assume that firm has seen a whole vector of T previous signals, y0, with the

corresponding vectors of prices p0 and number of times N0. The joint distribution with demand

at any price p is again jointly Normal[
x(p)

y0

]
∼ N

([
m(p)

m(p0)

]
,Σ(p,p0)

)

with

Σ(p,p0) =

[
σ2
x (σ2

x, . . . , σ
2
x)

(σ2
x, . . . , σ

2
x)
′ Σx + diag( σ

2
z

N0
)

]
where (σ2

x, . . . , σ
2
x) is a 1xT vector, and Σx is a TxT matrix with all entries equal to σ2

x.

The resulting conditional expectation follows from applying the standard formula for condi-

tional Normal expectations:

E(x(p)|y0) = m(p) + [σ2
x, . . . , σ

2
x](Σx + diag(

σ2
z

N0

))−1(y0 −m(p0))

The conditional expectation is again linear in the prior and a weighted sum of the demeaned

signals. Expanding the above formula, we obtain

E(x(p)|y0) = m(p) + α0(y0,1 −m(p0,1)) + · · ·+ αT (y0,T −m(p0,T ))

where y0,i is the i-th element of the vector y0, and αi ∈ (0, 1) is the i-th element of the 1xT

vector [σ2
x, . . . , σ

2
x](Σx + diag( σ

2
z

N0
))−1.

Without loss of generality, assume the prices in p0 are sorted in ascending order, with the last

element being the largest price. In building the worst case expectation, one can work from right

to left and start with pt > p0,T , where p0,i denotes the i-th element of p0. The firm wants m∗(pt)

to be the lowest possible so it sets it equal to the lower bound of the prior set, but sets the priors

on all observed signals to their largest admissible value, so that for p < pt

m∗(p) = min [γ − bp,−γ − bpt + (b+ δ)(pt − p)] (38)

Next consider, pt ∈ (p0,T−1, p0,T ]. The worst case m∗(pt) is again at the lower bound of the

admissible set. Similarly, the worst-case is that all observe signals imply negative news about

expected demand, hence it sets the prior at lower priors, m∗(p|p < pt), accordingly to the highest

possible derivative (b + δ), and the prior at higher prices, m∗(p|p > pt) according to the lowest
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possible derivative. As a result

m(p; pt) =

{
min [γ − bp,−γ − bpt + (b+ δ)(pt − p)] for p < pt

min [γ − bp,−γ − bpt + (b− δ)(pt − p)] for p ≥ pt

We can now confirm that there is a kink around any p ∈ p0, with the same properties as in

the case of one previously observed price, which was analyzed in the main text.

A.2 Proof of Proposition 1

Proposition 1. Define δ∗ = δ sgn (pt − p0). For a given realization of ct, the difference in worst-

case expected profits at pt and p0, up to a first-order approximation around p0, is

ln υ∗(εt−1, ct, pt)− ln υ∗0(εt−1, ct, p0) ≈
[

ep0

ep0 − ect
− (b+ αt−1(p0)δ∗)

]
(pt − p0) .

Proof. Consider ln υ∗(εt−1, ct, pt) at some pt ∈ [p0 − 2γ
δ
, p0 + 2γ

δ
]. When pt > p0, we have

ln(ept − ect) +
{
−γ − bpt + αt−1(pt)ẑ0 − αt−1(pt)δ (pt − p0) + .5σ̂2

t−1(pt) + .5σ2
z

}
, (39)

while at pt < p0, this equals

ln(ept − ect) +
{
−γ − bpt + αt−1(pt)ẑ0 + αt−1(pt)δ (pt − p0) + .5σ̂2

t−1(pt) + .5σ2
z

}
. (40)

In turn, ln υ∗(εt−1, ct, p0) equals

ln(ept − ect) +
{
−γ − bp0 + αt−1(pt)ẑ0 + .5σ̂2

t−1(p0) + .5σ2
z

}
.

Fix some ct and take a first-order approximation of ln υ∗(εt−1, ct, pt) with respect to pt,

evaluated at p0. Since this function is not differentiable at p0, we analyze its right and left derivative.

The former derivative equals

ep0

ep0 − ect
− b− αt−1(p0)δ +

∂αt−1(pt)

∂pt
[ẑ0 − δ (pt − p0)] + .5

∂σ̂2
t−1(pt)

∂pt
(41)

where the partial derivatives ∂αt−1(pt)
∂pt

and
∂σ̂2
t−1(pt)

∂pt
are evaluated locally at p0. In particular, given

that

αt−1(pt) =
σ2
x

σ2
x + σ2

z/N0

e−ψ(pt−p0)2 ; σ̂2
t−1(pt) = σ2

x(1− αt−1(pt)),

then these two functions are differentiable p0, with marginal effects equal to zero at p0. Therefore,
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the local approximation to the right of p0 simplifies to

ep0

ep0 − ect
− [b+ αt−1(p0)δ] . (42)

The first term in the brackets reflects the effect of changing the price on profits, while the

second captures the movement of demand along a curve with elasticity −b. The third term arises

from the effect of demand of moving along a steeper demand curve, which is a characteristic of

the worst-case belief about the demand elasticity.

Therefore, we obtain the local approximation to the right of p0

ln υ∗(εt−1, ct, pt)− ln υ∗0(εt−1, ct, p0) ≈
[

ep0

ep0 − ect
− (b+ αt−1(p0)δ)

]
(pt − p0) (43)

A similar derivation follows for the derivative to the left of p0, where we obtain

ep0

ep0 − ect
− [b− αt−1(p0)δ]

and therefore the local approximation to the left of p0 is simply

ln υ∗(εt−1, ct, pt)− ln υ∗0(εt−1, ct, p0) ≈
[

ep0

ep0 − ect
− (b− αt−1(p0)δ)

]
(pt − p0) (44)

We obtain the result in Proposition 1 by putting together equations (43) and (44) and using

the signum function to define δ∗ = δ sgn (pt − p0).

A.3 Forward looking behavior

We solve the recursive optimization problem in two steps. First, we compute the value function

at time t + 1. The key insight is that from this point onward the firm solves a series of static

maximization problems because the endogenous state variable, the information set εt, remains the

same from period to period. Still, the firm faces a dynamic, recursive problem because of the law

of motion of the exogenous state variable, the cost shock ct, which evolves according to its law

of motion g(ct+1|ct). Hence, the value function at t + 1, which we label with Ṽ (.) to differentiate

from the time-t value function V (.), is given by

Ṽ (εt, ct+1) = max
pt+1

min
m(p)∈Υ0

E

[
ν(εt+1, ct+1) + β

∫
Ṽ (εt, ct+2)g(ct+2|ct+1)dct+2

∣∣∣∣εt]
Since the information set is not growing over time, the state space for this problem is finite

and tractable. As a result, we can solve for Ṽ (εt, ct+1) through standard techniques and use it as
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the continuation value perceived by the firm at time t:

V (εt−1, ct) = max
pt

min
m(p)∈Υ0

E

[
ν(εt, ct) + β

∫
Ṽ (εt, ct+1)g(ct+1|ct)dct+1

∣∣∣∣εt−1

]
(45)

s.t.

εt = {εt−1, pt, qt}.

Thus, at time t the firm fully takes into account that pt, and the resulting new demand signal

qt, will serve as informative signals for future profit-maximization decisions. Importantly, this

information is useful not only in the very next period, but propagates through the infinite future

according to the law of motion of ct.

For the following analytical results we work with the case where ψ = ∞ and the firm has

perfect foresight on future costs, s.t. ct+k = c for all k ≥ 1, for some constant c. In this case, the

time t+ 1 value function is just the present discounted value of worst-case expected profits when

the cost shock equals c:

Ṽ (εt, c) =

maxp minm(p)∈Υ0 E

[
ν(εt+1, c)

∣∣∣∣εt]
1− β

Hence, the only remaining uncertainty in Ṽ (.) from the perspective of time t is the uncertainty

about the realization of the time t signal qt. Next, we turn to characterizing the expectation of

Ṽ , given the time t information set εt−1.

For all analytical results below, we assume that (i) ψ → ∞ and (ii) there is perfect foresight

on future costs so that ct+k = c for some c.

Exploration makes prices more flexible when εt−1 contains demand observations at

only one previous price p0

We start with the case where the time t information set, εt−1, contains only one price point, p0,

observed N0 times with an average signal q0. To be specific, call that information set ε0. We will

assume that the realization of the signal q0 is good enough, so that when c = c̄0 = p0 − ln( b
b−1

),

p0 is not just locally optimal (recall Corollary 1), but that it is the global maximizer conditional

on εt−1. The relevant condition is

ẑ0 = q0 − (−γ − bp0) >
σ2
x

2
,

in which case

p0 = arg max
p

min
m(p)∈Υ0

E

[
ν(εt+1, c̄0)

∣∣∣∣ε0,m(p)

]
Hence in the absence of any new information, in future periods the firm will optimally set p0,

since it essentially faces a static problem with marginal cost equal to c̄0. The signal pair {pt, qt}
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provides such new information and could lead to a different optimal action pt+k.

Our first result is a characterization of the current price pt that maximizes the expected

continuation value when c = c̄0. It turns out that when the firm has collected prior information

about demand only at p0, then even even at that value of the cost the optimal exploration strategy

is to deviate from p0.

Proposition 4. The expected continuation value E

[
Ṽ ({ε0, pt, qt}, c̄0)

∣∣∣∣ε0, pt

]
achieves its maxi-

mum at

p∗t = arg min
p

(p− p0)2 s.t. p 6= p0.

Proof. In order to simplify notation, throughout the proofs we will use the standard expectation

notation E(.) to define the worst-case expectation of the firm.

The limiting case ψ → ∞ simplifies the construction of the worst-case expected demand

because corr(x(p), x(p′)) = 0 for all p 6= p′. Thus, when updating beliefs about demand at any

price p, only past signals observed at that particular price p matter. For future reference, it will be

convenient to define the following notation for signal-to-noise ratios that will show up repeatedly

α0 ≡ αt−1(p0; p0) =
σ2
x

σ2
x + σ2

z/N0

αt|0 ≡ αt(p0; p0|pt = p0) =
σ2
x

σ2
x(N0 + 1) + σ2

z

αt ≡ αt−1(pt; pt|pt 6= p0) =
σ2
x

σ2
x + σ2

z

where the first is the signal-to-noise ratio of the signal q0 conditional on ε0 information, αt|0 and αt

are the (recursive) signal-to-noise ratios applicable to the new signal qt given the signal q0, in the

two cases where pt = p0 and pt 6= p0 respectively. Since p0 = ln( b
b−1

) + c̄0, it is the optimal myopic

price for ct+k = c̄0, which is the relevant case in the future. Thus, if its information set does not

change, the firm will price pt+k = p0 in the future. The information set changes, of course, as a

function of the current period pricing choice pt and the resulting new signal qt. For convenience,

define the perceived innovations in the existing signal q0 and the new signal qt as

ẑ0 ≡ q0 − (−γ − bp0)

ẑt ≡ qt − (−γ − bpt)

and the variance adjusted innovation of q0 as

z̃0 ≡ ẑ0 −
1

2
σ2
x.

Observe that since ct+k = c̄0 with probability one, the only uncertainty over future profits is in
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the innovation of the new signal ẑt. Hence, the expected continuation value is simply the expected

discounted value of a stream of worst-case static profits at ct+k = c̄0, after taking the expectation

over the unknown ẑt: E
[
Ṽ ({ε0, pt, qt}, c̄0)|ε0, pt

]
= β

1−βE

[
E(ν(p∗t+k, c̄0)|{ε0, pt, qt})

∣∣∣∣ε0, pt

]
=

β
1−βE

[
ν∗t+k(p

∗
t+k, c̄0)

∣∣∣∣ε0, pt

]
, where p∗t+k is the resulting static optimal price, given the updated

information set {ε0, pt, qt}.
If pt = p0, this optimal price is still p0 unless the information in the new signal qt is particularly

bad and sufficiently erodes the firm’s beliefs about profits at p0, in which case the firm switches

to the interior optimal price pintt+k – the ex-ante second best option. To find this interior optimum,

note that for all prices pt+k 6= p0 the worst-case demand is simply

x̂∗t (pt+k;m
∗(p; pt+k)) = −γ − bp

hence the interior optimal price is

pintt+k = min{p|(p− p0)2 > 0},

which gets you as close as possible the to optimal markup b
b−1

while still staying on the smooth

portion of the firm’s demand curve (recall: there is a kink in the worst-case belief at p0, but is

smooth everywhere else). Thus, if pt = p0, optimal p∗t+k is equal to p0 unless ẑt < z0, where z0 is

such that:
Et−1(ν∗t+k(p0, c̄0)|ε0, pt = p0, ẑt = z0)

limp→p0 E(ν∗t+k(p, c̄0)|ε0, pt = p0, ẑt = z0)
= 1

Substituting in the relevant expressions and simplifying, we can derive

z0 =
σ2
x

2
(1− α0)− α(p0)

αt|0
z̃0.

Hence if pt = p0, the optimal p∗t+k is equal to p0 as long as the innovation in the new signal is good

enough – namely ẑt ≥ z0.

If pt 6= p0, p0 remains the optimal price at t + k unless the new signal qt is good enough to

convince the firm to deviate from its ex-ante optimum p0 and move to the newly observed pt itself.

In the limiting case ψ → ∞ we know that the only potential alternative is pt, because qt does

not update beliefs anywhere else, and hence p0 dominates all other prices. In particular, for every

possible pt there is an upper threshold for the innovation in qt, such that p∗t+k = pt if and only if

ẑt > z̄(pt). This threshold z̄(pt) satisfies

E(ν∗t+k(pt, c̄0)|ε0, pt 6= p0, ẑt = z̄(pt))

E(ν∗t+k(p0, c̄0)|ε0, pt 6= p0, ẑt = z̄(pt))
= 1
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Substituting in the respective expressions, and simplifying we can derive:

z̄(pt) =
α0

αt
z̃0 +

σ2
x

2
− 1

αt

[
ln

(
exp(pt)− exp(c̄0)

exp(p0)− exp(c̄0)

)
+ b(p0 − pt)

]
With the two thresholds thusly characterized, we can conclude that the optimal pricing policy at

time t+ k is given by:

p∗t+k =


p0 if pt = p0 and ẑt ≥ z0 or pt 6= p0 and ẑ(pt) ≤ z̄(pt)

pt if pt 6= p0 and ẑt > z̄(pt)

pintt+k if pt = p0 and ẑt < z0

We can then evaluate the expected continuation value E

[
Ṽ ({ε0, pt, qt}, c̄0)

∣∣∣∣ε0, pt

]
– we do so

separately for the cases pt = p0 and pt 6= p0, since the expected continuation value (which we will
denote by the short-hand Et−1(Ṽ ) to save space) is potentially discontinuous at pt = p0, so that
Et−1(Ṽ |pt = p0) =

= Φ(
z0√

σ2
x(1− α0) + σ2

z

)(exp(p0)− exp(c̄0)) exp(−γ − bp0 +
1

2
(σ2
x + σ2

z))

+ (1− Φ(
z0√

σ2
x(1− α0) + σ2

z

))(exp(p0)− exp(c̄0)) exp(−γ − bp0 + α0ẑ0 +
1

2
(σ2
x(1− α0) + σ2

z))
Φ(

αt|0(σ2
x(1−α0)+σ2

z)−z0√
σ2
x(1−α0)+σ2

z

)

1− Φ(
z0√

σ2
x(1−α0)+σ2

z

= (exp(p0)− exp(c̄0)) exp(−γ − bp0
1

2
(σ2
x + σ2

z))

(
Φ(
αt|0(σ2

x(1− α0) + σ2
z)− z0√

σ2
x(1− α0) + σ2

z

) exp(α0z̃0) + Φ(
z0√

σ2
x(1− α0) + σ2

z

)

)

while Et−1(Ṽ |pt 6= p0) =

= P (ẑt < z̄(pt))(exp(p0)− exp(c̄0)) exp(−γ − bp0 + α0ẑ0 +
1

2
(σ2
x(1− α0) + σ2

z))

+ P (ẑt ≥ z̄(pt))(exp(pt)− exp(c̄0)) exp(−γ − bpt +
1

2
(σ2
x(1− αt) + σ2

z))E(exp(αtẑt)|ẑt > z̄(pt))

= Φ(
z̄(pt)√

(σ2
x + σ2

z)
)(exp(p0)− exp(c̄0)) exp(−γ − bp0 + α0ẑ0 +

1

2
(σ2
x(1− α0) + σ2

z))

+ Φ(
αt(σ

2
x + σ2

z)− z̄(pt)√
(σ2
x + σ2

z)
)(exp(pt)− exp(c̄0)) exp(−γ − bpt +

1

2
(σ2
x + σ2

z)))

where we use the fact that the firm perceives ẑt ∼ N(0, σ̂2
t−1(pt) + σ2

z), and Φ(.) denotes the CDF

of the standard normal distribution.
The first question of interest is if and when the expected continuation value is discontinuous

at pt = p0. To answer this question, we evaluate the ratio Et−1(Ṽ |p1=p0)

limp1→p0 Et−1(Ṽ |p1 6=p0)
. It is useful to first

evaluate the denominator and collect terms, concluding that limpt→p0 Et−1(Ṽ |pt 6= p0) =

= (exp(p0)− exp(c̄0)) exp(−γ − bp0 +
1

2
(σ2
x + σ2

z))

(
Φ(

z̄(pt)√
(σ2
x + σ2

z)
) exp(α0z̃0) + Φ(

αt(σ
2
x + σ2

z)− z̄(pt)√
(σ2
x + σ2

z)
)

)
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It then follows that the ratio Et−1(Ṽ |pt=p0)

limpt→p0 Et−1(Ṽ |pt 6=p0)
=

=
Φ(

σ2x
2

(1−α0)+
α0
αt|0

z̃0
√
σ2
x(1−α0)+σ2

z

) exp(α0z̃0) + Φ(
(1−α0)

σ2x
2
− α0
αt|0

z̃0
√
σ2
x(1−α0)+σ2

z

)

Φ(
α0
αt
z̃0+

σ2x
2√

(σ2
x+σ2

z)
) exp(α0z̃0) + Φ(

σ2x
2
−α0
αt
z̃0√

(σ2
x+σ2

z)
)

where we have substituted in the respective values of the thresholds z0 and z̄(pt). The ratio limits

to 1 as z̃0 →∞, and it is below 1 at z̃0 = 0, as in this case

Et−1(Ṽ |pt = p0)

limpt→p0 Et−1(Ṽ |pt 6= p0)
=

Φ(
σ2x
2

(1−α0)√
σ2
x(1−α0)+σ2

z

)

Φ( σ2
x

2
√
σ2
x+σ2

z

)
< 1

Next, we show that the derivative of the ratio in respect to z̃0 is positive for the relevant values

z̃0 ≥ 0, which is enough to conclude that Et−1(Ṽ |pt=p0)

limpt→p0 Et−1(Ṽ |pt 6=p0)
converges to 1 from below and hence

is less than one for all finite z̃0 ≥ 0. The needed derivative,

∂ Et−1(Ṽ |pt=p0)

limpt→p0 E(Ṽ |pt 6=p0)

∂z̃0

,

it is proportional to

(φ(

σ2
x
2

(1− α0) + α0
αt|0

z̃0√
σ2
x(1− α0) + σ2

z

) exp(α0z̃0)− φ(
(1− α0)

σ2
x
2
− α0
αt|0

z̃0√
σ2
x(1− α0) + σ2

z

))︸ ︷︷ ︸
=0

α0

αt|0
√
σ2
x(1− α0) + σ2

z

+ Φ(

σ2
x
2

(1− α0) + α0
αt|0

z̃0√
σ2
x(1− α0) + σ2

z

) exp(α0z̃0)α0

 ∗
Φ(

α0
αt
z̃0 +

σ2
x
2√

(σ2
x + σ2

z)
) exp(α0z̃0) + Φ(

σ2
x
2
− α0

αt
z̃0√

(σ2
x + σ2

z)
)

−
Φ(

σ2
x
2

(1− α0) + α0
αt|0

z̃0√
σ2
x(1− α0) + σ2

z

) exp(α0z̃0) + Φ(
(1− α0)

σ2
x
2
− α0
αt|0

z̃0√
σ2
x(1− α0) + σ2

z

)

 ∗
(φ(

σ2
x
2

+ α0
αt
z̃0√

σ2
x + σ2

z

) exp(α0z̃0)− φ(

σ2
x
2
− α0

αt
z̃0√

σ2
x + σ2

z

))
α0

α1

√
σ2
x + σ2

z︸ ︷︷ ︸
=0

+Φ(

σ2
x
2

+ α0
α1
z̃0√

σ2
x + σ2

z

) exp(α0z̃0)α0



= α0 exp(α0z̃0)

Φ(

σ2
x
2

(1− α0) + α0
αt|0

z̃0√
σ2
x(1− α0) + σ2

z

)Φ(

σ2
x
2
− α0

αt
z̃0√

σ2
x + σ2

z

)− Φ(

σ2
x
2

(1− α0)− α0
αt|0

z̃0√
σ2
x(1− α0) + σ2

z

)Φ(

σ2
x
2

+ α0
αt
z̃0√

σ2
x + σ2

z

)



Thus, the derivative is positive if and only if

Φ(
σ2x
2
−α0
αt
z̃0√

σ2
x+σ2

z

)

Φ(
σ2x
2

+
α0
αt
z̃0√

σ2
x+σ2

z

)

>
Φ(

σ2x
2

(1−α0)− α0
αt|0

z̃0
√
σ2
x(1−α0)+σ2

z

)

Φ(
σ2x
2

(1−α0)+
α0
αt|0

z̃0
√
σ2
x(1−α0)+σ2

z

)

(46)
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This inequality holds since

Φ(
σ2x
2
−α0
αt
z̃0√

σ2
x+σ2

z

)

Φ(
σ2x
2

+
α0
αt
z̃0√

σ2
x+σ2

z

)

>
Φ(

σ2x
2
− α0
αt|0

z̃0
√
σ2
x+σ2

z

)

Φ(
σ2x
2

+
α0
αt|0

z̃0
√
σ2
x+σ2

z

)

>
Φ(

σ2x
2

(1−α0)− α0
αt|0

z̃0
√
σ2
x(1−α0)+σ2

z

)

Φ(
σ2x
2

(1−α0)+
α0
αt|0

z̃0
√
σ2
x(1−α0)+σ2

z

)

where the first inequality follows from αt|0 < αt, and the second from the fact that

∂

σ2x
2

(1−α̃0)− α0
αt|0

z̃0
√
σ2
x(1−α̃0)+σ2

z

∂α̃0

<
∂

σ2x
2

(1−α̃0)+
α0
αt|0

z̃0
√
σ2
x(1−α̃0)+σ2

z

∂α̃0

and the fact that the term

∂

Φ(

σ2x
2 (1−α̃0)−

α0
αt|0

z̃0√
σ2x(1−α̃0)+σ2z

)

Φ(

σ2x
2 (1−α̃0)+

α0
αt|0

z̃0√
σ2x(1−α̃0)+σ2z

)


∂α̃0

equals

φ(

σ2
x
2

(1− α0)− α0
αt|0

z̃0√
σ2
x(1− α0) + σ2

z

)Φ(

σ2
x
2

(1− α0) + α0
αt|0

z̃0√
σ2
x(1− α0) + σ2

z

)

∂

σ2x
2

(1−α̃0)−
α0
αt|0

z̃0
√
σ2
x(1−α̃0)+σ2

z

∂α̃0
− Φ(

σ2
x
2

(1− α0)− α0
αt|0

z̃0√
σ2
x(1− α0) + σ2

z

)φ(

σ2
x
2

(1− α0) + α0
αt|0

z̃0√
σ2
x(1− α0) + σ2

z

)

∂

σ2x
2

(1−α̃0)+
α0
αt|0

z̃0
√
σ2
x(1−α̃0)+σ2

z

∂α̃0

< 0

Thus, we can conclude that
Et−1(Ṽ |pt = p0)

limpt→p0 Et−1(Ṽ |pt 6= p0)
< 1

for all z̃0 ≥ 0 meaning that there is discontinuous jump down in the continuation value at pt = p0.

Lastly, consider what value of pt optimizes the expected continuation value. Since the

discontinuity at p0 (the only potential corner solution) is a jump down, the maximizing pt must

be the interior maximum, which satisfies the FOC condition that ∂Et−1(Ṽ |pt 6=p0)
∂pt

= 0. Taking the

derivative, ∂Et−1(Ṽ |pt 6=p0)
∂pt

=

= φ(
z̄(pt)√
σ2
x + σ2

z

)(ep0 − ec̄0) exp(−γ − bp0 + α0ẑ0 +
1

2
(σ2
x(1− α0) + σ2

z))

∂z̄(pt)
∂pt√
σ2
x + σ2

z

− φ(
αt(σ

2
x + σ2

z)− z̄(pt)√
(σ2
x + σ2

z)
)(ept − ec̄0) exp(−γ − bpt +

1

2
(σ2
x(1− αt) + σ2

z + α2
t (σ

2
x + σ2

z)))

∂z̄(pt)
∂pt√
σ2
x + σ2

z

+ Φ(
αt(σ

2
x + σ2

z)− z̄(pt)√
(σ2
x + σ2

z)
) exp(−γ − bpt +

1

2
(σ2
x(1− αt) + σ2

z + α2
t (σ

2
x + σ2

z)))(e
pt − b(ept − ec̄0))
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The above expression limits to zero as pt → p0. To see that, note that limpt→p0
∂z̄(pt)
∂pt

= 0, thus

the first 2 terms of the FOC expression above fall out. For the last term, using p0 = ln( b
b−1

) + c0

it follows that

(ep0 − b(ep0 − ec̄0)) =
b

b− 1
ec̄0 − b

b− 1
ec̄0 = 0

Therefore, we can conclude that limpt→p0
∂Et−1(Ṽ |pt 6=p0)

∂pt
= 0, and thus the interior maximum of the

expected continuation value is pt → p0.

Intuitively, p∗t = arg mint(p− p0) s.t. p 6= p0, ensures that the new signal qt will be informative

about a price as close as possible to the ex-ante expected optimal p0, and thus achieves almost the

same markup – this makes the new information highly relevant. As a result, if the realization of

ẑt happens to be good enough, i.e. ẑt is above a threshold z̄t(p
∗
t ) that is characterized in the proof

above, then the firm will stick with this price in the future, set pt+k = p∗t , and take advantage of the

unexpectedly high demand at that price. On the other hand, if the signal realization happens to

be bad, the firm can safely switch back to the ex-ante optimal p0, where the belief about demand

is not affected by ẑt, and still offers lower uncertainty and a good perceived markup.

The reason for not picking pt = p0 is that a bad signal realization at p0 erodes the ex-ante

best available pricing option, p0, and at the same time the firm does not have a good fall-back

alternative, as it has no observations of demand at other prices. If in that case the realization of

ẑt falls below the threshold z0, the news about x(p0) is bad enough to incentivize the firm to set

pt+k to a previously unvisited price. Due to this downside risk at p0, there is a first-order gain

of obtaining information at a new price, which manifests in the discontinuous jump down in the

expected continuation value at p0.

As shown in Proposition 4, the best forward-looking strategy is therefore to experiment by

posting a new price. This exploration incentive could potentially overturn the rigidity result

implied by the static maximization pricing choice analyzed earlier, but as we show next it turns

out that this results is specific to the firm having seen only one price in the past. In more general

situations, when the firm has seen more than one distinct price point in the past, forward-looking

behavior can in fact reinforce the static rigidity incentives.

Exploration makes prices stickier, when εt contains observations at multiple prices

Proposition 5. There is a non-singleton interval of costs (c, c̄) around c̄0, and a threshold χ > 0,

such that if ẑ > χ, then for any c ∈ (c, c̄):

p0 = arg max
pt

E

[
Ṽ ({ε1, pt, qt}, c)

∣∣∣∣ε1, pt

]
.

Moreover, the threshold χ is decreasing in |p1 − p0|.

Proof. The proof follows a similar logic as the previous one. First, we characterize the optimal

pt+k for c = c̄0, but now conditional on ε1, and then use it to compute the expected continuation
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value and show that it is maximized at pt = p0. Lastly, we appeal to continuity to conclude that

pt = p0 is optimal for an interval of cost values around c̄0. In addition to the signal-to-noise ratio

notation α0, αt|0, αt defined in the previous proof, we define

α1 ≡ αt−1(p1; p1) =
σ2
x

σ2
x + σ2

z/N1

αt|1 ≡ αt(p1; p1|pt = p1) =
σ2
x

σ2
x(N1 + 1) + σ2

z

Similarly, we define the (variance corrected) innovation in the signal at p1 as

z̃1 ≡ ẑ1 −
1

2
σ2
x = q1 − (−γ − bp1)− 1

2
σ2
x

The optimal policy at t+ k follows a similar structure to the one described in the previous proof.

Conditional on just ε1 the optimal pt+k is equal to p0, and the way the new information contained

in qt affects the optimal pt+k depends on the position of pt. If pt = p0, then the firm stays at p0

unless the new signal is too bad (ẑt < z0). If pt = p1, then the firm moves to p1 if the signal is

good enough (ẑt > z̄1) otherwise stays at p0. And if pt /∈ {p0, p1}, then the firm again stays at p0

unless the signal is too good, but compared to a different threshold: ẑt > z̄(pt). The key difference

from the previous proof is what happens if pt = p0 and the signal is sufficiently bad to prompt a

move (ẑt < z0). There exists a χ1 > 0 such that if ẑ1 > χ1, then the firm does not move to the

interior optimum pint, but rather to p1, which as another relatively good price at which the firm

has built some information capital is a better option than the brand new pint where the firm has

not accumulated any information. To see this, note that

E(ν∗t+k(p1, c̄0)|ε1, pt = p0)

limp→p0 E(ν∗t+k(p, c̄0)|ε1, pt = p0)
= (b exp(p1 − p0)− b+ 1) exp(−b(p1 − p0) + α1z̃1) > 1

Note that the RHS is increasing in z̃1, and thus in ẑ1 and limits to infinity as ẑ1 → ∞, hence

there exists a constant χ1 > 0 such that the above ratio is strictly greater than one when ẑ > χ1.

For the rest of the proof we assume that ẑ1 > χ1 so that the above inequality holds. The relevant

thresholds z0, z̄1, z̄(pt) can be computed as before, by finding the value of the signal at which the

firm is indifferent between p0 and the respective alternative option:

z0 =
σ2
x

2
(1− α0)− 1

αt|0
(b(p1 − p0)− ln(be(p1−p0) − b+ 1))

z̄1 =
σ2
x

2
(1− α1) +

1

αt|1
(b(p1 − p0)− ln(be(p1−p0) − b+ 1))

z̄(pt) =
α0

αt
z̃0 +

σ2
x

2
− 1

αt

[
ln

(
exp(pt)− exp(c̄0)

exp(p0)− exp(c̄0)

)
+ b(p0 − pt)

]
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So the t+ k optimal pricing policy is:

p∗t+1 =


p0 if pt = p0 and ẑt ≥ z0, or pt = p1 and ẑt ≤ z̄1 or pt /∈ {p0, p1} and ẑt ≤ z̄(pt)

p1 if pt = p1 and ẑt > z̄1 or pt = p0 and ẑt < z0

pt if pt /∈ {p0, p1} and ẑt > z̄(pt)

We can now use this result to characterize the expected continuation value and find its maximizer.

Note that the value of pt that maximizes E(

[
Ṽ ({ε1, pt, qt}, c̄0)

∣∣∣∣ε1, pt

∣∣∣∣]) is either one of the two

corner solutions p0 and p1, or the interior maximum. Moreover, we can appeal to the proof of

Proposition 4 for the result that the expected continuation value achieves its interior maximum

at the limit of pt → p0. This follows because under ψ →∞ the additional signal q1 only matters

when updating beliefs at p1 itself, hence at p 6= p1 the expected continuation value is equivalent to

the one conditional on ε0, that we analyzed above. We proceed in two steps. First we show that

the two corner solutions are in fact equivalent to each other, and then we conclude by showing that

p0 also dominates the interior solution pint. The expected value E(
[
Ṽ ({ε1, pt, qt}, c̄0|ε1, pt = p0)

]
)

is slightly different than before, because the fall back option (in case of a bad new signal qt) is

now p1. Now, Et−1(Ṽ |pt = p0) =

= Φ(
z0√

σ2
x(1− α0) + σ2

z

)(exp(p1)− exp(c̄0)) exp(−γ − bp1 + α1ẑ1 +
1

2
(σ2
x(1− α1) + σ2

z))

+ (1− Φ(
z0√

σ2
x(1− α0) + σ2

z

))(exp(p0)− exp(c̄0)) exp(−γ − bp0 + α0ẑ0 +
1

2
(σ2
x(1− α0) + σ2

z))

Φ(
αt|0(σ

2
x(1−α0)+σ

2
z)−z0√

σ2
x(1−α0)+σ2

z

)

1− Φ(
z0√

σ2
x(1−α0)+σ2

z

=
1

b− 1
exp(c̄0 − γ − bp0 + α0z̃0 +

1

2
(σ2
x + σ2

z))

(
Φ(
αt|0(σ2

x(1− α0) + σ2
z)− z0√

σ2
x(1− α0) + σ2

z

) + Φ(
z0√

σ2
x(1− α0) + σ2

z

)(bep1−p0 − b+ 1)e−b(p1−p0)

)

Similarly, E(
[
Ṽ ({ε1, pt, qt}, c̄0|ε1, pt = p1)

]
) can be computed as Et−1(Ṽ |pt = p1) =

= P (ẑt ≤ z̄1)(exp(p0)− exp(c̄0)) exp(−γ − bp0 + α0ẑ0 +
1

2
(σ2
x(1− α0) + σ2

z))

+ P (ẑt > z̄1)(exp(p1)− exp(c̄0)) exp(−γ − bp1 + α1ẑ1 +
1

2
(σ2
x(1− α1)(1− αt|1) + σ2

z))E(exp(αt|1ẑt)|ẑt > z̄1)

=
1

b− 1
exp(c̄0 − γ − bp0 + α0z̃0 +

1

2
(σ2
x + σ2

z))

[
Φ(

z̄1√
(σ2
x(1− α1) + σ2

z)
) + Φ(

αt|1(σ2
x(1− α1) + σ2

z)− z̄1√
(σ2
x(1− α1) + σ2

z)
)(bep1−p0 − b+ 1)e−b(p1−p0)

]

Substituting in the expressions for z0 and z̄1 we obtain

Et−1(Ṽ |pt = p0) = Et−1(Ṽ |pt = p1)

Lastly, note that for pt /∈ {p0, p1}, E(
[
Ṽ (c0, {εt−1, pt, qt}|ε1, pt)

]
) is the same as computed in the

proof of Proposition 4 above. As a result, the interior maximum is achieved at lim pt → p0, hence to
conclude our argument we need to compare Et−1(Ṽ |pt = p0) against limpt→p0 Et−1(Ṽ |pt /∈ {p0, p1}),
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which in turn equals

(exp(p0)− exp(c̄0)) exp(−γ − bp0 +
1

2
(σ2
x + σ2

z))

(
Φ(

z̄(pt)√
(σ2
x + σ2

z)
) exp(α0z̃0) + Φ(

αt(σ
2
x + σ2

z)− z̄(pt)√
(σ2
x + σ2

z)
)

)

Let θ̂ = (b(p1 − p0)− ln(be(p1−p0) − b+ 1)) > 0, then after substituting the expressions for z0 and

z̄(pt) and simplifying, the ratio of the two expected continuation values simplifies to:

Et−1(Ṽ |pt = p0)

limpt→p0 Et−1(Ṽ |pt /∈ {p0, p1})
=

Φ(

σ2x
2

(1−α0)+ θ̂
αt|0√

σ2
x(1−α0)+σ2

z

) + Φ(

σ2x
2

(1−α0)− θ̂
αt|0√

σ2
x(1−α0)+σ2

z

) exp(−θ̂)

Φ(
α0
αt
z̃0+

σ2x
2√

(σ2
x+σ2

z)
) + Φ(

σ2x
2
−α0
αt
z̃0√

(σ2
x+σ2

z)
) exp(−α0z̃0)

(47)

The denominator is decreasing in z̃0 and thus also in ẑ0, hence for every θ̂ there is a ẑ0 big enough

such that the above ratio is strictly greater than 0. As a result, there exists a finite constant

χ0 > 0 such that when ẑ0 > χ0 it follows that pt = p0 maximizes the expected continuation value.

Finally, let χ = max{χ0, χ1}, then if ẑ1 = ẑ0 > χ,

p0 = arg max
pt

E
[
Ṽ ({ε1, pt, qt}, c̄0)|ε1, pt

]
Since Ṽ is continuous in the cost shock c, it follows that there exists a non-singleton interval (c, c̄)

around c̄0, such that if c ∈ (c, c̄), then

p0 = arg max
pt

E
[
Ṽ ({ε1, pt, qt}, c)|ε1, pt

]
Lastly, we want to show that ∂χ

∂|p0−p1| < 0. This follows directly form the facts that (i) the numerator

of (47) is decreasing in θ̂, and that (ii) θ̂ is increasing in (p1 − p0). Hence, as we decrease the

distance between p0 and p1, we increase the RHS of (47), and thus we require a smaller ẑ = ẑ0 = ẑ

to make the ratio bigger than 1.

Exploration incentives disappear as ψ → 0

In this section we move away from the limiting case ψ → ∞. Relaxing the assumption

ψ = ∞ generally reduces the experimentation incentives of the firm, in the sense that it flattens

the continuation value Ṽ . The reason is that when ψ < ∞, observing a signal qt at a price

pt is informative no only about x(pt) itself, but also about other prices p round pt, with the

informativeness dropping to zero as the distance |p − pt| goes to infinity. Moreover, a higher ψ

implies that the correlation between x(p) and x(p′) at distinct p and p′ decreases faster with the

distance between p and p′. Hence, higher ψ increases the specificity of new information, making

it more localized.

Lower ψ on the other hand, makes the information at a given pt more useful at any p. As a
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result, this erodes the firm’s incentive to experiment with new prices – it could learn most of the

same information by repeating one of its established, safe prices anyways. Formally, this means

that the continuation value function Ṽ becomes flatter, and in fact, as Proposition A1 shows, in

the limit ψ → 0 the continuation value is a perfectly flat line.

Proposition A1. The expected continuation value E
[
Ṽ ({ε0, pt, qt}, c̄0)|ε0, pt

]
becomes flat in

respect to the time t price pt as ψ → 0:

lim
ψ→0

∂E
[
Ṽ ({ε0, pt, qt}, c̄0)|ε0, pt

]
∂pt

= 0

Proof. First we will prove that with ψ <∞, the expected continuation valueE
[
Ṽ ({ε0, pt, qt}, c̄0)|ε0, pt

]
is differentiable. The key intuition is that if the firm selects a time t price away from p0, thus

obtaining a signal at a new price pt 6= p0, in expectation this would not create a second kind in

the expected future worst-case demand. The only kink in the time t expectation of the future

worst-case demand appears at the already observed p0, since it evolves recursively as:

x̂∗t (p) = x̂∗t−1(p) + αt(p)(qt − x̂∗t−1(p))

where

αt(p) =
(σ2

x + σ2
z/N0)σ2

x exp(−ψ2(p− pt)2)− σ4
x exp(−ψ2((p− p0)2 + (pt − p0)2))

σ4
x(1− exp(−2ψ2(pt − p0)2)) + σ2

xσ
2
z
N0+1
N0

+ σ4
z/N0

is the signal-to-noise ratio applicable to the new signal at pt, when updating beliefs about x(p)

at some price p.

There is obviously a kink at p0in x̂∗t (p), since x̂∗t−1(p) has a kink there. However, there is no

other kink, because the firm correctly perceives that

qt ∼ N(x̂∗t−1(pt), σ̂
2
t−1(pt)).

In other words, there is no possibility for a kink arising from the signal innovation term, since

the signal is evaluated against the proper worst-case belief at time t, leaving only one kink in the

expectation of the future worst-case demand. Of course, that is what happens only in expectation

– once the signal is realized, and the firm perceives some surprise, the time t + k worst-case will

indeed feature two kinks. Still, in expectation, the kink is smoothed over, hence does not affect

the time t pricing incentives of the firm.

We are going to use the notations for signal innovation level, ẑt, and the signal-to-noise ratios

defined above. Also recall that E
[
Ṽ ({ε0, pt, qt}, c̄0)|ε0, pt

]
= β

1−βE

[
ν∗t+k(p

∗
t+k, c̄0)

∣∣∣∣ε0, pt

]
, where

p∗t+k is the resulting static optimal price, given the updated information set {ε0, pt, qt}. And to
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simplify notation, we will again use the shorthand Et−1(Ṽ ) to denote the expected continuation

value E
[
Ṽ ({ε0, pt, qt}, c̄0)|ε0, pt

]
.

To show that the expected continuation value is differentiable, we will show two things. First,

we show that the derivatives of Et−1(Ṽ |pt > p0) and Et−1(Ṽ |pt < p0) in respect to pt exist

everywhere. Second, we show that

lim
pt↑p0

∂Et−1(Ṽ |pt < p0)

∂pt
= lim

pt↓p0

∂Et−1(Ṽ |pt > p0)

∂pt
.

Let’s start with showing that ∂Et−1(Ṽ |pt>p0)
∂pt

exists everywhere. The firm has perfect foresight

on ct+k = c̄0, and since p0 = ln(b/(b − 1)) + c̄0 absent any information in the new signal qt the

optimal price at t+ k would be p0. Thus, the worst-case expected profit given a choice of pt > p0

can be written as:

Et−1(Ṽ |pt > p0) = Φ(z(pt))Et−1(ν∗t+k(p
∗(pt), c̄0|pt > p0, ẑt < z(pt)) + (Φ(z̄(pt))− Φ(z(pt)))Et−1(ν∗t+k(p0, c̄0|pt > p0)

+ (1− Φ(z̄(pt)))Et−1(ν∗t+k(p
∗(pt)|pt > p0, ẑt > z̄(pt))

where z(pt) and z̄(pt) are the threshold values for the innovation of the signal at pt such that: (1)

if ẑt > z̄(pt), the demand realization at pt is so good that it pulls the optimal price away from p0,

and to an interior optimal price p∗(pt) closer to the new, good signal at pt; (2) if ẑt < z(pt), the

new demand realization is so bad that it pushes the optimal price away from both p0 and p1, to

a new interior optimal p(pt)
∗ < p0 < pt. For ẑt realizations in between these two threshold, the

optimal price at time t+k is at the kink p0. We will prove that all of the components in the above

expression are differentiable.

It is straightforward to show that the expected profit function (at any price p), Et−1(ν∗t+k(p, c̄0)|pt >
p0), is differentiable in respect to pt:

Et−1(ν∗t+k(p, c̄0)|pt > p0) = (ep − ec̄0) exp(x̂∗t−1(p) + αt(p)ẑt +
1

2
(σ̂2

t (p) + σ2
z))

The only components that are a function of pt are the signal to noise ratio, αt(p) and the

posterior variance σ̂2
t (p), and both of those are differentiable in respect to pt everywhere. The

signal-to-noise ratio αt(p) was already defined above, and it is obviously differentiable, and the

posterior variance can be obtained by the familiar recursive formula:

σ̂2
t (p) = σ2

x(1− α0(p))(1− αt(p))

where

α0(p) =
σ2
x

σ2
x + σ2

z/N0

e−ψ(p−p0)2
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is the signal-to-noise ratio applicable to the q0 signal. This only depends on pt through αt(p),

hence it is differentiable as well.

Next, consider the optimal interior price p∗ – it satisfies the first order condition

p∗ − (c̄0 + ln(
x̂∗
′
t−1(p∗) + α′t(p

∗)ẑt + 1
2
σ̂2′
t (p∗)

1 + x̂∗
′
t−1(p∗) + α′t(p

∗)ẑt + 1
2
σ̂2′
t (p∗)

)) = 0 (48)

We can show that the derivative ∂p∗

∂pt
exists by using i) the implicit function theorem and ii) the

fact that x̂∗t−1(p) has no kinks for p > p0. To save on notation let

θ∗(p∗, pt) =
x̂∗
′
t−1(p∗) + α′t(p

∗)ẑt + 1
2
σ̂2′
t (p∗)

1 + x̂∗
′
t−1(p∗) + α′t(p

∗)ẑt + 1
2
σ̂2′
t (p∗)

be the effective markup at the optimal price. By the implicit function theorem

∂p∗

∂pt
= −

∂θ∗

∂pt

1− 1
θ∗
∂θ∗

∂p∗

The derivative of ∂θ
∗

∂pt
is only a function of the derivatives α′t(p) and σ̂2′

t (p) which exist everywhere

since their expressions (as defined above) are infinitely differentiable. The derivative ∂θ∗

∂p∗
depends

on the second derivatives of αt(p) and σ̂2
t (p), and the time-t information worst-case demand,

x̂∗t−1(p) – which is infinitely differentiable everywhere outside of p1 = p0. Hence, for pt > p0 the

interior optimal price p∗ is differentiable in respect to pt.

Next, we work with the upper threshold z̄(pt), which is implicitly defined by the equality

Et−1(ν∗t+k(p0|pt > p0, ẑt = z̄(pt)) = Et−1(ν∗t+k(p
∗|pt > p0, ẑt = z̄(pt))

⇐⇒

(ep0−ec̄0) exp(x̂∗t−1(p0)+αt(p0)z̄(pt)+
1

2
(σ̂2

t (p0)+σ2
z)) = (ep

∗−ec̄0) exp(x̂t−1(p∗)+αt(p
∗)z̄(pt)+

1

2
(σ̂2

t (p
∗)+σ2

z))

which can similarly be shown to be differentiable in respect to pt by the implicit function

theorem. Similar argument can be shown for the lower threshold z(pt) as well.

Thus, we conclude that ∂Et−1(Ṽ |pt>p0)
∂pt

exists everywhere. Similar arguments can be used to

show that the mirror image derivative, ∂Et−1(Ṽ |pt<p0)
∂pt

exists everywhere as well. Hence the only

thing that remains to be shown, is that

lim
pt↑p0

∂Et−1(Ṽ |pt < p0)

∂pt
= lim

pt↓p0

∂Et−1(Ṽ |pt > p0)

∂pt
.

Note that outside of the limit pt → p0 the thresholds z(pt) and z̄(pt) are different for the

two cases i) pt > p0 and ii) pt < p0. Intuitively, the optimal interior price p∗ could be different

depending on whether the firm received a very good signal (ẑt > z̄(pt)) for a price higher or lower
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than p0. Importantly, the distance |p∗ − p0| could also be different, because (at least locally) the

slope of worst-case demand to the left of p0 is different from that to the right of p0. So resulting

interior prices, and also the thresholds for ẑt at which they become optimal are different – i.e. the

problem is not symmetric around p0.

However, in the limit pt → p0 the candidate interior prices and thresholds converge to the

same values. The candidate interior price is given by the first-order condition (48), the minimum

threshold limpt→p0 z(pt) = z is defined as

Et−1(ν∗t+k(p0|pt = p0, ẑt = z) = Et−1(ν∗t+k(p
∗|pt = p0, ẑt = z)

⇐⇒

(ep0 − ec̄0) exp(x̂∗t−1(p0) + αt(p0|p0 = pt)z +
1

2
(σ̂2

t (p0|p0 = pt) + σ2
z))

= (ep
∗ − ec̄0) exp(x̂t−1(p∗) + αt(p

∗|p0 = pt)z +
1

2
(σ̂2

t (p
∗|p0 = pt) + σ2

z))

and the upper threshold, z̄(pt), converges to infinity – intuitively a new positive signal at p0 only

strengthens the desire to pick price p0. New information will only destroy the kink at p0 if it is

sufficiently bad, while good new information will strengthen it.

With that in mind we can show

lim
pt↑p0

∂Et−1(Ṽ |pt < p0)

∂pt
= φ(z)Et−1(ν∗t+k(p

∗(pt)|pt = p0, ẑt < z))
∂z

∂pt
+ Φ(z) lim

pt→p0

∂Et−1(ν∗t+k(p
∗(pt)|pt = p0, ẑt < z)

∂pt

+ φ(z)Et−1(ν∗t+k(p
∗(pt)|pt = p0, ẑt ≥ z))

∂z

∂pt
+ (1− Φ(z)) lim

pt→p0

∂Et−1(ν∗t+k(p
∗(pt)|pt = p0, ẑt ≥ z)

∂pt

= lim
pt↑p0

∂Et−1(Ṽ |pt > p0)

∂pt

which follows from (i) all limits exist and (ii) limpt↑p0 z(pt) = limpt↓p0 z(pt) = z as argued above.

Lastly, we need to take the limit ψ → 0. In this case, the signal-to-noise ratio function becomes

flat, i.e. αt(p) = αt for all p, and the same holds for the posterior variance σ̂2
t (p) = σ̂2

t , since

now information at a price p′ is equally useful at all prices p. As a result, it follows directly

that limψ→0 z = −∞ – i.e. since the signal realization erodes the expected profit equally at all

prices, it does not make any price p∗ better than p0. By extension, limψ→0
∂z
∂pt

= 0. Lastly, since

limψ→0
∂αt(p)
∂pt

= 0, it also follows directly that limψ→0
∂Et−1(ν∗t+k(p∗(pt)|pt=p0,ẑt≥z)

∂pt
= 0.

Essentially, the position of the new signal pt no longer matters, as a result

lim
ψ→0

∂E
[
Ṽ ({ε0, pt, qt}, c̄0)|ε0, pt

]
∂pt

= 0
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B Appendix for Section 4

B.1 Empirical link between aggregate and industry prices

In this section, we use US CPI data to show that the relationship between aggregate and industry

prices is time-varying and unstable over short-horizons. In particular, an econometrician would

generally have very little confidence that short-run aggregate inflation is related to industry-level

inflation, even though he can be confident that the two are cointegrated in the long-run. Thus, our

assumption on the uncertainty over φ(.) puts the firm on an equal footing with an econometrician

outside of the model.

Our analysis uses the Bureau of Labor Statistics’ most disaggregated 130 CPI indices as well

as aggregate CPI inflation. The empirical exercise consists of the following regression method. For

a specific industry j, we define its inflation rate between t− k and t as πj,t,k and similarly πat,k for

aggregate CPI inflation. For each industry j, we run the rolling regressions:

πj,t,k = βj,k,tπ
a
t,k + ut

over three-year windows starting in 1995 and ending in 2010.47 We repeat this exercise for k

equal to 1, 3, 6, 12 and 24 months. Finally, for each of these horizons we compute the fraction of

regression coefficients βj,k,t (across industries and 3-year regression windows) that are statistically

different from zero at the 95% level.

We find that for 1-month inflation rates, only 11.4% of the relationships between sectoral and

aggregate inflation are statistically significant. For longer horizons k, these fractions generally

remain weak but do rise over time: 26.4%, 40.6%, 58.5% and 69.1% for the 3-, 6-, 12- and 24-

month horizons respectively. This supports our assumption that while disaggregate and aggregate

price indices might be cointegrated in the long run, their short-run relationship is weak.

In fact, not only is the relationship statistically weak in general, but it is highly unstable. This

can be seen in Figure B.1, which shows the evolution of the coefficient βj,k,t for k = 3 for 3-year-

window regressions starting in each month between 1995 and 2010, for four industries. Not only

are there large fluctuations in the value of this coefficient over our sample, but sign reversals are

common. In general, at any given date, there is little confidence that the near-future short-horizon

industry-level inflation would be highly correlated with aggregate inflation, even though the data

is quite clear that the two are tightly linked over the long-run.

47Results are very similar if we use windows of 2 or 5 years instead.
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Figure B.1: 3-year rolling regressions of 3-month industry inflation on 3-month aggregate inflation
for four categories. The solid line plots the point estimate of regression coefficient on aggregate
inflation. The dotted lines plot the 95% confidence intervals.

B.2 Joint uncertainty over demand shape and relative price

In section 4.3.1 we have developed the solution to the worst-case beliefs when the firm observes

one previous unambiguous estimated relative price, which here for brevity we call an estimated

relative price. In this appendix we show how the analysis extends to multiple prices. The analysis

follows the similar logic as in the real model, detailed in appendix A.1, with the added analysis of

the worst-case belief of the unknown industry price. We do so by presenting details on the case

of updating beliefs in the third period of life, when the firm has seen demand realizations at two

previous prices pi,0 and pi,1, with corresponding quantities sold there yi,0 and yi,1. In addition, the

firm observes the history of aggregates, {y0, y1, y2, p0, p1, p2}, and signals on the industry price level,

{p̃j,0, p̃j,1, p̃j,2}. We will use the helpful r̃i,t = pi,t − p̃j,t notation for the unambiguously estimated

relative price. In particular, without loss of generality, suppose that the prior observations imply

unambiguously estimated relative price such that r̃i,0 < r̃i,1.48

The firm is interested in updating beliefs at a current price pi,2. Consider first a case where

48The opposite case is analogous.
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pi,2 implies an estimated relative price r̃i,2 > r̃i,1. The expectation of demand is a function of the

worst-case prior m(r) at the true (unobserved) relative prices ri,2, ri,1, and ri,0.

The worst-case prior at ri,2 is again simply m∗(ri,2) = −γ − bri,2, (implying lowest prior level

of demand at the current price). The resulting demand estimate ignoring all known aggregate

effects, is given by

−γ − bri,2 + α0yi,0 + α1yi,1 − α0 [m(ri,0)− bφ(p0 − p̃j,0)]− α1 [m(ri,1)− bφ(p1 − p̃j,1)] ,

where α0 and α1 are weights on the perceived innovations in the signals yi,0 and yi,1, respectively.

The prior belief about demand at ri,0 and ri,1 can be written as

m(ri,0) = −γ − bri,0 + δ′0(ri,1 − ri,0); m(ri,1) = −γ − bri,1 + δ′1 (ri,2 − ri,1)

where δ′0, δ
′
1 are the local derivatives of the mean prior around ri,0 and ri,1 respectively (they do

not have to be the same).

We can use the definition of ri,t ≡ pi,t − pj,t and substitute pj,t from equation (26) to simplify

the portion of the demand estimate over which nature chooses the joint worst-case demand shapes

δ′0 and δ′1, together with the short-run co-integrating relationship φ(pt − p̃j,t), as follows:

min
δ′0,δ
′
1

min
φ(pt−p̃j,t)

−α0δ
′
0(r̃i,1−r̃i,0)−α0δ

′
0φ(p0−p̃j,0)−α1δ

′
1(r̃i,2−r̃i,1)+α1δ

′
1φ(p2−p̃j,2)+(α0δ

′
0 − α1δ

′
1)φ(p1−p̃j,1)

We obtain the solution for the joint worst-case

δ∗1 = δ∗0 = δ; φ∗(p2 − p̃j,2) = −γp;φ∗(p0 − p̃j,0) = γp

φ∗(p1 − p̃j,1) = γpI(α0 < α1)− γpI(α0 > α1)

where I(α0 < α1) denotes the indicator function of whether α0 < α1.

Intuitively, if the current entertained estimated relative price r̃i,2 is higher than the highest

previously estimated relative price, then the joint worst-case beliefs over the demand shape and

the unknown industry price index have the following characteristics. First, the prior demand

shape between the three prices is steep. Second, the current industry price index is low and the

price index at the lowest previously estimated relative price is high. In this way, the relative price

between today and the lowest different estimated relative price is high, which, together with the

steep demand curve, leads to the largest possible losses. Third, the worst-case belief about the

industry price index at the previously estimated relative price that sits in the middle of the two

extreme prices is a function of the updating weights. If these weights are the same then this belief

is not determinate, as it does not matter for the posterior estimate.

Consider now the case where the entertained pi,2 implies an unambiguously estimated relative

price r̃i,2 < r̃i,0. We follow the same steps as above to write the demand estimate and obtain the
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minimization objective

min
δ′0,δ
′
1

min
φ(pt−p̃j,t)

−α0δ
′
0(r̃i,2−r̃i,0)+α0δ

′
0φ(p2−p̃j,2)−α1δ

′
1φ(p1−p̃j,1)−α1δ

′
1(r̃i,1−r̃i,0)−(α0δ

′
0 − α1δ

′
1)φ(p0−p̃j,0)

The joint worst-case beliefs are given by

δ∗1 = δ∗0 = −δ; φ∗(p2 − p̃j,2) = γp;φ
∗(p1 − p̃j,1) = −γp

φ∗(p0 − p̃j,0) = γpI(α0 < α1)− γpI(α0 > α1)

Intuitively, if the current estimated relative price is lower than the lowest previously estimated

relative price, then the worst-case prior demand is one with a flat shape between these three

prices. In addition, the current unknown industry price index is high and the index at the highest

previously estimated relative price is low. In this way, the relative price between today and highest

different price is low, which together with the flat curve means the gain in demand is as low as

possible. Finally, the belief about the industry price index at the intermediate price between the

two extremes is a function of the updating weights. When these weights are the same then this

belief is not determinate.

The final case is when the current entertained price r̃i,2 is between r̃i,0 and r̃i,1. The same steps

as above deliver:

min
δ′0,δ
′
1

min
φ(pt−p̃j,t)

−α0δ
′
0(r̃i,2−r̃i,0)−α0δ

′
0φ(p0−p̃j,0)−α1δ

′
1φ(p1−p̃j,1)−α1δ

′
1(r̃i,1−r̃i,0)+(α0δ

′
0 + α1δ

′
1)φ(p2−p̃j,2)

and the worst-case beliefs:

δ∗0 = δ; δ∗1 = −δ;φ∗(p0 − p̃j,0) = γp;φ
∗(p1 − p̃j,1) = −γp

φ∗(p2 − p̃j,2) = γpI(α0 < α1)− γpI(α0 > α1)

Intuitively, if the current price is in between the two previously estimated relative prices, then the

worst-case prior demand is steep to the left and flat to the right. This concern for losing demand

then also activates a concern that the industry price index is high at the left and low to the right.

The belief about the current industry price index is a function of the updating weights. If these

weights are the same then this belief does not matter. If the updating weight is larger on the

previously low estimated relative price, then the worst-case is that the current index is low. This

way the firm is worried about losing a lot of demand since it already acts as if it faces a steep

part of the curve. If the weight is larger on the previously high estimated relative price, then the

worst-case is that the current index is high. This way, the firm is concerned that it does not gain

much demand since it already acts as if it faces a flat part of the demand curve.

By induction, we can build the worst-case belief of the firm in this fashion for any length of
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the previous history of observations, with the key result that the worst-case expected demand will

have kinks around the unambiguous estimates of the previously observed prices r̃i,t.

B.3 Proofs on learning and nominal rigidity

Proposition 7. The nominal price pi,1 = p̃j,1 + r̃i,0 is a local maximizer of the worst-case expected

profits for any aggregate price p1 ∈ (p1 + ln
(

b
b−1

b−αδ−1
b−αδ

)
, p1 + ln

(
b
b−1

b+αδ−1
b+αδ

)
).

Proof. Let υ∗(ε0, s1, pi,1) denote the worst-case expected profit, conditional on the history ε0 and

the current state s1 = {ωi,1, p1, y1, p̃j,1} , evaluated at some nominal price pi,1. Conditional on pi,1−
p̃j,1, the worst-case expected demand is given by equation (34). Take a first-order approximation

of the change in profits, υ∗(ε0, s1, pi,1) − υ∗(ε0, s1, p̃j,1 + r̃i,0), evaluated around pi,1 = p̃j,1 + r̃i,0.

This equals [
ep̃j,1+r̃i,0−p1

ep̃j,1+r̃i,0−p1 − ey1−ωi,1
− (b+ αδ∗)

]
(pi,1 − p̃j,1 − r̃i,0) ,

where δ∗ = δ sgn (pi,1 − p̃j,1 − r̃i,0), as in Proposition 6.

It then follows that for any p1 ∈ (p, p), where we define

p = p1 + ln

(
b

b− 1

b− αδ − 1

b− αδ

)
; p = p1 + ln

(
b

b− 1

b+ αδ − 1

b+ αδ

)
,

we have
ep̃j,1+r̃i,0−p1

ep̃j,1+r̃i,0−p1 − ey1−ωi,1
∈ (b− αδ, b+ αδ),

which makes the first-order derivative of the change in profits negative to the right of p̃j,1 + r̃i,0

and positive to its left. This gives the necessary and sufficient conditions for p̃j,1 + r̃i,0 to be a

local maximizer.

Proposition 8. Let δindex = δ sgn (p1 − p̃j,1). Up to a first-order approximation around p1 = p̃j,1,

the difference ln υ∗(ε0, s1, r̃i,0 + p1)− ln υ∗(ε0, s1, r̃i,0 + p̃j,1) equals[
er̃i,0

er̃i,0 − ey1−ωi,1
− b− αδindex

]
(p1 − p̃j,1) < 0.

Proof. First, analyze the worst-case expected profit under a policy rule that implements indexa-

tion, i.e. pindexi,1 = r̃i,0 + p1, given by

υ∗(ε0, s1, p
index
i,1 ) =

(
er̃i,0 − ey1−ωi,1

)
ex̂
∗
0(pindexi,1 ,y1,p1,p̃j,1)

where x̂∗0(pindexi,1 , y1, p1, p̃j,1) equals .5 (σ̂2
0 + σ2

z) + ct − br̃i,0 − γ + α [y0 − (−γ − br̃i,0)] plus

min
δ′∈[−δ,δ]

min
φ(pt−p̃j,t)∈[−γp,γp]

−αδ′ (p1 − p̃j,1) + αδ′ [φ(p1 − p̃j,1)− φ(p0 − p̃j,0)]
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We know from Proposition 6 that the joint worst-case demand shape and co-integrating relation-

ship are given by

δindex = δ sgn (p1 − p̃j,1) ; φindex(p1 − p̃j,1)− φindex(p0 − p̃j,0) = −2γp sgn (p1 − p̃j,1) .

Given the presence of the kink we compute a log-linear approximation of υ∗(ε0, s1, p
index
i,1 ) around

p1 = p̃j,1. At its right we have
d ln υ∗(ε0, s1, p

index
i,1 )

dp1

= −αδ

while at its left, the derivative is

d ln υ∗(ε0, s1, p
index
i,1 )

dp1

= αδ

The constant term in the approximation is given by evaluating ln υ∗(ε0, s1, p
index
i,1 ) at p1 = p̃j,1 :

ln
(
er̃
∗
i,1 − ey1−ωi,1

)
+ ct − br̃i,0 − γ + α [y0 − (−γ − br̃i,0)]− 2αδγp. (49)

Second, let us analyze the worst-case expected profit under the original policy, p∗i,1 = r̃i,0 + p̃j,1,

which targets the same r̃i,0 but by adjusting the nominal price to the review signal p̃j,1. We have

υ∗(ε0, s1, p
∗
i,1) =

(
er̃i,0+p̃j,1−p1 − ey1−ωi,1

)
ex̂
∗
0(p∗i,1,y1,p1,p̃j,1)

where x̂∗0(p∗i,1, y1, p1, p̃j,1) equals .5 (σ̂2
0 + σ2

z)+ ct− b (r̃i,0 + p̃j,1 − p1)−γ+α [y0 − (−γ − br̃i,0)] plus

min
δ′∈[−δ,δ]

min
φ(pt−p̃j,t)∈[−γp,γp]

αδ′ [φ(p1 − p̃j,1)− φ(p0 − p̃j,0)] = −2αδγp

Note that υ∗(ε0, s1, p
∗
i,1) does not have a kink in the p1 space. Approximate around p1 = p̃j,1 to

obtain a derivative is:
d ln υ∗(ε0, s1, p

∗
i,1)

dp1

= − er̃i,0

er̃i,0 − emy1
+ b

The constant term is given by evaluating ln υ∗(ε0, s1, p
∗
i,1) at p1 = p̃j,1, as:

ln
(
er̃i,0 − ey1−ωi,1

)
+ ct − br̃i,0 − γ + α [y0 − (−γ − br̃i,0)]− 2αδγp. (50)

We now compute the difference ln υ∗(ε0, s1, p
index
i,1 ) − ln υ∗(ε0, s1, p

∗
i,1), up to their first-order ap-

proximation: (
er̃i,0

er̃i,0 − ey1−ωi,1
− b− αδindex

)
(p1 − p̃j,1) < 0

using the worst-case demand shape δindex = δ sgn (p1 − p̃j,1) and Proposition 6. The latter shows

that the condition for having the optimal price r̃i,1 be at the kink r̃i,0 is that the derivatives at the
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right, based on demand elasticity −b− δ, and at the left, using the elasticity −b+ δ, are negative

and, respectively, positive.

Proposition B1. Consider a counterfactual economy, where the firm knows that the unique co-

integrating relationship is φ(pt−p̃j,t) = pt−p̃j,t, ∀t. For a given realization of the current state s1 =

{ωi,1, p1, y1, p̃j,1}, the difference in worst-case expected profits ln υ∗(ε0, s1, pi,1)−ln υ∗(ε0, s1, p1+ri,0),

up to a first-order approximation around p1 + ri,0, is[
eri,0

eri,0 − ey1−ωi,1
− (b+ αδ∗)

]
(pi,1 − p1 − ri,0) ,

where δ∗ = δ sgn (pi,1 − p1 − ri,0).

Proof. In this counterfactual economy the firm has the same ambiguity about demand shape as

in the benchmark model but is endowed with the knowledge that

φ(pt − p̃j,t) = pt − p̃j,t, ∀t. (51)

Therefore this firm now knows that the unobserved industry price equals the observed aggregate

price, since

pj,t = p̃j,t + φ(pt − p̃j,t) = pt.

As a result, the estimated relative price simply equals

ri,t = pi,t − pt. (52)

Let us analyze the property of this economy in the simple two period model. The resulting

worst-case expected profit is given by

(
epi,1−p1 − emci,1

)
ex̂
∗
0(pi,1,y1,p1,p̃j,1), (53)

where the conditional payoff x̂∗0(pi,1, y1, p1, p̃j,1) equals .5 (σ̂2
0 + σ2

z) plus

min
δ′∈[−δ,δ]

exp {y1 − b (pi,1 − p1)− γ + α [y0 − (−γ − bri,0)]− αδ′ (pi,1 − p1 − ri,0)} (54)

The worst-case demand shape is therefore given by

δ∗ = δ sgn (pi,1 − p1 − ri,0) .

Having described the worst-case expected profit, the proof follows from taking the derivatives

of expected profit in (53) and payoff in (54) with respect to the action pi,1.

Different from the benchmark economy, we note that in this counterfactual the worst-case
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expected profit does not depend directly on the aggregate price. Indeed, the optimal choice of

the relative price in equation (54) is independent of p1. In this economy indexation is built in, as

instructed per equation (52) where, holding constant the relative price, the nominal price moves

one to one with p1. Therefore, not surprisingly, a nominal price policy that deviates from indexation

is suboptimal. To show this, consider a firm that lives in this counterfactual economy but does not

index to the aggregate price. Instead, it targets the same ri,0 but by setting pnoindexi,1 = ri,0 + p̃j,1.

Put differently, this firm uses only the review signal as the source of relevant information for pj,1

but targets the same relative price. Proposition B2 below details how the non-indexing policy is

strictly suboptimal.

Proposition B2. In the counterfactual economy, the difference ln υ∗(ε0, s1, p1+ri,0)−ln υ∗(ε0, s1, p̃j,1+

ri,0), up to a first-order approximation around p̃j,1, equals(
eri,0

eri,0 − ey1−ωi,1
− b− αδnoindex

)
(p1 − p̃j,1) > 0

where δnoindex = −δ sgn(p1 − p̃j,1).

Proof. The firm that sets pnoindexi,1 is subject to the same informational assumption as the firm

that indexes, and, therefore, it still knows that the co-integrating relationship is given by (51).

Compared to the indexing policy, this firm simply follows a different nominal pricing policy. The

resulting worst-case expected profit is

υ∗(ε0, s1, p
noindex
i,1 ) =

(
eri,0+p̃j,1−p1 − ey1−ωi,1

)
ex̂
∗
0(pnoindexi,1 ,y1,p1,p̃j,1)

where x̂∗0(pnoindexi,1 , y1, p1, p̃j,1) equals .5 (σ̂2
0 + σ2

z) + y1− b [ri,0 + p̃j,1 − p1]− γ+α [y0 − (−γ − bri,0)]

plus

min
δ′∈[−δ,δ]

−αδ′ (ri,0 − (p1 − p̃j,1)− ri,0) .

The worst-case demand shape is therefore simply

δnoindex = −δ sgn (p1 − p̃j,1) . (55)

Compute now the log-linear approximation with respect to p1, for this worst-case expected profit

υ∗(ε0, s1, p
noindex
i,1 ), evaluated to the right and left of p̃j,1. Those derivatives are

d ln υ∗(ε0, s1, p
∗
i,1)

dp1

= − eri,0

eri,0 − ey1−ωi,1
+ b+ αδnoindex

The resulting ln υ∗(ε0, s1, p1 + ri,0)− ln υ∗(ε0, s1, p̃j,1 + ri,0), up to a first order approximation, is(
eri,0

eri,0 − ey1−ωi,1
− b− αδnoindex

)
(p1 − p̃j,1) > 0
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since when p1 is larger (smaller) than p̃j,1, by the worst-case in (55) we have δnoindex = −δ or δ,

respectively. Here we have used that the optimal ri,1 sitting at the kink ri,0 implies that

eri,0

eri,0 − ey1−ωi,1
− b+ δ > 0 >

eri,0

eri,0 − ey1−ωi,1
− b− δ.

C Appendix for Section 5

C.1 Dispersion of forecasts

Here we detail how we use empirical evidence from Gaur et al. (2007) on survey data to evaluate

the size of our calibrated ambiguity parameter γ. Gaur et al. (2007) use item-level forecasts of

demand data from a skiwear manufacturer, called the Sport Obermeyer dataset. The dataset

contains style-color level forecasts for 248 short lifecycle items for a selling season of about

three months. The forecasts are done by members of a committee specifically constituted to

forecast demand, consisting of: the president, a vice president, two designers, and the managers

of marketing, production, and customer service. Raman et al. (2001) provides details on the

forecasting procedures and on the dataset.

Our model connects to the data in Gaur et al. (2007) as follows. They observe forecasts

made prior to the product being introduced. Their statistic for the dispersion of these forecasts is

reported as a coefficient of variation. Our model relates to this measure through the set of multiple

priors. Indeed, in our model, prior to observing any realized demand signals, the firm entertains

a set of forecasts about quantity sold. We connect this set to the dispersion of forecasts made

by the committee described above. In particular, in our model the firm entertains the following

time-zero set of forecasts on the level of demand

[exp(−γ − bp+ 0.5σ2
z), exp(γ − bp+ 0.5σ2

z)]

While in the data the set consists of only seven forecasters, we have a continuum. But we can

compute the coefficient of variation (CV) of these forecasts and compare it against the reported

statistic. In particular, using a uniform distribution over the forecasts in the set above, the CV,

normalized by the average forecast, equals

CV =
1√
3

eγ − e−γ

(eγ + e−γ)
(56)

Gaur et al. (2007) report in Table 4 that the average level of coefficient of variation, scaled

by the average forecast, across the products in the dataset equals 37.6%. When we plug in the
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calibrated value of our ambiguity parameter γ = 0.614, we obtain a CV equal to 31.58%.

C.2 Simulated hazards

In this section, we use simulations to confirm that our econometric approach is appropriate and

allows us to recover the true slope of the hazard function, even in the presence of pervasive

heterogeneity.

We simulate panels of 500 price changes for 100,000 products. Each product i is characterized

by a randomly-chosen unconditional price change probability, ξi, as well as a coefficient that

determines the slope of its hazard function, φi. To make the comparison between the true and

estimated slopes easier, we assume for this exercise that the hazard functions are linear at the

product level. The slope of product i’s hazard, si, is defined as:

si = (1− φi)ξi/13

As a result, the probability of a price change after a spell of length τ smaller or equal than

13 is given by ξτi = ξi − τsi. In other words, the slope is not a function of τ . For τ > 13, the

probability is assumed to be constant at ξτi = ξi − 13si (we will only estimate the hazard slopes

for spells less than or equal to 13 periods).

Panels differ in the distributions of the baseline probabilities ξi and slope factors φi. We run

the exact same code we use for actual data on the simulated panels, including regressions with

and without product fixed effects:

Pr(pi,t 6= pi,t−1) = α + βτi,t + γi + ui,t (57)

The results are summarized in Table C.1. Each column of the table represents a different

simulated panel. The top portion of the table describes the distribution of the baseline price

change probabilities (ξ) and slope parameters (φ) across simulated products, as well as the average,

known slope of the hazard function across products.49 The middle and bottom parts report the

slope estimates β̂, the standard error of the coefficient estimate and the p-value against the null

of a flat slope, for regressions without and with product fixed effects respectively.

The first column, A, shows estimates of the slope of the hazard function when there is no

heterogeneity in either price change probabilities or slope parameters. Not surprisingly, the

coefficient β̂ correctly recovers the true value of the slope and leads us to correctly conclude

that the hazards are flat, whether product fixed effects are included or not.

Next, we introduce heterogeneity in the unconditional price change frequencies ξi. We do,

however, keep a homogenous, flat slope of the hazard function. Our simulations confirm the

presence of the survivor-bias issue discussed in the literature: without fixed effects, the estimation

49Unless otherwise noted, all distributions are uniform.
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Table C.1: Estimated slopes of the hazard function for various simulated panels

A B C D E F

ξ distribution [0.15,0.15] [0.01,0.3] Empirical [0.01,0.3] [0.01,0.3] [0.01,0.3]
φ distribution [1,1] [1,1] [1,1] [0.7,0.7] [0.5,1.5] [0.2,1.2]
Actual slope (avg) 0 0 0 -0.0036 0 -0.0036

w/o fixed effects β̂ 0.00032 -0.00658 -0.00407 -0.00910 -0.00664 -0.00909
(0.00016) (0.00015) (0.00015) (0.00016) (0.00016) (0.00016)

p-value 0.042 0.000 0.000 0.000 0.000 0.000

w/ fixed effects β̂ 0.00032 0.00031 0.00026 -0.00360 0.00022 -0.00350
(0.00016) (0.00016) (0.00015) (0.00016) (0.00016) (0.00017)

p-value 0.042 0.052 0.096 0.000 0.185 0.000

finds a hazard that is declining on average (column B), even if our simulation features no

relationship between spell length and price change frequency. This is also true if we use a

distribution of the price change probabilities ξi that mimics the empirical distribution from our

dataset (column C).50 The inclusion of product fixed effects, on the other hand, correctly leads us

to conclude that the hazards are flat on average: controlling for product-specific hazard shifters

circumvents the downward bias that arises from heterogenous price rigidity.

If we instead assume a homogenous declining slope, the regression manages to recover perfectly

its value of -0.0036 once we include product fixed effects (column D). Without fixed effects,

however, the hazard is estimated to be three times steeper than it actually is, at -0.0091.

Finally, we also allow for heterogeneity in the slope factors φi. The last part of Table C.1

shows results for regressions run on simulated panels with two different distributions of φi. Once

again, the fixed-effects regression correctly finds a flat average hazard when the distribution of

φi is centered at 1 (column E). Second, it is able to recover a declining hazard function when it

should (column F), with an estimate of -0.0035 vs. the actual value of -0.0036. As we saw earlier,

omitting product fixed effects would lead us to find a slope that is almost three times larger (in

absolute value) than it actually is, at -0.0091.

To conclude, our simulation exercises confirm that our econometric approach allows us to

drastically alleviate the well-known survivor bias that arises in the computation of hazards of

price changes.

50We found that a χ2 distribution with 5 degrees of freedom, scaled to match the mean frequency found in our
dataset, provides a good fit.

82



C.3 Additional evidence on hazard functions

To complement the evidence on the slopes of the hazard functions presented in the main text, we

produce a number of figures.

First, we plot in Figure C.1 the distributions of the estimated hazard slopes across the 54

category/market combinations. These estimates are obtained from our linear probability regression

model with fixed effects of equation (36). The left panel shows the slope estimates from unweighted

regressions, while results from weighted regressions are shown in the right panel.
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Figure C.1: Distribution of the slopes of hazard functions across 54 category/market pairs.
Unweighted and weighted regressions.

In Figure C.2, we plot the distributions of cell-based slopes obtained using the approach of

Campbell and Eden (2014). A cell is a specific product sold in a given store, while the slope

is computed as the difference between the price change frequencies of older and younger prices.

An “old” price is one that has survived at least Γ weeks. In order to obtain a more complete

comparison between the data and the model simulations than just the average slope, we plot both

the empirical (left column) and simulated (right) distributions of the cell-based hazard slopes, for

Γ = 4, 5, 6.
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Figure C.2: Distributions of the cell-based hazard slopes. A slope is defined as the difference
between the price change frequencies of old (τ ≥ Γ) and young (τ < Γ) prices. Empirical (left)
and simulated (right) distributions.

C.4 Constructing the typical history of observations

In the model, the price histories and demand realizations differ across firms. One reason is the

idiosyncratic noise in demand realizations, but more importantly, the position of the demand

signals is endogenous, because it depends on the past pricing decisions of the firm. With

idiosyncratic productivity shocks, firms take different pricing decisions, and thus their information

sets evolve differently. Let

Iit =
[
r̃uniqit ,Nit, ŷit

]
be the 3-column matrix that characterizes the information set of firm i at time t, where r̃uniqit is

the vector of unique unambiguously estimated relative price points in the history of past price

decisions, r̃ti , of firm i; Nit is the associated vector of the number of times each of those unique

price points has been chosen in the past; and ŷit is the average, demeaned demand realization

that the firm has seen at those unique price points. So each row of r̃uniqit is one of the unique price
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levels the firm has posted in the past, the corresponding row of Nit is the number of times this

price has been seen in the past, and the corresponding row of ŷit is the average demeaned demand

realizations the firm has experienced when choosing that price. The matrix Iit fully described

the information set of the firm, and is the sufficient statistic needed to compute the worst-case

expected demand x̂it(r̃).

As discussed in the main text, a striking characteristic of Iit is that the average cardinality

of r̃uniqit is just six, hence the average firm tends to have chosen and thus seen only around six

unique price levels in the past. Another interesting characteristic, is that the average firm has not

seen each of those six price points equally often, but in fact the most often posted price accounts

for 74% of all observations, on average. Moreover, the second most often chosen price accounts

for another 19% of all observations. As a result, we observe that there is a clear hierarchy in the

amount of information collected at the different price points observed in the past.

We want to preserve this hierarchical structure when averaging the price histories of different

firms, hence we sort the rows of Iit based on the number of times each of the past price points

has been visited (given in Nit), and we call the sorted matrix Isortedit . Next, we compute the cross-

sectional average of Isortedit (element-wise) at each time period t, to come up with the information

set of the average firm at time t:

Īt =

∫
Isortedit di

Finally, we compute the time-average of Īt to come up with the “typical” information set in

the stochastic steady state of our model. Just as with all other moments we compute, we discard

the first 1000 periods of our simulation, and focus on the remaining 4000 to give a chance to the

model to converge to its stochastic steady state.

C.5 Speed of learning

The evolution of the pricing policy function over time

To further illustrate how learning and the resulting pricing policy evolve over time, panel a) of

Figure C.3 shows how the policy function of one the longer-lived firms in the simulation changes

from period one-hundred and fifty, to the three hundredth period of this firm’s life. The blue line

corresponds to the optimal policy at t = 150, and shows that by that period the firm had sampled

a number of different prices, and established a fair number of kinks. While we might think that

establishing such “special prices” happens once and for all, in fact the position of the kinks can

move and they could even completely disappear as new information arrives. We can see that from

the red line, which plots the policy at t = 300, and shows that by that period the two lowest flat

spots in the policy became absorbed in a new, single flat spot at an intermediate price point.

Thus, the accumulation of new information could change the optimal position of some of the
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reference prices. Over time, it tends to be the case that any given neighborhood of the price space

becomes associated with one special price, and the firm does not visit other prices nearby – this

is another reason for the slow speed of learning.

A counterfactual economy with no firm exit

To showcase the slow nature of learning in our model, focus on the limiting case of no firm exit

λφ = 0, hence firms never stop accumulating new signals. As we show here, however, that by itself

is not enough to ensure that firms eliminate demand uncertainty, because profit maximization

incentives lead them to often repeat estimated relative prices r̃it that have already been visited in

the past. Thus, the history of observations that the firm sees is endogenously sparse, concentrated

in a handful of individual price points, as opposed to being distributed all over the support of the

demand curve. As a result, the firm has good information about demand at several different price

points, but remains uncertain about the shape in between those prices. Hence, our mechanism is

preserved even in the very long run.

To illustrate, we note that the number of unique estimated relative prices that a firm has seen

after 5000 periods is just 40 on average. Moreover, most of the signals have been observed at

just 3 separate r̃it values, one of which accounts for 48% of all observations, and the other two

for 33% and 12% respectively. As a result, even though the firm has accumulated a lot of signals,

it remains uncertain about the overall shape of its demand. The accumulated signals are very

informative about the average level of demand in the neighborhood of the few prices that the firm

keeps repeating and collecting more information on, but this provides little guidance about the

shape of the demand function between the observed prices. Thus, the mechanism we develop,

which emphasizes uncertainty in the local shape of demand, remains present even after thousands

of periods of observations. The key intuition behind this result is the endogeneity of the history of

observations: the firms are not collecting an exogenous stream of observations randomly spread out

over the whole demand curve, but are balancing the learning incentives with profit maximization.

As a result, even when firms are infinitely-lived and accumulate thousands observations about

demand, the behavior of prices remains qualitatively similar to that in the benchmark model, with

prices displaying both stickiness and memory. To understand this pricing behavior, we use our

procedure to compute the typical optimal policy function (in terms of the estimated relative price

r̃it) from this simulation, with results plotted in panel b) of Figure C.3. As can be seen from the

Figure, the policy function is qualitatively similar to that in the benchmark case, and is essentially

a step function across the whole support of the price space. Again, this is because even though

the firms have seen much longer histories of observations, they have concentrated their pricing,

and thus information accumulation, in the set of previously observed estimated relative prices.

This results in a pricing policy that is a step-function, generating both stickiness and memory in

prices.

In the model with no exit (λφ = 0), the frequency of changing posted nominal prices is 6.5%,
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and the frequency of changing modal prices is 2.8%. Meanwhile, the median size of price changes

is 10.8%, and the probability of revisiting prices posted in the past (conditional on a price change)

is 50% (most non-revisits in this case come from new industry price review signals). Hence, even

without firm exit, the model shares many of the same characteristics as the benchmark model.

We have chosen to include firm exit in the benchmark model purely out of numerical convenience,

as exit introduces faster convergence to the stochastic steady state, with moments that are more

stable at smaller simulation sizes. This helps make the estimation feasible.

Figure C.3: Optimal Pricing Policy Function

(a) Benchmark economy, at two intermediate points in time
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(b) Stochastic steady-state pricing policy function, λφ = 0
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