Aggregate-Demand Amplification of Supply Disruptions: The Entry-Exit Multiplier

Florin O. Bilbiie
Univ. Lausanne \& CEPR

Marc J. Melitz
Harvard, CEPR, \& NBER

De Nederlandsche Bank
Annual Research Conference

November 5, 2021

Motivation

- When/how do nominal rigidities amplify supply disruptions (negative supply shocks)?
- Inherent feature of business cycle model with Endogenous Entry-Exit \& Variety
- Holds in simplest, pared-down model
- Key intuition: Sticky prices distort the extensive margin too
- Application to COVID-19 shock
- Large protracted recession ($\sim 12.5 \%$), negative output gap
- Exit: 40\% small businesses closed Spring 2020, 48\% still closed

Chetty et al - Opportunity Insights; Crane et al; Kalemli-Ozcan et al

Exit (Closures: Chetty et al, Opportunity Insights)

Percent Change in Number of Small Businesses Open*
In the United States, as of June $\mathbf{3 0} \mathbf{2 0 2 1}$, the number of small businesses open decreased by $\mathbf{4 7 . 8 \%}$ compared to January 2020 .

- Change in small businesses open (defined as having financial transaction activity), indexed to January 4-31 2020 and
seasonally adjusted. This series is based on data from Womply.
last updated: July 09,2021 next update expected: July 16, 2021
*Similar: Homebase data (Crane et al); estimated exit rate doubled (Kalemli-Ozcan et al)

This Paper

1. Entry-Exit Multiplier: Sticky Ps amplify Agg.-Supply (TFP) shocks response

$$
\text { Multiplier }=\theta>1 \text { (Elasticity of Substitution/Demand). }
$$

[^0]
This Paper

1. Entry-Exit Multiplier: Sticky Ps amplify Agg.-Supply (TFP) shocks response

$$
\text { Multiplier }=\theta>1 \text { (Elasticity of Substitution/Demand). }
$$

2. Aggregate-Demand Amplification of Aggregate supply disruption $d a<0$

Effect of TFP decrease on Y (absolute value)		Y Gap	
	Flexible Prices	Sticky Prices	
No Entry-Exit ${ }^{1}$	1	≤ 1	≥ 0
Endog. Entry-Exit	$\mathrm{X}>1$	$\mathrm{X}(\mathrm{da})>\mathrm{X}$	<0

[^1]
This Paper

1. Entry-Exit Multiplier: Sticky Ps amplify Agg.-Supply (TFP) shocks response

$$
\text { Multiplier }=\theta>1 \text { (Elasticity of Substitution/Demand). }
$$

2. Aggregate-Demand Amplification of Aggregate supply disruption $d a<0$

Effect of TFP decrease on Y (absolute value)		Y Gap	
	Flexible Prices	Sticky Prices	
No Entry-Exit ${ }^{1}$	1	≤ 1	≥ 0
Endog. Entry-Exit	$\mathrm{X}>1$	$\mathrm{X}(\mathrm{da})>\mathrm{x}$	<0

3. Bonus: entry-exit \rightarrow hours' TFP response NK~RBC!
[^2]
Literature

－Entry－Exit \＆Variety：Business Cycles（2000s）
－Bilbiie Ghironi Melitz（2012 JPE）；Jaimovich Floetotto；Colciago Etro；Lewis Poilly； Clementi Pallazzo；Lee Mukoyama；Dixon Savagar；Cacciatore Fiori；Hamano Zanetti； Edmond Midrigan Xu；Sedlacek Sterk；Gutierrez Philippon；Carvalho Grassi；Michelacci Paciello Pozzi；90s：Chatterjee Cooper；Devereux Head Lapham；Cook；Kim
－Entry－Exit \＆Variety w／Nominal Rigidities：Monetary Policy
－Bilbiie Ghironi Melitz（2007 NBER MA）；Bergin Corsetti，Bilbiie Fujiwara Ghironi；Etro Rossi；Bilbiie（2019），Cacciatore Fiori Ghironi；Colciago Silvestrini，Hamano Zanetti，．．．
－COVID－19 Recession：
－Guerrieri Lorenzoni Straub Werning；Woodford；Baqaee Farhi；Fornaro Wolf；Basu et al； Auerbach et al；Cesa－Bianchi Ferrero
－different：aggregate supply shock（TFP）＋endogenous entry－exit，GE intensive＋extensive \rightarrow aggregate C；complementary：goods（disaggregated）vs sectors
－TFP \＆hours：NK vs RBC
－Galí；Chari Kehoe McGrattan；Basu Fernald Kimball；Christiano Eichenbaum Vigfusson； Alexopoulos；Galí Rabanal；Peersman Straub；Foroni Furlanetto Lepetit；Cantore Leon－Ledesma McAdam Willman

Endogenous Entry-Exit NK Model: Simplest, Static

- $\operatorname{CES} Y_{t}=\left(\int_{0}^{N_{t}} y_{t}(\omega)^{\frac{\theta-1}{\theta}} d \omega\right)^{\frac{\theta}{\theta-1}}, \theta>1$ ES across ω

Endogenous Entry-Exit NK Model: Simplest, Static

- $\operatorname{CES} Y_{t}=\left(\int_{0}^{N_{t}} y_{t}(\omega)^{\frac{\theta-1}{\theta}} d \omega\right)^{\frac{\theta}{\theta-1}}, \theta>1$ ES across ω
- CPI $P_{t}=\left(\int_{0}^{N_{t}} p_{t}(\omega)^{1-\theta} d \omega\right)^{\frac{1}{1-\theta}}$, demand $y_{t}(\omega)=\left(p_{t}(\omega) / P_{t}\right)^{-\theta} Y_{t}$

Endogenous Entry-Exit NK Model: Simplest, Static

- $\operatorname{CES} Y_{t}=\left(\int_{0}^{N_{t}} y_{t}(\omega)^{\frac{\theta-1}{\theta}} d \omega\right)^{\frac{\theta}{\theta-1}}, \theta>1$ ES across ω
- CPI $P_{t}=\left(\int_{0}^{N_{t}} p_{t}(\omega)^{1-\theta} d \omega\right)^{\frac{1}{1-\theta}}$, demand $y_{t}(\omega)=\left(p_{t}(\omega) / P_{t}\right)^{-\theta} Y_{t}$
- Monopolist $\omega: y_{t}(\omega)=A_{t} l_{t}(\omega)-f$; negative $A_{t} \sim$ COVID-19

Endogenous Entry－Exit NK Model：Simplest，Static

－ $\operatorname{CES} Y_{t}=\left(\int_{0}^{N_{t}} y_{t}(\omega)^{\frac{\theta-1}{\theta}} d \omega\right)^{\frac{\theta}{\theta-1}}, \theta>1$ ES across ω
－CPI $P_{t}=\left(\int_{0}^{N_{t}} p_{t}(\omega)^{1-\theta} d \omega\right)^{\frac{1}{1-\theta}}$ ，demand $y_{t}(\omega)=\left(p_{t}(\omega) / P_{t}\right)^{-\theta} Y_{t}$
－Monopolist $\omega: y_{t}(\omega)=A_{t} l_{t}(\omega)-f$ ；negative $A_{t} \sim$ COVID－19
－Variety benefit（symm．）$\rho_{t} \equiv p_{t} / P_{t}=N_{t}^{\frac{1}{\theta-1}}$ ，elast．$(\theta-1)^{-1}$

Endogenous Entry-Exit NK Model: Simplest, Static

- $\operatorname{CES} Y_{t}=\left(\int_{0}^{N_{t}} y_{t}(\omega)^{\frac{\theta-1}{\theta}} d \omega\right)^{\frac{\theta}{\theta-1}}, \theta>1$ ES across ω
- CPI $P_{t}=\left(\int_{0}^{N_{t}} p_{t}(\omega)^{1-\theta} d \omega\right)^{\frac{1}{1-\theta}}$, demand $y_{t}(\omega)=\left(p_{t}(\omega) / P_{t}\right)^{-\theta} Y_{t}$
- Monopolist $\omega: y_{t}(\omega)=A_{t} l_{t}(\omega)-f$; negative $A_{t} \sim$ COVID-19
- Variety benefit (symm.) $\rho_{t} \equiv p_{t} / P_{t}=N_{t}^{\frac{1}{\theta-1}}$, elast. $(\theta-1)^{-1}$
- Flex vs Fixed p (generalize to Rotemberg)

Endogenous Entry-Exit NK Model: Simplest, Static

- $\operatorname{CES} Y_{t}=\left(\int_{0}^{N_{t}} y_{t}(\omega)^{\frac{\theta-1}{\theta}} d \omega\right)^{\frac{\theta}{\theta-1}}, \theta>1 \mathrm{ES}$ across ω
- CPI $P_{t}=\left(\int_{0}^{N_{t}} p_{t}(\omega)^{1-\theta} d \omega\right)^{\frac{1}{1-\theta}}$, demand $y_{t}(\omega)=\left(p_{t}(\omega) / P_{t}\right)^{-\theta} Y_{t}$
- Monopolist $\omega: y_{t}(\omega)=A_{t} l_{t}(\omega)-f$; negative $A_{t} \sim$ COVID-19
- Variety benefit (symm.) $\rho_{t} \equiv p_{t} / P_{t}=N_{t}^{\frac{1}{\theta-1}}$, elast. $(\theta-1)^{-1}$
- Flex vs Fixed p (generalize to Rotemberg)
- Markup $\mu_{t} \equiv \rho_{t} /\left(W_{t} / A_{t}\right)$; profit: $d_{t}=\rho_{t} y_{t}-W_{t} l_{t}$

Endogenous Entry-Exit NK Model: Simplest, Static

- $\operatorname{CES} Y_{t}=\left(\int_{0}^{N_{t}} y_{t}(\omega)^{\frac{\theta-1}{\theta}} d \omega\right)^{\frac{\theta}{\theta-1}}, \theta>1 \mathrm{ES}$ across ω
- CPI $P_{t}=\left(\int_{0}^{N_{t}} p_{t}(\omega)^{1-\theta} d \omega\right)^{\frac{1}{1-\theta}}$, demand $y_{t}(\omega)=\left(p_{t}(\omega) / P_{t}\right)^{-\theta} Y_{t}$
- Monopolist $\omega: y_{t}(\omega)=A_{t} l_{t}(\omega)-f$; negative $A_{t} \sim$ COVID-19
- Variety benefit (symm.) $\rho_{t} \equiv p_{t} / P_{t}=N_{t}^{\frac{1}{\theta-1}}$, elast. $(\theta-1)^{-1}$
- Flex vs Fixed p (generalize to Rotemberg)
- Markup $\mu_{t} \equiv \rho_{t} /\left(W_{t} / A_{t}\right)$; profit: $d_{t}=\rho_{t} y_{t}-W_{t} l_{t}$
- Free entry-exit equilibrium $\int_{0}^{N_{t}} d_{t}(\omega) d \omega=0$ (symmetry $\rightarrow d_{t}=0$)

Endogenous Entry-Exit NK Model: Simplest, Static

- $\operatorname{CES} Y_{t}=\left(\int_{0}^{N_{t}} y_{t}(\omega)^{\frac{\theta-1}{\theta}} d \omega\right)^{\frac{\theta}{\theta-1}}, \theta>1 \mathrm{ES}$ across ω
- CPI $P_{t}=\left(\int_{0}^{N_{t}} p_{t}(\omega)^{1-\theta} d \omega\right)^{\frac{1}{1-\theta}}$, demand $y_{t}(\omega)=\left(p_{t}(\omega) / P_{t}\right)^{-\theta} Y_{t}$
- Monopolist $\omega: y_{t}(\omega)=A_{t} l_{t}(\omega)-f$; negative $A_{t} \sim$ COVID-19
- Variety benefit (symm.) $\rho_{t} \equiv p_{t} / P_{t}=N_{t}^{\frac{1}{\theta-1}}$, elast. $(\theta-1)^{-1}$
- Flex vs Fixed p (generalize to Rotemberg)
- Markup $\mu_{t} \equiv \rho_{t} /\left(W_{t} / A_{t}\right)$; profit: $d_{t}=\rho_{t} y_{t}-W_{t} l_{t}$
- Free entry-exit equilibrium $\int_{0}^{N_{t}} d_{t}(\omega) d \omega=0$ (symmetry $\rightarrow d_{t}=0$)
- $\rightarrow C_{t}=Y_{t}=W_{t} L_{t}=N_{t}^{\frac{\theta}{\theta-1}}\left(\frac{A_{t} L_{t}}{N_{t}}-f\right)$

Endogenous Entry-Exit NK Model: Simplest, Static

- $\operatorname{CES} Y_{t}=\left(\int_{0}^{N_{t}} y_{t}(\omega)^{\frac{\theta-1}{\theta}} d \omega\right)^{\frac{\theta}{\theta-1}}, \theta>1 \mathrm{ES}$ across ω
- CPI $P_{t}=\left(\int_{0}^{N_{t}} p_{t}(\omega)^{1-\theta} d \omega\right)^{\frac{1}{1-\theta}}$, demand $y_{t}(\omega)=\left(p_{t}(\omega) / P_{t}\right)^{-\theta} Y_{t}$
- Monopolist $\omega: y_{t}(\omega)=A_{t} l_{t}(\omega)-f$; negative $A_{t} \sim$ COVID-19
- Variety benefit (symm.) $\rho_{t} \equiv p_{t} / P_{t}=N_{t}^{\frac{1}{\theta-1}}$, elast. $(\theta-1)^{-1}$
- Flex vs Fixed p (generalize to Rotemberg)
- Markup $\mu_{t} \equiv \rho_{t} /\left(W_{t} / A_{t}\right)$; profit: $d_{t}=\rho_{t} y_{t}-W_{t} l_{t}$
- Free entry-exit equilibrium $\int_{0}^{N_{t}} d_{t}(\omega) d \omega=0$ (symmetry $\rightarrow d_{t}=0$)
- $\rightarrow C_{t}=Y_{t}=W_{t} L_{t}=N_{t}^{\frac{\theta}{\theta-1}}\left(\frac{A_{t} L_{t}}{N_{t}}-f\right)$
- Labor supply (ln C important! CRRA \& GHH variants) $\frac{W_{t}}{C_{t}}=L_{t}^{\varphi} \rightarrow L_{t}=\bar{L}_{\text {(except...) }}$

Endogenous Entry-Exit NK Model: Simplest, Static

- CES $Y_{t}=\left(\int_{0}^{N_{t}} y_{t}(\omega)^{\frac{\theta-1}{\theta}} d \omega\right)^{\frac{\theta}{\theta-1}}, \theta>1 \mathrm{ES}$ across ω
- CPI $P_{t}=\left(\int_{0}^{N_{t}} p_{t}(\omega)^{1-\theta} d \omega\right)^{\frac{1}{1-\theta}}$, demand $y_{t}(\omega)=\left(p_{t}(\omega) / P_{t}\right)^{-\theta} Y_{t}$
- Monopolist $\omega: y_{t}(\omega)=A_{t} l_{t}(\omega)-f$; negative $A_{t} \sim$ COVID-19
- Variety benefit (symm.) $\rho_{t} \equiv p_{t} / P_{t}=N_{t}^{\frac{1}{\theta-1}}$, elast. $(\theta-1)^{-1}$
- Flex vs Fixed p (generalize to Rotemberg)
- Markup $\mu_{t} \equiv \rho_{t} /\left(W_{t} / A_{t}\right)$; profit: $d_{t}=\rho_{t} y_{t}-W_{t} l_{t}$
- Free entry-exit equilibrium $\int_{0}^{N_{t}} d_{t}(\omega) d \omega=0$ (symmetry $\rightarrow d_{t}=0$)
$\rightarrow C_{t}=Y_{t}=W_{t} L_{t}=N_{t}^{\frac{\theta}{\theta-1}}\left(\frac{A_{t} L_{t}}{N_{t}}-f\right)$
- Labor supply (ln C important! CRRA \& GHH variants) $\frac{W_{t}}{C_{t}}=L_{t}^{\varphi} \rightarrow L_{t}=\bar{L}$ (except...)
- Simplest AD, static; money $M_{t}=P_{t} Y_{t}$ (generalize to Euler eq + Taylor rule)

The Entry-Exit Multiplier

- Proposition: The Entry-Exit Multiplier

$$
\begin{aligned}
N_{t}^{E F}= & \frac{1}{\theta} \frac{A_{t} \bar{L}}{f} \quad \text { vs } \quad N_{t}^{E S}=\frac{A_{t} \bar{L}}{f}-\frac{M_{t}}{f \bar{p}} \\
& \Longrightarrow \frac{d \log N_{t}^{E S}}{d \log A_{t}}>\frac{d \log N_{t}^{E F}}{d \log A_{t}}
\end{aligned}
$$

- Intuition: $A \downarrow$; F: prices \uparrow \& exit, both intensive \& extensive
- S: stuck with too low $p \rightarrow$ loss \rightarrow exit \rightarrow endog. "productivity" (variety) \downarrow
- adjustment disproportionately born by extensive margin
- Firms too few \& large = distortion
- more plausible for negative (large) shocks; inability to $\uparrow p$ in slump
- sticky p : Reduced form friction ~inability to contract despite loss \rightarrow exit

The Entry-Exit Multiplier -> AD Amplification?

Mind the nonlinearity!

Y^{F} (flex. prices) red dash, Y^{S} (sticky prices) solid blue

The Entry-Exit Multiplier -> AD Amplification?

Mind the nonlinearity!

Y^{F} (flex. prices) red dash, Y^{S} (sticky prices) solid blue

The Entry-Exit Multiplier -> AD Amplification?

Mind the nonlinearity!

Y^{F} (flex. prices) red dash, Y^{S} (sticky prices) solid blue

The Entry-Exit Multiplier -> AD Amplification?

Mind the nonlinearity!

Y^{F} (flex. prices) red dash, Y^{S} (sticky prices) solid blue

The Entry-Exit Multiplier -> AD Amplification?

Proposition To 2nd order ($x \log -\mathrm{dev}$. of X):

$$
\begin{aligned}
& y_{t}^{E F} \simeq \frac{\theta}{\theta-1} a_{t}+\frac{1}{2} \frac{\theta}{(\theta-1)^{2}} a_{t}^{2} \\
& y_{t}^{E S} \simeq \frac{\theta}{\theta-1} a_{t}+\frac{1}{2} \frac{\theta^{2}(2-\theta)}{(\theta-1)^{2}} a_{t}^{2} \\
\rightarrow & \text { Output gap: } y_{t}^{E S}-y_{t}^{E F} \simeq-\frac{1}{2} \theta a_{t}^{2}
\end{aligned}
$$

- Always negative (Second-order): \downarrow more w/ $A \downarrow$.
- Large negative shocks \rightarrow S response much larger.
- First-order identical (neutrality proposition Bilbiie, 2019)

The Entry-Exit Multiplier -> AD Amplification?

- Key: $Y(N)$ nonlinear, amplifies A higher-order (N linear in A)

$$
Y_{t}=N_{t}^{\frac{\theta}{\theta-1}}\left(\frac{A_{t} \bar{L}}{N_{t}}-f\right) \rightarrow y_{t} \simeq-\frac{1}{2} \frac{\theta}{(\theta-1)^{2}} n_{t}^{2}
$$

- N amplification to (negative) $A \rightarrow Y$ amplification by concavity
- decreasing with benefit of input variety $\frac{1}{\underline{\theta}-1}$
- crucial for extensive vs intensive, distorted w/ sticky p
- more intensive desirable but unfeasible, less important w/ closer substitutes:
- θ larger, less benefit of variety, less distortion.
- θ determines both entry-exit multiplier \& concavity, opposite effect
- Net effect of $\theta=$ amplify gap (disentangle later)

Quantitative (Nonlinear) Model

- Rotemberg pricing, ψ adjustment cost param. $C_{t}=\left(1-\frac{\psi}{2} \pi_{t}^{2}\right) Y_{t}$:

$$
\left(1+\pi_{t}\right) \pi_{t}=\beta E_{t}\left[\left(\frac{C_{t}}{C_{t+1}}\right)^{\frac{1}{\sigma}} \frac{N_{t}}{N_{t+1}} \frac{Y_{t+1}}{Y_{t}}\left(1+\pi_{t+1}\right) \pi_{t+1}\right]+\frac{\theta}{\psi}\left[\frac{1}{\mu_{t}}-\frac{\theta-1}{\theta}\left(1-\frac{\psi}{2} \pi_{t}^{2}\right)\right]
$$

- $1+\pi_{t} \equiv p_{t} / p_{t-1}$ and $1+\pi_{C, t} \equiv P_{t} / P_{t-1}$:

$$
\frac{1+\pi_{t}}{1+\pi_{C, t}}=\left(\frac{N_{t}}{N_{t-1}}\right)^{\frac{1}{\theta-1}} .
$$

- AD relevant: CPI $\pi_{t}^{C} \rightarrow$ intertemp. subst. Euler:

$$
\begin{aligned}
C_{t}^{-\frac{1}{\sigma}} & =\beta E_{t}\left(\frac{1+I_{t}}{1+\pi_{C, t+1}} C_{t+1}^{-\frac{1}{\sigma}}\right) . \\
1+I_{t} & =\beta^{-1}\left(1+\pi_{t}\right)^{\phi}
\end{aligned}
$$

- Param.: $U=\ln C-.5 L^{2}$, CES $\theta=3.8$, PC slope $\sim 0.01 ; \phi=1.5, A$ persist. . 5

Quantitative (Nonlinear) Model

Bonus：Entry Solves NK－RBC Hours Controversy

－known controversy：hours countercyclical wrt TFP shocks in NK
－RBC：opposite，and indeed central ingredient
－NK＋Entry－Exit \rightarrow convergence
－NK response driven by income effect of profits．Entry－exit eliminates that
－Best illustrated w／GHH preferences（ η inverse labor elasticity）

$$
\begin{aligned}
& l_{t}^{N F}=\eta^{-1} a_{t} \neq l_{t}^{N S}=-\theta a_{t} \\
& l_{t}^{E F}=l_{t}^{E S}=\frac{\theta}{\eta(\theta-1)-1} a_{t}
\end{aligned}
$$

Same response（with CES）

First-order AD Amplification w/ Entry-Exit Multiplier

- External returns $Y_{t}=N_{t}^{\lambda} \times C E S ; \rho_{t}=N_{t}^{\lambda+\frac{1}{\theta-1}}, \lambda>0$
- Planner $N_{t}^{o p t} / N_{t}^{E F}=1+\lambda(\theta-1) /\left(\lambda+\frac{\theta}{\theta-1}\right) \rightarrow$ too little entry when $\lambda>0$
- Key: Entry-Exit Multiplier + Inefficiency -> AD amplification

$$
\begin{aligned}
y_{t}^{E S}-y_{t}^{E F} & =\lambda(\theta-1) a_{t}+\frac{1}{2}\left(\lambda+\frac{1}{\theta-1}\right)\left[\lambda\left(\theta^{2}-1\right)+\theta-\theta^{2}\right] a_{t}^{2} \\
y_{t} & \simeq \lambda n_{t}+\frac{1}{2}\left(\lambda+\frac{1}{\theta-1}\right)\left(\lambda-\frac{\theta}{\theta-1}\right) n_{t}^{2} .
\end{aligned}
$$

$-\lambda>0 \Leftrightarrow \frac{d Y}{d N}>0$: higher "indirect effect" of A on Y through N

- disentangle benefit of input variety $\lambda+\frac{1}{\theta-1} \&$ elast. subst. θ for curvature
- \rightarrow 3-Equation NK model w/ Entry-Exit (textbook-isomorphic): see paper

Intertemporal vs Inter-good Substitution: CRRA utility

- C CES aggregate, labor inelastic (general: paper)

$$
U(C)=\frac{C^{1-\frac{1}{\sigma}}-1}{1-\frac{1}{\sigma}}
$$

$\ln C_{t}$ limit as $\sigma \rightarrow 1$

- σ elasticity of intertemporal substitution

Intertemporal vs Inter-good Substitution: CRRA utility

- Entry-exit multiplier

$$
n_{t}^{E S}=\frac{\theta}{\sigma} a_{t}=\frac{\theta}{\sigma} n_{t}^{E F} .
$$

- Output gap (first-order zero, CES envelope):

$$
y_{t}^{E S}-y_{t}^{E F} \simeq-\frac{1}{2}\left(\frac{\theta}{\sigma}-1\right) \frac{\theta}{\theta-1} a_{t}^{2} .
$$

Both entry-exit multiplier and AD amplification condition (restriction w/lnc):

$$
\underset{\in[4,8]}{\theta}>\underset{\in[0,2]}{\sigma} \Leftrightarrow \underline{\text { substitutability }}
$$

- Guerrieri Lorenzoni Straub Werning: (looks) opposite! is it?
- Complementary mechanisms, coexist \& reinforce each other:
- here, disaggregated (goods) subst., GLSW aggregate, sectoral-level complementarity

Conclusion

- A simple theory of supply-driven demand shortages

1. Entry-Exit Multiplier (of Supply Shocks) w/ Sticky prices
2. Aggregate Demand amplification (curvature, inefficiency w/ ext. returns)

- Plausible condition: more willing to substitute between goods than over time
- Solves an NK-RBC controversy: same-sign hours response to TFP
- Stabilization policy implication: subsidize entry/prevent exit
- Follow-up work: persistence, hysteresis, heterogeneity.

Intertemporal vs Inter-good Substitution: CRRA utility

- Nutshell: extensive N vs intensive y

$$
Y=\rho N y=N^{\frac{\theta}{\theta-1}} y
$$

- individual demand, intensive margin Euler exogenous extensive margin:

$$
y_{\omega t}=E_{t} y_{\omega t+1}-\left(1-\frac{\sigma}{\theta}\right) \frac{\theta}{\theta-1}\left(n_{t}-E_{t} n_{t+1}\right)-\sigma\left(i_{t}-E_{t} \pi_{t+1}\right)
$$

Exogenous exit $d n_{t}<0 \rightarrow$ demand for continuing goods \downarrow iff

$$
\sigma>\theta-\text { Edgeworth complementarity }
$$

- "real"(-PPI) natural rate falls $\mathrm{w} / a_{t} \downarrow$

$$
r_{\omega t}^{E F} \equiv\left(i_{t}-E_{t} \pi_{t+1}\right)^{E F}=\left(\frac{1}{\sigma}-\frac{1}{\theta}\right) \frac{\theta}{\theta-1}\left(E_{t} a_{t+1}-a_{t}\right)
$$

Intertemporal vs Inter-good Substitution: CRRA utility

- Here: aggregate $A+$ endogenous $N, \mathrm{GE} \rightarrow$ aggregate $Y: N$ and y
- Aggregate Euler:

$$
y_{t}=E_{t} y_{t+1}+\frac{\sigma}{\theta-1}\left(n_{t}-E_{t} n_{t+1}\right)-\sigma\left(i_{t}-E_{t} \pi_{t+1}\right)
$$

$i_{t}-E_{t} \pi_{t+1}$ fixed but AD- $r \uparrow$, exit $n_{t} \downarrow \rightarrow$ int. subst. to future

- General mechanism, arbitrarily sticky p
- GE: CES extensive \& intensive cancel out first-order (envelope)
- AD amplification: curvature \mathcal{E} inefficiency (external returns)
- Complementary mechanisms (coexist and reinforce each other):
- here, disaggregated (goods), GLSW sectors

[^0]: ${ }^{1}+$ Complete markets! (Representative agent).

[^1]: ${ }^{1}+$ Complete markets! (Representative agent).

[^2]: ${ }^{1}+$ Complete markets! (Representative agent).

