Model 0000000 Technological Change

Public policy

Technological Change and the Evolution of Finance

Robin Döttling Enrico Perotti

University of Amsterdam

November 19, 2015 DNB Annual Research Conference

Model

Technological Change

Public policy

The Great Mortgaging

- Since 1980s strong growth in mortgage lending over GDP across OECD countries (Jorda Schularick Taylor, 2014)
- Often larger than corporate credit
- Strong (though volatile) trend in house prices

Motivation 00000000	Model	Technological Change 0000000	Public policy
Falling interest ra	ates		

- Falling interest rates since 1980s
- Excess savings, secular stagnation (Summers, 2014)

Model 0000000

Technological Change

Public policy

Major technological change

- Increasing role of IT and human capital
- US firms increasingly invest in intangibles (Corrado Hulten 2010)

	1948-2007 (1)	1948-1972 (2)	1973-1994 (3)	1995-2007 (4)
1. Tangible	11.4	11.2	12.3	10.4
1a. ICT equipment	1.3	.6	1.6	2.0
1b. Non-ICT equipment	5.9	5.9	6.2	5.4
1c. Nonresidential structures ²	3.2	3.2	3.5	2.6
1d. Residential capital	1.1	1.3	1.1	.8
2. Intangible	8.6	5.9	9.2	12.8
2a. Computerized information ³	.6	.1	.6	1.6
2b. Innovative property	3.2	1.9	3.7	4.8
(1) R&D (NSF/BEA)	1.4	.9	1.6	2.1
(2) Other R&D, etc.4	1.2	.5	1.3	2.2
(3) Mineral exploration	.6	.5	.7	.5
2c. Economic competencies	4.8	3.9	4.9	6.4
(1) Brand equity	1.6	1.6	1.5	1.8
(2) Firm-specific resources	3.2	2.3	3.4	4.6

Table A1.1 Nonfarm Business Fixed Investment rates¹

Model

Technological Change

Public policy

Technological Change Intangible capital & net leverage

- Finance theory: external finance requires tangible pledge
- Steady drop in US corporate leverage
 - Related to lower CAPEX, increasing R&D (Bates et al. 2009)
 - Cross section net debt explained by intangibles (Falato et al. 2013)

Model

Technological Change

Public policy

Technological Change Growing wage inequality

- Growing wage inequality (Acemoglu Autor, 2011)
- Explained by skill biased technological change

Compositiion adjusted college/high-school log weekly wage ratio, 1963-2008

Motivation
0000000000

Model 0000000 Technological Change

Public policy

Framing

- Overlapping generations save for retirement:
- Four productive factors:
 - Physical capital, complementary with low-skill labor
 - Intangible capital, complementary with high-skill labor
- Outside finance requires tangible pledge
 - Only physical capital and houses can be funded externally

Motivation
00000000000

Model 0000000 Technological Change

Public policy

Contribution II: Policies on mortgage credit

- We compare prudential policies
- LTV limit
 - Lower house prices, less default
 - GE effect: redirects savings to production
- Subsidizing mortgages counterproductive
 - Higher house prices
 - Counterproductive

Motivation	Model	Technological Change	Public policy
000000000	0000000	0000000	00000
Related litera	ature l		

- Related empirical literature
 - Rise of household leverage, mortgage credit and housing wealth (e.g. Jorda et al. (2014), Turner (2015), Mian Sufi (2009), Rognlie (2015))
 - Skill biased technological change (e.g. Katz Murphy (1992), Autor et al. (2008), Acemoglu Autor (2011), Autor (2014), Akerman et al. (2015))
 - Increasing use of intangibles and decrease in net leverage (e.g. Corrado Hulten (2010), Bates et al (2009), Falato et al (2013), Hyytinen Pajarinen (2005), Hogan Hutson (2005))
- Inalienability of human capital
 - Hart and Moore (1994)
 - Bolton et al. (2015), Sun and Zhang (2015): inappropriability affects capital structure (employee equity compensation)

Motivation 00000000●	Model 0000000	Technological Change	Public policy
Related literatur	re II		

- Modelling savings based on OLG as in Samuelson (1958), Diamond (1965) and Tirole (1985)
 - Land unproductive store of value but not a bubble, as it yields utility
 - Giglio and Severo (2012): shift to intangibles creates condition for rational bubbles
- Secular stagnation (Summers, 2014, Eichengreen, 2015)
 - Explanations for low real rates: population growth, income inequality, global savings glut, debt overhang from crisis
 - Thwaites (2014): exogenous fall in price of capital goods
 - Here: depressed corporate borrowing due to technological change

Motivation 000000000	Model ●000000	Technological Change	Public pol
Households			

- Two goods, corn and land (or housing)
 - Land in fixed supply \overline{L}
 - Land price p_t
 - Overlapping generations: wage at t, consume at t+1
 - forced to save for retirement
 - Unit mass of households with utility: $U_t^i = c_{t+1}^i + v(L_t^i)$
 - Fraction ϕ high-skill, labor endowment \tilde{h}
 - Fraction (1ϕ) low-skill, labor endowment \tilde{l}

Motivation 000000000	Model o●ooooo	Technological Change	Public policy
Representati	ve firm		

Representative firm with nested CES production function

$$Y_t = \left[\eta_t (H_t^{\alpha} h_t^{1-\alpha})^{\rho} + (1-\eta_t) (\mathcal{K}_t^{\alpha} l_t^{1-\alpha})^{\rho}\right]^{\frac{1}{\rho}}$$

- η_t : stock of knowledge, captures technological change
- Physical capital K_t installed by firm
- Intangible capital H_t developed by creative skilled employees

Model 00€0000 Technological Change

Public policy

Creation of intangible capital

- Fraction ε of high-skill has innovative talent
- Use human capital to create $H_{t+1} = \beta h_t$ intangibles for the firm
 - Intangibles investment realized next period
 - No external funding needed

Motivation 000000000	Model ooo●ooo	Technological Change	Public policy
External Finance			

- Debt financing backed by tangible assets
 - HH borrowing backed by land (\rightarrow mortgages m_t)
 - Firm borrowing backed by physical capital (\rightarrow corporate debt d_t)
 - Require same return r_t
- Return to intangible hard to pledge (not appropriable)
- Innovators receive fraction ρ of returns
 - \blacktriangleright For now focus on $\rho=1$

Motivation 000000000	Model ○○○○●○○	Technological Change	Public policy

Household saving choice

- HHs maximize $c_{t+1} + v(L_t)$, wage income at t
- Save for retirement:
 - buy land, enjoy it by $v'(L_t^i)$, earn price increase
 - financial market, yields a return r_{t+1}
- ► FOC: compares returns from alternative investments:

$$\frac{(p_{t+1} - p_t) + v'(L_t^i)}{p_t} = r_{t+1}$$

Model 00000●0 Technological Change

Public policy

Land market clearing

- Land purchase may be funded externally
- ▶ In equilibrium agents consume same amount of land: $L_t^i = \overline{L}$
- Households with $y_t^i \ge p_t \overline{L}$ invest in financial claims)
- Others take out a mortgage to buy a house (borrowers)

Motivation	Model	Technological Change	Public policy
000000000	000000	0000000	00000

Financial market clearing

- Savings supply $(1 \alpha)Y_t$: income going to labor
- Intermediated via pledge of tangible assets
- Financial market clearing

$$\underbrace{(1-\alpha)Y_t}_{\text{savings}} = \underbrace{p_t \overline{L} + K_{t+1}}_{\text{savings vehicles}}$$

Intangibles not a savings vehicle

 Motivation
 Model
 Technological Change
 Public policy

 000000000
 0000000
 000000
 000000

Define technological progress

• Rise in knowledge η increases productivity:

$$\frac{\partial Y}{\partial \eta} > 0 \tag{H1}$$

Affects relative productivity (unlike Solow's residual)

$$Y_t = \left[\eta_t (H_t^{\alpha} h_t^{1-\alpha})^{\rho} + (1-\eta_t) (K_t^{\alpha} l_t^{1-\alpha})^{\rho}\right]^{\frac{1}{\rho}}$$

• Result: wage inequality widens: $\frac{q}{w} = \frac{\eta}{1-\eta} \frac{l}{h}$

 Motivation
 Model
 Technological Change
 Public policy

 000000000
 0000000
 0000000
 000000

Steady state: falling interest rates

Proposition 1

Technological progress (defined as H1) reduces steady-state interest rates: $\frac{dr}{d\eta} < 0$

- As firms move to intangibles, demand for corporate credit falls
- As a result, interest rates fall

Motivation	Model	Technological Change	Public policy
000000000	0000000	00●0000	
- ·			

Steady state comparative statics

- As $\frac{K}{Y}$ falls, $\frac{p}{Y}$ increase to absorb slack savings.
- Land prices rise to absorb slack savings: $p = \frac{v'(\bar{L})}{r}$
- Supply of mortgage funding rises, what about demand?
- ► (Later: outside equity, public debt) Case ρ < 1</p>

Model

Technological Change

Public policy

Rising mortgage credit

- Mortgage demand
 - Low rates, high land prices
 - Income inequality
- Growth effect
 - Higher income dampens need to borrow

 Motivation
 Model
 Technological Change
 Public policy

 000000000
 0000000
 0000000
 000000

Steady state: rising mortgage credit

Proposition 2

Technological progress increases steady-state mortgage credit to GDP, i.e. $\frac{d(m/Y)}{d\eta} \ge 0$, if and only if

$$\frac{dY/d\eta}{Y} \le \frac{1}{1-\eta} \left[1 + \frac{(1-\alpha)^2 r}{\alpha[(1-\phi) + \phi\varepsilon](p\bar{L}/Y)} \right]$$
(H2)

- Under (H2) growth effect is dominated
- Low-skill workers need to leverage up

Simulation

Motivation	Model	Technological Change	Public policy
000000000	0000000	00000●0	
Mortgage default			

- Introduce temporary, idiosyncratic "bad weather shocks" ξ_t^i
- $\blacktriangleright \mathbb{E}_t \xi_{t+1}^i = 0$
- $\xi_t^i > 0$ bad weather damages house, need to repair
- House trades at discount $p_t^i = p_t(1-\xi_t^i)$
- HH with $\xi_t^i > \hat{\xi}_t^i$ default, where

$$\hat{\xi}_t^i = 1 - \frac{p_{t-1}}{p_t} LTV_{t-1}^i$$

Motivation Model 0000000000 0000000		Technological Change 000000●	Public policy
-			

Technological change and mortgage defaults

• Aggregate mortgage default is $\chi_t \equiv 1 - G(\hat{\xi}_t^l)$

Corollary 1

Technological progress that results in rising mortgage credit relative to GDP (i.e. satisfies (H2)) also produces increasing steady-state default $(\frac{d\chi_t}{d\eta} \ge 0)$

Model 0000000 Technological Change

Public policy •0000

Is there a role for public policy?

- Falling interest rates boost house prices
- Increasing leverage and defaults
- Yet no case yet for limiting mortgage credit
- Economy dynamically efficient, no market failure
 - Controlling mortgage credit implies wealth redistribution
 - Reduces defaults and subsidizes output
 - Intervention as intergenerational political choice

Intergenerational redistribution via LTV limit

Set m̄ to maximize aggregate utility in steady state ∫₀¹ EUⁱdi
 FOC

- In the long run, borrowing limit benefits all agents
- Low-skill workers benefit most: higher wages and lower rates
- However, current generation of homeowners loses out
- ► No welfare improvement without some market failure

Motivation 000000000	Model 0000000	Technological Change	Public policy
Limiting mort	gage credit: si	mulated time path	

Note: here abstracting from foreclosure cost

Motivation 000000000	Model 0000000	Technological Change	Public policy
Welfare analysis			

- Arguably, mortgage defaults have significant welfare costs
 - IMF (2003, 2009), Claessens et al. (2009): property price busts long lasting and result in large output losses
 - Mian and Sufi (2014), Mian Rao and Sufi (2013): housing downturn of 2007 responsible for drop in aggregate demand and high unemployment.
- ► Assume deadweight loss from default C(\(\chi_t\)), for generation t - 1
- We show that there exists inter-generational transfer scheme {x_{T+t}}[∞]_{t=0} s.t. all generations are better off (e.g. pension)

Public policy II: mortgage subsidy

- Subsidy $\tau_t < r_t$ on mortgages
 - Effective interest rate reduces to $(r_t \tau_t)$
- Transfer from rich lenders to poor borrowers
- ► However, GE effects divert savings to land
 - Opposite of LTV limit
 - Less capital investment, lower wages
 - Low-skill workers affected particularly

Motivation
0000000000

Model 0000000 Technological Change

Public policy

Conclusion

- Technological change triggers endogenous developments
 - Shift to intangibles, declining corporate credit demand
 - Rising income inequality
- Two trends combine to explain low rates, high asset prices, growth in mortgage credit
- General equilibrium effects motivate LTV limit
- Mortgage subsidy counterproductive

Intangible capital

US firms increasingly use intangible inputs (Corrado Hulten, 2010)

	1948-2007 (1)	1948-1972 (2)	1973-1994 (3)	1995-2007 (4)
1. Tangible	11.4	11.2	12.3	10.4
1a. ICT equipment	1.3	.6	1.6	2.0
1b. Non-ICT equipment	5.9	5.9	6.2	5.4
1c. Nonresidential structures ²	3.2	3.2	3.5	2.6
1d. Residential capital	1.1	1.3	1.1	.8
2. Intangible	8.6	5.9	9.2	12.8
2a. Computerized information ³	.6	.1	.6	1.6
2b. Innovative property	3.2	1.9	3.7	4.8
(1) R&D (NSF/BEA)	1.4	.9	1.6	2.1
(2) Other R&D, etc.4	1.2	.5	1.3	2.2
(3) Mineral exploration	.6	.5	.7	.5
2c. Economic competencies	4.8	3.9	4.9	6.4
(1) Brand equity	1.6	1.6	1.5	1.8
(2) Firm-specific resources	3.2	2.3	3.4	4.6

Table A1.1 Nonfarm Business Fixed Investment rates¹

Calibration exercise

- Calibrate parameters to the US economy in 1980
- Change η over time, target intangible-tangible investment ratios of Corrado and Hulten (2009)

Parameter	Calibration method
$\alpha = 0.33$	Income share capital
$\phi = 0.17$	Fraction of population Bachelor degree or higher
ho= 0.7/1.7	Elasticity of substitution high-skill/low-skill $= 1.7$
arepsilon=0.18	Fraction of population self-employed
$ar{L}=1$	Normalization
$\tilde{l} = 25, \tilde{h} = 305,$	Target steady state interest rate, wage gap
$\eta = 0.79$	and tangible-intangible ratio 1980
$\overline{ar{\eta}}=$ 0.93	Target steady state tangible-intangible ratio in 2000s

Simulated time path of technological change

Simulated time path of technological change

Back

Comparing across steady states

Extension: shares as savings vehicle

- If $\rho < 1$, return to intangibles partially appropriable by firm
- Return can be partially promised to equity, additional savings vehicle
- Steady state share price $f = (1 \gamma) \frac{HR}{r}$

Extension: shares as savings vehicle

Now shares absorb some of the savings

