MACROECONOMICS AND HETEROGENEITY, INCLUDING INEQUALITY

Dirk Krueger¹ Kurt Mitman² Fabrizio Perri³

¹University of Pennsylvania, CEPR, CFS, NBER and Netspar

²IIES, Stockholm University and CEPR

³Federal Reserve Bank of Minneapolis, CEPR and NBER

De Nederlandsche Bank Annual Conference November, 2015

THE QUESTION

- ► Broad: How important is micro heterogeneity for macro outcomes?
- ► Narrow: (addressed here):
 - ► How much Household, income and wealth heterogeneity matters for aggregate expenditures, investment and output response to a large macro shock (Great Recession)?
 - ► How do social insurance policies impact *aggregate outcomes*?
 - ► And how are consumption and welfare losses *distributed* across the population?

THE QUESTION

- ► Broad: How important is micro heterogeneity for macro outcomes?
- ► Narrow: (addressed here):
 - ► How much Household, income and wealth heterogeneity matters for aggregate expenditures, investment and output response to a large macro shock (Great Recession)?
 - ► How do social insurance policies impact *aggregate outcomes*?
 - ► And how are consumption and welfare losses *distributed* across the population?
- ► Excluded Questions
 - ► *Firm* Heterogeneity and business cycles (Khan and Thomas, 2008 or Bachmann, Caballero and Engel, 2013)

THE QUESTION

- ► Broad: How important is micro heterogeneity for macro outcomes?
- ► Narrow: (addressed here):
 - ► How much Household, income and wealth heterogeneity matters for aggregate expenditures, investment and output response to a large macro shock (Great Recession)?
 - ► How do social insurance policies impact *aggregate outcomes*?
 - ► And how are consumption and welfare losses *distributed* across the population?
- ► Excluded Questions
 - ► *Firm* Heterogeneity and business cycles (Khan and Thomas, 2008 or Bachmann, Caballero and Engel, 2013)
- ► In preparation for forthcoming Handbook of Macroeconomics: comments very welcome!

WEALTH HETEROGENEITY AND MACRO OUTCOMES

- ► Earnings fall in recessions (employment/wages fall)
- ► If wealth matters for household expenditure responses (precautionary motives, hands to mouth behavior)..
- ► ..then wealth distribution matters for aggregate C responses in recessions
- ► If, in addition, aggregate C matters for Y (Endogenous TFP, Nominal Rigidities), then wealth distribution matters for aggregate Y dynamics

PLAN: DATA MEETS THEORY

- Empirical analysis using PSID y, c, a data:
 - ▶ How did wealth inequality look prior to Great Recession?
 - ► How did the Great Recession hit different segments of the distribution ?
 - ▶ How did these segments responded?

PLAN: DATA MEETS THEORY

- Empirical analysis using PSID y, c, a data:
 - ▶ How did wealth inequality look prior to Great Recession?
 - ► How did the Great Recession hit different segments of the distribution ?
 - ► How did these segments responded?
- ► *Quantitative* analysis using versions of heterogeneous household business cycle model (Krusell and Smith, 1998):
 - ► Can the model match the cross-sectional facts?
 - How much does distribution matter for response of C, I, Y to Great Recession shock?
 - ► What are the aggregate consequences of falling expenditures when TFP is endogenous?

PLAN: DATA MEETS THEORY

- Empirical analysis using PSID y, c, a data:
 - ▶ How did wealth inequality look prior to Great Recession?
 - ► How did the Great Recession hit different segments of the distribution ?
 - ▶ How did these segments responded?
- ► *Quantitative* analysis using versions of heterogeneous household business cycle model (Krusell and Smith, 1998):
 - ▶ Can the model match the cross-sectional facts?
 - How much does distribution matter for response of C, I, Y to Great Recession shock?
 - ► What are the aggregate consequences of falling expenditures when TFP is endogenous?
- ► *Policy* analysis: stylized unemployment insurance system:
 - ▶ How does it impact the wealth distribution?
 - ▶ How does it impact C for a *given* wealth distribution?
 - ► How is the distribution of welfare losses from a Great Recession shaped by policy?

Empirical Analysis

The data

- ▶ PSID waves of 2004-2006-2008-2010
- ► Pluses
 - ► Panel dimension: can assess how a different households changed actions (expenditures) during the Great Recession
 - ► Detailed information on earnings, income, wealth and consumption
 - ► Although sample not large (≈ 8000), PSID yields similar results as other surveys (CPS, SCF) along comparable dimensions
- ► Minuses
 - ► Coarse time series dimension (biannual surveys between 2004 and 2010)
 - ▶ Misses the super wealthy

The data

- ▶ Variables of Interest
 - Net Worth = a = Value of all assets (including real estate) minus liabilities
 - ➤ Disposable Income = y = Total money income net of taxes (computed using TAXSIM)
 - Consumption Expenditures = c = Expenditures on durables, non durables and services (excluding health)
- ► Sample
 - ► All households in PSID waves 2004-2006-2008-2010, with at least one member age 22-60

AGGREGATES IN PSID (FULL SAMPLE)

B. Per Capita Consumption Expenditures

2004: PSID \$21634, BEA \$24120

A. Per Capita Disposable Income

2004/2005: PSID \$15084, BEA \$18705

AGGREGATES IN PSID (FULL SAMPLE)

B. Per Capita Consumption Expenditures

2004: PSID \$21634, BEA \$24120 2004/2005: PSID \$15084, BEA \$18705

▶ Great Recession evident in PSID

A. Per Capita Disposable Income

► Expenditures fall more, recover less in PSID than in BEA

Heterogeneity (Inequality) in 2006: Marginal Distributions

	у	с	a	a (SCF 07)
Mean (2006\$)	$62,\!549$	$43,\!980$	$291,\!616$	$497,\!747$
% Share: Q1	4.3	5.7	-1.2	-0.3
Q2	9.7	10.7	0.7	0.9
Q3	15.1	15.6	4.1	4.2
Q4	22.9	22.5	13.3	11.8
Q5	48.0	45.5	83.1	83.4
90 - 95	10.8	10.4	14.0	11.1
95 - 99	13.1	11.4	23.2	25.6
Top 1%	7.8	8.0	30.2	34.1
Sample Size		6442		14725

- \blacktriangleright a: Bottom 40% holds basically no wealth
- \blacktriangleright a distribution in PSID \simeq SCF except at very top
- ► y,c: less concentrated

Heterogeneity (Inequality) in 2006: Joint Distributions

	% Sha	are of:	Expend.	Age	Edu
a Quint.	у	с	Rate $(\%)$		
Q1	8.6	11.3	92.2	37.1	12.2
Q2	10.7	12.4	81.3	38.6	12.0
Q3	16.6	16.8	70.9	41	12.3
Q4	22.6	22.4	69.6	45.4	12.7
Q5	41.4	37.2	63.1	47.9	13.9

- ► a correlated with y and saving: wealth-rich earn more and save at a higher rate
- ▶ Wealth rich older and more educated
- ▶ Bottom 40% hold no wealth, still account for almost 25% of spending

Pre v/s Post Recession dynamics in A,y,c/y across a

	Δ a		Δ y (%)		$\Delta~{ m c/y}~{ m (pp)}$	
	04-06	06-10	04-06	06-10	04-06	06-10
Q1	$27\mathrm{k}(+\infty)$	$12\mathrm{k}(+\infty)$	14.3	12.3	-1.4	-8.8
Q2	40k(140%)	$7\mathrm{k}(35\%)$	13.8	9.1	-1.5	-4.2
Q3	$40 \mathrm{k}(50\%)$	$7\mathrm{k}(9\%)$	9.4	3.9	6.3	-1.5
Q4	$60\mathrm{k}(28\%)$	8k(4%)	10.8	3.3	-1.3	-4.1
Q5	$266 \mathrm{k}(21\%)$	-119k(-11%)	3.4	-2.3	1.4	-3.2

- ▶ Pre-Recession (04-06): uniform a,y growth, faster at the bottom (mean reversion)
- ▶ Post Recession (06-10):
 - ▶ Uniform slowdown in a,y growth, more marked at the top
 - ▶ Uniform fall in expend. rates, more marked at the bottom

▶ Slowdown in expenditures similar ($\simeq 6\%$) for Q5 and Q1

	2004-2006			2006-		
	$\frac{\Delta C_i}{C_i}$	$ ho_i rac{\Delta Y_i}{C_i}$	$Y_i \frac{\Delta \rho_i}{C_i}$	$\frac{\Delta C_i}{C_i}$	$ ho_i rac{\Delta Y_i}{C_i}$	$Y_i \frac{\Delta \rho_i}{C_i}$
Q1 (bottom)	6.8	7.7	-1.0	1.0	7.4	-6.4
Q5 (top)	3.1	1.7	1.3	-3.7	-1.1	-2.6

- ▶ Slowdown in expenditures similar ($\simeq 6\%$) for Q5 and Q1
- ▶ For Q5 both HTM and CER terms important

►

	2004-2006			2006-		
	$\frac{\Delta C_i}{C_i}$	$ ho_i rac{\Delta Y_i}{C_i}$	$Y_i \frac{\Delta \rho_i}{C_i}$	$\frac{\Delta C_i}{C_i}$	$ ho_i rac{\Delta Y_i}{C_i}$	$Y_i \frac{\Delta \rho_i}{C_i}$
Q1 (bottom)	6.8	7.7	-1.0	1.0	7.4	-6.4
Q5 (top)	3.1	1.7	1.3	-3.7	-1.1	-2.6

- ▶ Slowdown in expenditures similar ($\simeq 6\%$) for Q5 and Q1
- ▶ For Q5 both HTM and CER terms important
- ▶ For Q1 almost all driven by CER. Points to precautionary reasons as important to explain GR expenditure drops (not a simple HtM story)

MOVING TO THE THEORY

- ► Is a standard macro model with heterogeneous agents a la Krusell and Smith (1998) consistent with these facts?
- ► Use model as laboratory for *quantifying*:
 - ► How does the wealth distribution affect C, I, Y responses to Great Recession, and how this impact is shaped by social insurance policies
 - ► Welfare losses of aggregate and idiosyncratic shocks across the wealth distribution

THE MODEL AND CALIBRATION

Aggregate Technology

► Standard production function:

$$Y = Z^* K^{\alpha} N^{1-\alpha}$$

• Total factor productivity Z^* in turn is given by

$$Z^* = ZC^{\omega}$$

- C is aggregate consumption
- $\omega \ge 0$: aggregate demand externality.
- Benchmark model $\omega = 0$
- ▶ Focus on $Z \in \{Z_l, Z_h\}$: recession and expansion.

$$\pi(Z'|Z) = \begin{pmatrix} \rho_l & 1-\rho_l \\ 1-\rho_h & \rho_h \end{pmatrix}$$

- ► Capital depreciates at a constant rate $\delta = 0.025$ quarterly.
- Capital share: $\alpha = 36\%$

HOUSEHOLD PREFERENCES

- ▶ Measure 1 of households
- Period utility function $u(c) = \log(c)$
- Follow Carroll et al. (2014):
 - ► Households draw discount factor β at birth from $U[\bar{\beta} \epsilon, \bar{\beta} + \epsilon]$
 - Choose $\bar{\beta}, \epsilon$ to match K/Y = 10.26, Wealth Gini=0.82
 - $(\bar{\beta} = 0.9835, \epsilon = 0.0104)$
- ► Working life is 40 years, constant quarterly death probability $\theta = 1 1/160$

HOUSEHOLD ENDOWMENTS

- ▶ Time endowment normalized to 1
- Idiosyncratic unemployment risk, $s \in S = \{u, e\}$
 - $\blacktriangleright \ \pi(s'|s,Z',Z)$
- \blacktriangleright Idiosyncratic labor productivity risk, $y \in Y$
 - ► Estimate AR(1) from annual PSID data (1967-1996) only not-unemployed households: quarterly process with $(\hat{\phi}, \hat{\sigma}_y^2) = (0.95, 0.04)$. (Discretized via Rouwenhorst method)
- ▶ $a \in A$ asset holdings
- ▶ No borrowing, perfect annuity markets
- Households born with 0 assets, and $y = \min Y$

Cross-sectional distribution: $\Phi(y, s, a, \beta)$

Aggregate state of economy summarized by: (Z, Φ)

GOVERNMENT POLICY

- ► Balanced budget unemployment insurance system
 - Replacement rate $\rho = \frac{b(y,Z,\Phi)}{w(Z,\Phi)y}$ if s = u
 - Proportional labor income tax $\tau(Z, \Phi)$
 - ► Baseline $\rho = 0.5$ Substantial Replacement

Fraction unemployed, $\Pi_Z(u)$, and thus tax rate τ only depends on the current aggregate state Z and replacement rate ρ :

$$\tau(Z,\Phi;\rho) = \left(\frac{\Pi_Z(u)\rho}{1 - \Pi_Z(u) + \Pi_Z(u)\rho}\right) = \left(\frac{1}{1 + \frac{1 - \Pi_Z(u)}{\Pi_Z(u)\rho}}\right) = \tau(Z;\rho)$$

RECURSIVE FORMULATION OF HH PROBLEM

$$\begin{aligned} v(x; Z, \Phi) &= \max_{\substack{c, a' \geq 0 \\ \text{subj. to}}} u(c) + \theta \beta \mathbb{E}_{s', y', Z'|y, Z} [v(x'; Z', \Phi')] \\ &\text{subj. to} \end{aligned}$$
$$\begin{aligned} c + a' &= (1 - \tau(Z; \rho)) w(Z, \Phi) y \left[1 - (1 - \rho) \mathbf{1}_{s=u}\right] + \frac{(1 + r(Z, \Phi) - \delta) a}{\theta} \\ \Phi' &= H(Z, \Phi', Z') \\ x &= (y, s, a, \beta) \end{aligned}$$

Equilibrium concept: • Recursive Competitive Equilibrium

Calibration of Aggregate Productivity Risk

The expected duration of a recession is:

$$EL_{l} = 1 \times 1 - \rho_{l} + 2 \times \rho_{l} (1 - \rho_{l}) + \dots = \frac{1}{1 - \rho_{l}}$$

This suggests the following calibration strategy:

- 1. Choose ρ_l to match the average length of a severe recession EL_l . This is a measure of the persistence of recessions.
- 2. Given ρ_l choose ρ_h to match the fraction of time the economy is in a severe recession, Π_l .
- 3. Choose $\frac{Z_l}{Z_h}$ to match the decline in GDP per capita in *severe* recessions relative to normal times

WHAT IS A SEVERE RECESSION?

- ▶ We define a severe recession to start when $u \ge 9\%$ and to last as long as $u \ge 7\%$.
- ▶ From 1948 to 2014.III two severe recessions, 1980.II-1986.II and 2009.I-2013.III.
- ► Frequency of severe recessions: Π_l = 16.48%, expected length of 22 quarters.
- ► Average unemployment rate $u(Z_l) = 8.39\%$, $u(Z_h) = 5.33\%$
- ▶ Implied transition matrix:

$$\pi = \left(\begin{array}{cc} 0.9545 & 0.0455 \\ 0.0090 & 0.9910 \end{array} \right)$$

• We target average output drop in severe recessions: $\frac{Y_l}{Y_h} = 0.9298$. This requires setting $\frac{Z_l}{Z_h} = 0.9614$.

IDIOSYNCRATIC EMPLOYMENT STATUS TRANSITIONS

Transition matrices $\pi(s'|s, Z', Z)$ for employment status $s \in \{u, e\}$, are uniquely pinned down by the quarterly job finding rates (computed from CPS)

• Economy is and remains in a recession: $Z = Z_l Z' = Z_l$

(0.34)	0.66)
(0.06)	0.94)

► Economy is and remains in normal times: $Z = Z_h Z' = Z_h$

(0.19)	0.81
(0.05)	0.95

• Economy slips into recession: $Z = Z_h Z' = Z_l$

 $\begin{pmatrix} 0.34 & 0.66 \\ 0.07 & 0.93 \end{pmatrix}$

• Economy emerges from recession: $Z = Z_l \cdot Z' = Z_h$

 $\begin{pmatrix} 0.22 & 0.78 \\ 0.04 & 0.96 \end{pmatrix}$

RESULTS

VERSIONS OF THE MODEL

- ► For today we focus on:
 - 1. Standard Krusell and Smith economy (single discount factor + income risk + low ρ)
 - 2. 1. + Heterogenous β 's + high $\rho + \theta > 0$ [Benchmark]
 - 3. 2. + Demand externality
- Endogenous labor suppy (and/or demand) is next avenue to explore

Wealth Inequality: data v/s model

New Worth	Da	ta	Mod	els
% Share held by:	PSID, 06	SCF, 07	Bench	KS
Q1	-1.2	-0.3	0.3	7.2
Q2	0.7	0.9	0.5	12.0
Q3	4.1	4.2	3.0	16.8
Q4	13.3	11.8	11.6	$23,\!6$
Q5	83.1	83.4	84.9	40.3
90 - 95	14	11.1	15.9	10.1
95 - 99	23.2	25.6	28.9	10.4
T1%	30.2	34.1	24.5	3.7

- Benchmark economy does a good job matching bottom and top of wealth distribution, misses very top
- ▶ Original KS economy misses inequality at top and bottom

Joint Distributions (2006): data v/s model

		$\% \mathrm{Sha}$				
	y		С		% c/y	
a Quintile	Data	Model	Data	Model	Data	Model
Q1	8.6	7.5	11.3	7.5	92.2	100.1
Q2	10.7	13.6	12.4	13.5	81.3	98.9
Q3	16.6	19.1	16.8	18.6	70.9	97.1
Q4	22.6	24.6	22.4	23.8	69.6	96.4
Q5	41.4	35.2	37.2	36.7	63.1	104.3

- ▶ Model captures that bottom 40% has almost no wealth but significant consumption share
- ► But understates income and overstates consumption rates of the rich

Pre V/S Post Recession dynamics in a, y, c/yacross a: Data V/S Model

	$\Delta \mathrm{a}(\%)$		Δy	(%)	$\Delta { m c/y(pp)}$		
	2004-06	2006-10	2004-06	2006-10	2004-06	2006-10	
			DA	TA			
Q1	$+\infty$	$+\infty$	14	12	-1.4	-8.8	
Q3	50	9	9	4	6.3	-1.5	
Q5	21	-11	3	-2	1.4	-3.2	
	MODEL						
Q1	471	309	43	30	-5.7	-6.1	
Q3	22	10	3	-5	-2.5	0.5	
Q5	3	1	-5	-15	4.8	14.3	

- Too small changes in a at the top (no price movements)
- ► Overall increase in c/y (as opposed to decline in the data), but captures differential change in c/y across a distrib.
- Too much y growth for poor and too little for rich (too much mean reversion)

MODEL OVERALL ASSESSMENT

► Successes

- ► Captures salient features of cross-sectional wealth distribution and the joint distribution of wealth, income and expenditures.
- ► Captures that low-wealth households cut their expenditure to a larger degree during a recession.
- ► Problems
 - ► In the model the only difference between wealthy and poor is luck. The data suggest additional differences. Wealthy have lower expenditure rates, have higher income level and growth.
 - ▶ No movement in wealth due to prices

Inequality and the Aggregate Dynamics of a Severe Crisis

In order to understand how wealth inequality matters for C, I, Y dynamics, we compare:

- ► KS economy, with low wealth inequality (behaves ≈ as RA economy)
- The calibrated heterogenous β (baseline) economy
- ► Note: calibration insures both economies have same wealth (capital) to output ratio

IRF, 2 Economies: One period shock

Consumption drop: KS -1.78% vs Baseline -2.64%

CONSUMPTION FUNCTIONS & WEALTH DISTRIBUTION

Het β

- ► KS ≃ RA (ρ = 0.1) has more concave consumption function, but little mass close to zero (no impatient hholds)
- ► Benchmark ($\rho = 0.5$) less concave but mass of low β hholds end up with zero wealth

$\operatorname{Summary}$

- ► On impact, realistic heterogeneity in wealth generates an additional aggregate consumption drop of 0.86pp (2.64% vs 1.78%)
- ► Sharper reduction in aggregate consumption leads to a faster recovery (because of investment)
- ▶ But: effect on GDP is small (I is small part of K and Z, L exogenous)

THE IMPACT OF SOCIAL INSURANCE POLICIES

- ► How does presence of unemployment insurance (UI) affect the response of economy to aggregate shock?
- ► Two experiments:
 - ▶ Benchmark economy: $\rho = 0.5$ v/s $\rho = 0.1$ (different wealth distribution)
 - Run Benchmark economy: $\rho = 0.5$, hit the economy with recession and $\rho = 0.1$ (fixed wealth distribution)

THE IMPACT OF SOCIAL INSURANCE POLICIES

- ► How does presence of unemployment insurance (UI) affect the response of economy to aggregate shock?
- ► Two experiments:
 - ▶ Benchmark economy: $\rho = 0.5$ v/s $\rho = 0.1$ (different wealth distribution)
 - ▶ Run Benchmark economy: $\rho = 0.5$, hit the economy with recession and $\rho = 0.1$ (fixed wealth distribution)
- ▶ Important caveats:
 - UI does not impact individual/firm incentives to seek/create jobs (will address in model with endogenous labor supply)

IRF, 2 UI ECONOMIES: ONE TIME SHOCK

Consumption drop: Low UI -3.26% vs Baseline -2.64%

CONSUMPTION FUNCTIONS & WEALTH DISTRIBUTION

High UI

Low UI

- ▶ Benchmark: 8% at zero NW, compared to 1% with low UI
- ► Impact of UI on aggregate consumption response muted because in its absence the wealth distribution shifts

IRF, FIXED DISTRIBUTION: ONE TIME SHOCK

Consumption drop: Low UI -6.24% vs Baseline -2.64%

The importance of the Distribution

- ► Low UI economy has two offsetting effects:
 - ► Consumption policy functions get steeper
 - ▶ Wealth distribution shifts to right
 - ▶ Total effect: extra 0.62pp drop in C
- ▶ For a fixed wealth distribution:
 - ► Unexpected drop in social insurance leads to 3.8pp additional drop in C
 - ► But, does not affect output in short run and in the medium run leads to an *increase* in Y because of larger K

Inequality and Aggregate Economic Activity

- \blacktriangleright So far, output has been predetermined in the short-run
- ▶ Now: Incorporate supply and demand-side elements
 - ► The supply side: Endogenous Labor (not today)
 - ▶ The demand side: Consumption Externality

A Model with an Aggregate Consumption Externality

- Recall $Z^* = ZC^{\omega}$, now switch on $\omega > 0$
- Reduction in C feeds back into TFP
- "Demand management" may be called for even in absence of household heterogeneity
- Social insurance may be desirable from individual insurance and aggregate point of view
- ▶ Ours is a reduced form version of real aggregate demand externalities in spirit of e.g. Bai et al. (2012), Huo and Rios-Rull (2013) and Kaplan and Menzio (2014)
- ▶ Alternatively, could have introduced nominal rigidities that make output partially demand determined (see, e.g., Challe et al 2014, Gornemann et al 2013)

THOUGHT EXPERIMENTS

- 1. Re-calibrate Z, ω to match output volatility, so model generates reasoble business cycles
- 2. Repeat the low-UI with fixed distribution thought experiment. Aggregate benefits of demand stabilization through UI?

Fall in C, Y stemming from lower social insurance: Fixed Wealth Distribution

 Persistent negative effect on output of low UI in demand externality economy: social insurance can significantly impact GDP!

CONCLUSIONS: WHERE DO WE STAND?

- ► In a model that does a decent job in matching cross-sectional distributions, we find wealth inequality has significant effects on aggregate consumption dynamics (1% to 3%)
- ► With demand externality channel, wealth inequality can affect also GDP
- ► Social insurance policies can have significant effect on consumption, and on GDP

CONCLUSIONS: MOVING FORWARD

- ► Model's issues
 - ▶ Rich have larger consumption share than in data. Since wealth-rich households ~ PI consumers (with low precautionary motive), model likely *understates* aggregate consumption decline.
 - ► Model misses completely wealth dynamics due to price changes that might also play a role in understanding consumption responses
 - ► Employment fluctuations are exogenous
- ► Potential fixes:
 - ► Higher saving rate for rich: high income state (a la Casteneda, Dias-Gimenez and Rios-Rull (2003), long retirement
 - ► Financial shocks
 - ► Endogenous labor supply decision, nominal rigidities

APPENDIX SLIDES

RECURSIVE COMPETITIVE EQUILIBRIUM

Definition

A recursive competitive equilibrium is given by value and policy functions of the household, v, c, k', pricing functions r, w and an aggregate law of motion H such that

- 1. Given the pricing functions r, w, the tax rate and the aggregate law of motion H, the value function v solves the household Bellman equation above and c, k' are the associated policy functions.
- 2. Factor prices are given by

$$w(Z, \Phi) = ZF_N(K, N)$$

 $r(Z, \Phi) = ZF_K(K, N)$

- 3. Budget balance in the unemployment system
- 4. Market clearing

RECURSIVE COMPETITIVE EQUILIBRIUM

5. Law of motion: for each Borel sets $(S, \mathcal{Y}, \mathcal{A}, \mathcal{B}) \in P(S) \times P(\mathcal{Y}) \times B(\mathcal{A}) \times P(\mathcal{B})$

$$H(Z,\Phi,Z')(\mathcal{S},\mathcal{Y},\mathcal{A},\mathcal{B}) = \int Q_{(Z,\Phi,Z')}((s,y,a,\beta),(\mathcal{S},\mathcal{Y},\mathcal{A},\mathcal{B}))d\Phi$$

The Markov transition function Q itself is defined as follows. For $0 \notin \mathcal{A}$ and $y_1 \notin \mathcal{Y}$:

$$= \sum_{s' \in \mathcal{S}} \sum_{y' \in \mathcal{Y}} \sum_{\beta' \in \mathcal{B}} \begin{cases} \theta \pi(s'|s, Z', Z) \pi(y'|y) \pi(\beta'|\beta) : & a'(s, y, a, \beta; Z, \Phi) \in \mathcal{A} \\ 0 & else \end{cases}$$

and

$$\begin{aligned} Q_{(Z,\Phi,Z')}((s,y,a,\beta),(\mathcal{S},\{y_1\},\{0\},\mathcal{B})) &= (1-\theta)\sum_{s'\in\mathcal{S}}\Pi_Z(s')\sum_{\beta'\in\mathcal{B}}\Pi(\beta') \\ + & \sum_{s'\in\mathcal{S}}\sum_{\beta'\in\mathcal{B}} \left\{ \begin{array}{c} \theta\pi(s'|s,Z',Z)\pi(y_1|y)\pi(\beta'|\beta): & a'(s,y,a,\beta;Z,\Phi) = 0 \\ 0 & else \end{array} \right. \end{aligned}$$

IDIOSYNCRATIC EMPLOYMENT STATUS TRANSITIONS

• $\pi(s'|s, Z', Z)$ has the form:

$$\begin{array}{ccc} \pi^{Z,Z'}_{u,u} & \pi^{Z,Z'}_{u,e} \\ \pi^{Z,Z'}_{e,u} & \pi^{Z,Z'}_{e,e} \end{array}$$

- ► where, e.g., \$\pi_{e,u}^{Z,Z'}\$ is the probability that unemployed individual finds a job between today and tomorrow, when aggregate productivity transits from Z to Z'.
- ► Targeted unemployment rates $u(Z_l), u(Z_h)$ impose joint restriction on $(\pi_{u,u}^{Z,Z'}, \pi_{e,u}^{Z,Z'})$, for each (Z, Z') pair.
- ► Thus transition matrices are uniquely pinned down by the quarterly job finding rates
- ► Compute job-finding rate (using monthly job-finding and separation rates) and correct for time aggregation Return

IRF, 2 ECONOMIES: "TYPICAL" GREAT RECESSION

Amplification from Demand Externality

Welfare Losses of Great Recessions

- ► Question: how painful is it to lose your job in the great recession? And why?
- ► Welfare losses (% of lifetime consumption):
 - ► Are large (2.5%-6.5%)
 - ▶ Are strongly decreasing in wealth, especially with low UI
 - ► Have significant aggregate component (captures wage losses + increased future unemployment risk)
 - ► Get larger with consumption externality and low UI (up to 12.5%)

Welfare Losses with Demand Externality

 $g_{eu,Z_hZ_l}(y,a,\beta) \approx g_{ee,Z_hZ_l}(y,a,\beta) + g_{eu,Z_lZ_l}(y,a,\beta)$