Michelson-Morley, Fisher, and Occam:
The Radical Implications of Stable Inflation at
the Zero bound

Also –

Stepping on a Rake: the Fiscal Theory of Monetary Policy

John H. Cochrane Hoover Institution, Stanford University

October 2017

Michelson-Morley; The long quiet ZLB

▶ What happens at the ZLB? Nothing.

Michelson-Morley; The long quiet ZLB

- ▶ Quiet, stable π at long period of $i \approx 0$, $\phi << 1$, huge M.
- No deflation spiral. No M/QE inflation. No sunspot volatility. No change in π dynamics. $\sigma(\pi)$ lower?

US unemployment and GDP

Larger shock but same dynamics. Faster decline in u, lower $\sigma(\Delta Y)$? $E(\Delta Y)$ is too low, but is that monetary policy?

Japan

- ▶ 20+ years at $i \approx 0$ with no spiral, sunspot $\sigma(\pi)$.
- ▶ Spiral fear understandable in 2001.

Europe

► Lower rates ↔ lower inflation.

Core Monetary Doctrines / ZLB predictions

- ► Old K/Adaptive E: ZLB → Deflation spiral.
 - (Friedman 68) ZLB, i peg, or passive ϕ is unstable.

$$\pi_{t+1} = (\lambda > 1)\pi_t + \text{ shocks.}$$

▶ Taylor $\phi > 1$ stabilizes. ZLB $\rightarrow \phi < 1$.

- ▶ NK/Rational E: ZLB $\rightarrow \pi$ is *stable* but *volatile*;
 - "Self-confirming fluctuations," "sunspots."

$$E_t \pi_{t+1} = (\lambda \le 1) \pi_t$$
; $\pi_{t+1} = E_t \pi_{t+1} + \delta_{t+1}$.

- ▶ Taylor $\phi > 1$ makes unstable, hence determinate.
- $\phi < 1$ volatility a core prediction. 70/80; Japan ZLB.

▶ MV=PY: ZLB, $i \approx 0$ is irrelevant. M \$50b → \$3,000b means *hyperinflation*. Velocity is "stable." QE "injects liquidity."

Simple models

$$\begin{aligned} x_t &= E_t x_{t+1} - \sigma(r_t - v_t^r) & \text{IS} \\ i_t &= r_t + \pi_t^e & \text{Fisher} \\ \pi_t &= \pi_t^e + \kappa x_t & \text{Phillips} \\ i_t &= \phi \pi_t + v_t^i & \text{Slides} \\ i_t &= \max \left[r^* + \pi^* + \phi \left(\pi_t - \pi^* \right) + v_t^i, 0 \right] & \text{Taylor} \end{aligned}$$

Eliminate i_t , r_t , x_t ,

$$(1 + \phi \sigma \kappa) \pi_t = (1 + \sigma \kappa) \pi_t^e + \sigma \kappa (v_t^r - v_t^i)$$

Old Keynesian, $\pi_t^e = \pi_{t-1}$; $\phi < 1$ unstable:

$$\pi_t = \frac{1 + \sigma \kappa}{1 + \phi \sigma \kappa} \pi_{t-1} + \frac{\sigma \kappa}{1 + \phi \sigma \kappa} (v_t^r - v_t^i)$$

New Keynesian $\pi_t^e = E_t \pi_{t+1}$, ; $\phi < 1$ stable, indeterminate:

$$E_t \pi_{t+1} = \frac{1 + \phi \sigma \kappa}{1 + \sigma \kappa} \pi_t + \frac{\sigma \kappa}{1 + \sigma \kappa} (v_t^i - v_t^r).$$

Adaptive/Old-Keynesian Spiral

$$x_t = -\sigma(i_t - \pi_{t-1} - v_t^r); \ \pi_t = \pi_{t-1} + \kappa x_t; \ i_t = \max[i^* + \phi(\pi_t - \pi^*), 0]$$

Rational E / New-Keynesian stable but indeterminate

$$E_t(\pi_{t+1} - \pi^*) = \frac{1 + \phi \sigma \kappa}{1 + \sigma \kappa} (\pi_t - \pi^*) / E_t \pi_{t+1} = \frac{1}{1 + \sigma \kappa} \pi_t - \frac{\sigma \kappa}{1 + \sigma \kappa} r$$

Michelson-Morley

Michelson-Morley. Experiment:

- ▶ Inflation can be stable, quiet, at ZLB, ϕ < 1. Even a peg.
- ▶ Huge excess reserves paying market interest are not inflationary.
- $\phi > 1$ vs. $\phi < 1$, ZLB, is not a key state variable for $\sigma(\pi)$, dynamics.

Implications

- ▶ Old-Keynesian. No spiral.
- ► New-Keynesian. No sunspots.
- ► MV=PY. No hyperinflation.

Next theory? New Keynesian + Fiscal Theory.

▶ Inflation can be *stable* and *determinate*, (quiet) at ZLB, $\phi < 1$, and even a peg.

NK + FTPL

$$\frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}$$

$$\frac{B_t}{P_t} (E_{t+1} - E_t) \left(\frac{P_t}{P_{t+1}} \right) = (E_{t+1} - E_t) \sum_{i=0}^{\infty} \beta^j s_{t+1+j}.$$
(1)

- ► Unexpected deflation ↔ debt worth more ↔ raise tax/cut spending.
- ▶ (1) solves spiral, indeterminacy/sunspots.

$$\delta_{t+1} = \pi_{t+1} - E_t \pi_{t+1} \leftrightarrow \text{fiscal policy}.$$

- ▶ *i* peg or ϕ < 1 can be *stable* (NK) and (now) *determinate* and *quiet*.
- NK + FTPL is the only existing, simple, economic, theory left.
- Fiscal theory lite.

Occam: The (Long) Paper

What about...

- ▶ Variations to rescue instability, indeterminacy, M? (A: epicycles.)
 - Really unstable but QE offset deflation spiral?
 - NK Equilibrium selection from post-bound actions, not current $\phi \pi_t$?
 - ► Really active NK, not expected to last? (A: 7 Tails? Japan?)
 - Really unstable but slow to emerge (sticky wages, velocity)?
 - Reserves didn't leak to M1, M2. My point exactly.
 - More general models? (A: don't change stability, determinacy.)
- Fiscal theory objections?
 - ▶ Large deficits, debt, Japan? (A: Low r. Not deficits, debt $\leftrightarrow \pi$.)
 - Previous pegs, 1970/1980, other episodes?
 (A: Fiscal problems. "A peg can be stable.")
 - Why is $\sigma(\pi) = \sigma(\mathsf{E} \mathsf{ fiscal policy}) \mathsf{ low? } (\mathsf{``A peg } \mathsf{ can be quiet"})$
 - "Budget constraint," debt repayment means passive fiscal?
 (A: No; off equilibrium modeling just like NK.)
 - "Exogenous" surpluses? $s = \tau y$? s(P)? (A: No. Like dividends.)
 - Test FTPL? (A: Test MV=PY? P = EPV(D)?)
- ▶ A: Today: I only claim FTPL is possible, survives quiet ZLB test. I do not claim it proved, explains all history.

Selection by future active policy

- $lack \phi=0$ now, but expected ϕ in the far future can select equilibria.
- People expect the Fed to destabilize?
- ▶ Back to trap equilibria are still there.
- ▶ Puzzles. Jump at t = 0. Backward stable paradoxes.
- ▶ Small $\Delta E_t \pi_T$ have big effects, volatility?
- ▶ Is all monetary policy just talk about future threats? Why not 70s?
- ▶ FTPL stops jump at 0, selects benign equilibrium, solves paradoxes.

Fisher

- ▶ If π is *stable* at zero bound, hence peg, then if the Fed raises i, permanently, then π should eventually *rise*.
- Unavoidable consequence of stability.
- ▶ Vs. Friedman 1968 spiral.
- \blacktriangleright π could still decline in the short run. Does it?

Frictionless model

Model

$$\begin{split} i_t &= r + E_t \pi_{t+1}, \\ \pi_{t+1} &= (E_{t+1} - E_t) \sum_{j} \beta^j s_{t+j} / (B/P) \end{split}$$

- "Monetary policy" changes i with no change in fiscal $\{s\}$.
- ▶ Higher *i* raises π , immediately.

Pricing frictions give a temporary negative π ? ...

Effects of rate rise – Standard NK model with $\phi=0$

- $x_t = E_t x_{t+1} \sigma(i_t E_t \pi_{t+1}); \quad \pi_t = \beta E_t \pi_{t+1} + \kappa x_t.$
- ▶ Pricing frictions *do not* produce π decline.

Standard NK model with $\phi > 1$ (Woodford)

▶ Standard $\phi > 1$ model is even more Fisherian!

FTPL + long term debt works

Simple frictionless example.

$$\frac{\sum_{j=0}^{\infty} Q_t^{(j)} B_{t-1}^{(j)}}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}$$

- ► Higher (future) i → lower Q. P level falls.
- Just like a fiscal shock.
- ► Then $i = r + E\pi$ inflation rises.
- Forward guidance.
- Needs long debt and some unexpected.

The fiscal theory of monetary policy

• "Monetary policy:" Change quantity and maturity structure of debt $\{B_t^{(j)}\}$ with no change in fiscals surpluses $\{s_t\}$.

$$\frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}$$

$$\frac{B_{t-1}}{P_{t-1}} E_{t-1} \left(\beta \frac{P_{t-1}}{P_t} \right) = \frac{B_{t-1}}{P_{t-1}} \frac{1}{1 + i_{t-1}} = E_{t-1} \sum_{j=0}^{\infty} \beta^{j+1} s_{t+j}$$

- ► Change *B* with fixed *s* changes *i*. (Open market)
- ▶ Set *i*, how much *B* will sell. (*i* target)
- Monetary policy can set the nominal interest rate, in a completely frictionless (money, finance) economy.
- It can thereby control expected inflation.
- ▶ This actually resembles current institutions.

The fiscal theory of monetary policy II

QE:

Example: Debt $B_0^{(j)}$, paid by surpluses s_j , no rollover.

$$\frac{B_0^{(j)}}{P_j} = \frac{B_{j-1}^{(j)}}{P_j} = s_j$$

- ▶ Buy (reduce) $B_0^{(j)}$, lowers P_j , lowers long-term rate. QE!
- Also raises P₀, QE "stimulates."

Summary:

- ► A unified theory of open market operations, interest rate targets, forward guidance, and QE.
- Needs no frictions. May add pricing, monetary, financial, or other frictions for realistic dynamics, but not needed for basic story, price level determination.

Long term debt + fiscal theory + sticky prices

$$\frac{\sum_{j=0}^{\infty} Q_t^{(j)} B_{t-1}^{(j)}}{P_t} \approx E_t \sum_{j=0}^{\infty} \left(\prod_{k=1}^{j} \frac{1}{1 + r_{t+k}} \right) s_{t+j}; \quad r_t = i_t - E_t \pi_{t+1}$$

- Only effect is equilibrium selection. Not shape of ir.
- ► More sticky \rightarrow r rises, \rightarrow PV declines \rightarrow less effect.

The Answer for negative sign?

$$\frac{\sum_{j=0}^{\infty} Q_{t}^{(j)} B_{t-1}^{(j)}}{P_{t}} \approx E_{t} \sum_{j=0}^{\infty} \beta^{j} s_{t+j}$$

Points in favor:

- ightharpoonup ightharpoonup QE (twist), forward guidance, and i policy are the same thing.
- Works in totally frictionless model (money, prices).

Warnings:

- Only works for unexpected changes. Hard to justify systematic policy, "fine tuning."
- Positive in long run. Produces 1970 failed stabilizations, not standard 1980s story. (Without a fiscal change too.)
- AD is FTPL, not IS. Nothing like any story told to undergraduates, FOMC.
- ightharpoonup The answer is yes, but not for every question.

Other approaches?....

(Long) Paper: What about...

Variations that don't work:

- Sticky prices
- ▶ Money U(c, M/P)
 - Only expected \(\Delta i \) works. Won't help VARs. Won't work in IOER.
 Sign helps, but off by \(\times 10 \) in size.
- ► Temporary rates.
- ▶ Backward-looking Phillips, or static IS.
- ▶ Multiple equilibria, coincident or "passive" fiscal shocks.
- ▶ Standard solution of 3 equation model.

Paper: What about...

► More ingredients?

- ▶ Borrowing or collateral constraints, hand-to-mouth consumers, bounded rationality or irrational behavior, a lending channel; habits, labor/leisure, production, capital, variable capital utilization, adjustment costs, alternative models of price stickiness; informational, payments, monetary, financial, frictions; pricing or timing lags, alternatives to rational expectations ("reflective," "k-step" expectations); non-Walrasian equilibrium, game theory,...
- A: If so, necessary as well as sufficient. The sign (and stability?) of M policy depends on soup, not simple economics. There is no honest simple story to tell undergrads, FOMC.
- Yes to frictions etc.! To understand size and dynamics on top of a simple model that gets sign and stability right.

Bottom line:

- ► There is no other simple, modern (rational expectations) theory, that delivers the traditional view that higher interest rates lower inflation, even temporarily.
- ▶ Is it true? VAR evidence is weak, price puzzle, includes fiscal shocks, long term debt effect.

Policy

Summary: Evidence suggests, and NK+FTPL theory digests:

- ZLB is stable, quiet. No deflation spiral, sunspots.
- ightharpoonup Peg or passive $\phi < 1$ too.
- ▶ Large interest-paying reserves do not cause inflation.
- Contrary classic doctrines were wrong.

Summary: Implication

- ▶ Higher *i* can lead to higher π in the long run. (Neutrality.)
- ▶ Negative short run effect? No simple economic model for standard beliefs. (Only a fiscal / long-term debt channel.)

Policy: (Consequence of stability, quiet)

- Do not fear the ZLB, balance sheet!
- ▶ We can live the Friedman rule; Huge reserves paying market interest.
- ▶ Or, better, the Treasury can issue reserves to the rest of us. No need to keep "bonds" illiquid for price level control.

Optimal quantity of money/Balance sheet

Policy

Policy: (Consequence of stability, quiet)

- ▶ The Fed *can* keep a low peg. (Inflation then varies as r^* varies.)
- ▶ The Fed can vary interest rates to offset shocks, it's idea of *r**, to produce more stable inflation.
- ▶ The Fed *can* target the spread between indexed and non-indexed debt, thus target expected inflation, and let the level of the real rate free to respond to market forces. (Expected CPI standard.)

$$i_t = r_t + E_t \pi_{t+1} \to E_t \pi_{t+1} = i_t - r_t$$

- ► The Fed can offset shocks with time-varying rates/spread; fine-tune inflation / output path with negative fiscal effect or complex DSGE.
- ▶ Vs. it's stable, leave it alone, like hot/cold shower. Old "fine tuning," "rules vs. discretion," planning debate continues.

Policy

The Fed? Simple rules v. fine-tuning discretion continues.

- Observed policy may not change much Taylorish responses to output and inflation + temporary responses to shocks.
- ► Case for leave it alone is a little stronger.
- Foundations / strategy may change a lot. No more $\phi>1$ equilibrium selection. Fiscal anchoring. Balance sheet. Inflation target.
- Monetary economics is now like regular economics! A simple S&D benchmark, then add frictions to taste.

Warnings

Extrapolation warning:

- ▶ NOT "lower rates to lower inflation" (Turkey, Brazil).
- Must be very persistent, credible, and with fiscal backing. (Our flight to quality came first.)

FTPL warning:

$$\frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \frac{1}{R_{t,t+j}} s_{t+j}$$

- ► Fiscal policy "anchoring" comes from expectations of eventual primary surpluses, and low real rates for government debt.
- ▶ Low R, flight to quality, \rightarrow low P.
- Discount rates dominate valuation everywhere.
- Low discount rates could evaporate quickly.

The End

Extra Graphs

