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Abstract

This paper examines the asset allocation problem faced by long-term investors

seeking exposure to illiquid private assets. Liquidity uncertainty hampers continu-

ous rebalancing and withdrawals, while illiquidity risk premia can lead to unintended

overallocation during extended periods of asset lock-ups, increasing the variability

of portfolio consumption and shrinking investor welfare. Using a dynamic allo-

cation model calibrated on analyst-based capital market expectations, I find that

while adding private assets to the investment universe may offer benefits, ignoring

illiquidity in the portfolio construction process leads to substantial welfare losses.
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1 Introduction

Institutional investors, such as pension funds, sovereign wealth funds, and endowments,

have endorsed private asset classes into their portfolios in search of improved risk-adjusted

returns and diversification (Andonov et al., 2015, 2021, 2023; Broeders et al., 2021;

Giesecke and Rauh, 2023; Begenau et al., 2024). The conventional wisdom states that

these investors’ long horizons allow them to capitalize on the illiquidity premia (poten-

tially) offered by private assets.

Yet, non-traditional asset categories, such as private equity, private real estate, infras-

tructure investments, and hedge funds, pose a challenge to the established asset allocation

methods. While the literature to address this is growing (Terhaar et al., 2003; Luxenberg

et al., 2022; Korteweg and Westerfield, 2022; Dimmock et al., 2023), there is still a lack

of theoretical underpinning and practical understanding of what these challenges entail

for the investor and how to embed them in the portfolio construction process.

In this paper, I highlight the risk of illiquidity, the fact that private asset classes typ-

ically lock up invested funds for an uncertain period. This restricts investors from fully

accessing liquidity within their portfolio and hampers their ability to rebalance towards

the strategic allocation targets as asset shares drift over time. I extend the dynamic port-

folio choice model of Ang et al. (2014) and adapt it to address the strategic asset allocation

(SAA) problem of a long-term investor who wants to allocate to illiquid private assets.

Calibrating the model on publicly available capital market assumptions (CMAs), I then

solve for the optimal allocation to several private asset classes and quantify the welfare

improvements they provide to an investor already holding a diversified liquid portfolio.

Additionally, I evaluate the welfare losses associated with constructing a portfolio when

liquidity risk is ignored. In doing so, I provide a fast and tractable numerical algorithm

to solve the underlying dynamic optimization problem, thus demonstrating the model’s

practicality.

Liquidity in this model arrives randomly through Poisson shocks, calibrated to the

expected period over which the funds in the private asset classes are not redeemable.
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The uncertainty surrounding the timing of liquidity events affects the investor’s optimal

allocation decision in several ways. In anticipation of prolonged periods of illiquidity

for the private assets, it is optimal for the investor to preemptively reduce the portfolio

consumption (withdrawal) rate and to tilt in advance the strategic asset weights away

from the illiquid investment as a way of reducing the exposure to this additional source of

risk. In addition, when the private asset has a publicly traded equivalent in the investment

universe, a substitution effect is observed, by which the publicly traded substitute is

preferred in the SAA instead of the private asset exposure.

I find that the attributes often cited as advantages of private assets — higher returns

and diversification potential — are also the factors that interact negatively with illiquidity

risk. Low correlation with the rest of the portfolio leads to a reduced possibility of hedging

the volatility of the share in private illiquid assets. Consequently, the investor must secure

additional risk-free buffers to mitigate the increased variability in portfolio consumption

caused by fluctuations in the value of the private asset. This strategy ensures that

negative shocks from publicly traded risky assets do not deplete liquidity, and preserves

consumption during periods when a large part of the investor’s wealth is locked in illiquid

allocations. A higher expected return of the private asset, on the other hand, due to

the presence of illiquidity premia, leads to unintended overallocation through extended

periods of illiquidity, as in expectation the share invested in the illiquid private asset rises

above its SAA target.

Overall, I find that private equity, infrastructure investments, private real estate, and

diversified hedge funds improve the Certainty Equivalent Consumption (CEC) of an opti-

mizing investor with a CRRA utility who has a moderate risk appetite and already holds

a diversified portfolio of stocks, bonds, and public real estate. Despite being economi-

cally substantial, these improvements are significantly tempered when illiquidity risk is

taken into account. Yet, institutional investors widely use SAA optimization approaches

that quantify risk purely from an asset volatility angle (Kim et al., 2021; Begenau et al.,

2024). Ignoring the liquidity aspects of private assets thus exposes them to the risk of

sub-optimal and overoptimistic allocation to private assets. Mimicking an investor who
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constructs her portfolio through a mean-variance lens without a view on illiquidity risk,

I find a considerable welfare loss associated with the highly illiquid private asset classes:

private equity, infrastructure, and real estate, a negligible loss for the relatively more

liquid private asset classes, such as hedge funds.

The paper continues as follows: Section 2 reviews the existing literature, Section 3

outlines the model; Section 4 shows the key properties of the solution in a controlled

stylized setting; Section 5 applies the model to analyst CMAs and evaluates the welfare

benefits and misallocation costs associated with illiquid private assets; Annex A outlines

the numerical approaches used to solve the presented dynamic portfolio choice model.

2 Related Literature

This paper contributes to two separate strands of the investment literature. The first one,

on the practical side, e.g. Terhaar et al. (2003); Ilmanen et al. (2020), discusses optimal

portfolio construction, emphasizing the importance of forward-looking capital market

assumptions and cautioning against the pitfalls of smoothed reported returns of illiquid

private investments. The current paper goes a step further by explicitly incorporating

illiquidity risk into the SAA process, thus parting from the widely used static mean-

variance optimization approaches.

On the other hand, I relate to the theoretical finance literature which examines dy-

namic portfolio choice with liquidity frictions. These are broadly classified along three

main dimensions: transaction costs (Zabel, 1973; Magill and Constantinides, 1976; Gen-

notte and Jung, 1994; Boyle and Lin, 1997; Dai et al., 2011), delayed execution (Longstaff,

2001), and inability to access a market in periods of deterministic (Miklós and Ádám,

2002; Dimmock et al., 2023) or, most closely related to the approach taken here, stochastic

(Ang et al., 2014; Jansen and Werker, 2022) time length. The methodological contribu-

tion of this paper is to extend the dimensionality of the asset allocation problem and to

provide a fast numerical solution approach to the arising dynamic programming problem.

Ang et al. (2014) extend the Merton (1971) continuous-time dynamic portfolio ap-
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proach by incorporating a Poisson process which governs the random availability of trad-

ing opportunities for the illiquid asset. This is motivated by over-the-counter (OTC)

markets and the random time it takes to find a trading counterparty. Random waiting

time is a feature that often arises in the literature on search frictions, such as in Diamond

(1982). Jansen and Werker (2022) then extend the framework further to account for

limited investment horizons and solve for the shadow cost of illiquidity, i.e. the return

premia which put at par (in utility-equivalent terms) the illiquid private asset and its

liquid public equivalent. My approach is different; I quantify the overall benefit of in-

cluding the illiquid private asset in the investment universe vs. not including it at all; I

evaluate the extent to which various illiquid private asset classes can be substituted by

a set of publicly traded ones. For this purpose, I extend the dynamic portfolio choice

problem with a larger number of assets in the investment universe, bringing the model

closer to a practical implementation. The curse of dimensionality makes such problems

harder to solve, and large dimensions are typically avoided in previous literature, keeping

the dynamic models stylized in nature. Yet, a wider diversity in the investment universe

offers more opportunities to substitute the costly (from a risk point of view) illiquid as-

sets, so it becomes important to develop the model to cover multiple assets. For this

purpose, I adapt the numerical algorithms provided by Cai et al. (2013) to take into

account stochastic liquidity opportunities rather than only fixed transaction costs. The

numerical methodology thus relies on multi-variate quadrature approximations and value

function iteration to solve a non-trivial portfolio choice problem.

This paper also adds to the recent and growing literature on portfolio allocation with

private equity (PE) funds, as reviewed in Korteweg and Westerfield (2022). This body

of work typically breaks down the distinctive cash flow structure of private equity, con-

sisting of capital calls, dividend payouts, and fees, into components that can be modeled.

For example, Gourier et al. (2024) and Giommetti and Sorensen (2021) both develop dy-

namic portfolio allocation models to examine the welfare implications of ex-ante capital

commitments to the PE fund, with the former study using Poisson processes to model

capital calls and dividend payouts, and the latter assuming that calls happen gradually.
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Dimmock et al. (2023) suggest that the illiquidity of PE investments can be diversified

through a dynamic strategy with staggered asset lock-up expirations, though this poses

constraints for most investors, who typically hold only one or two PE managers (Gredil

et al., 2020). Luxenberg et al. (2022) deviate from the dynamic programming formulation

of the allocation problem and propose a model predictive control approach for solving it.

My approach simplifies the liquidity features of private assets by assuming that during

liquidity events, the portfolio can be rebalanced freely to target allocations. For PE,

intermediate cash flows may provide partial liquidity along the life of the investment, but

these generally occur later in the lifecycle of the fund, making the assumption of a single

liquidity event a reasonable approximation. However, through this simplification, the

model is fully capable of being calibrated on CMAs consisting of expected returns and a

covariance matrix, with only one additional dimension needed — the expected timing of

the liquidity event. This makes the model easy to implement by institutional investors

who already use a mean-variance approach to the SAA process.

3 Model

The representative long-term investor in this model is infinitely lived and has a CRRA

utility over the consumption amount Ct:

u(Ct) =
C1−γ

t

1− γ
(1)

with time t ≥ 0 as a time index, and γ > 0, γ ̸= 1 as the coefficient of relative risk aversion,

where higher γ implies a higher risk aversion. The investor constructs a portfolio of risky

assets. Consumption is then funded out of this portfolio with no other intermediate

income.
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The investment universe: The instantaneous risk-free rate is fixed. Denoting it as

r, the price Bt of a risk-free asset then follows the process:

dBt/Bt = rdt (2)

In addition, there are n marketable risky assets. The vector of their returns dS/S evolves

as a multivariate Geometric Brownian Motion process such that:

dSt

St

= µdt+ σdZt (3)

where 1 stands for a n-dimensional column vector of ones, dZt is a vector of n independent

Brownian motions supported by probability space (Ω,ℑ,P); µ is a n×1 vector of expected

returns; σ is n × n lower triangular matrix holding the sensitivities of the risky asset

returns to the Brownian uncertainties with Σ = σσ′ representing the corresponding

variance-covariance matrix; λ = σ−1(µ− r1) is the price of risk.

Introducing the illiquid private asset: Assume now that the asset corresponding

to the n-th row in the vector specification (3) is not marketable all the time. A market

opportunity for it arises only when a Poisson process Nt with intensity η hits. The Poisson

process is independent of the Brownian motions defined earlier. Also, in the limit, when

1/η → 0, the private asset approaches full liquidity, and the solution of the model will

resemble the Merton portfolio choice problem. On the other hand, as 1/η → ∞, the

private asset is never liquid, and the solution will converge to a Merton portfolio choice

problem in which the private asset is completely excluded from the investment universe.

To keep track of liquid and illiquid assets, we define the partitioned vector of expected

asset returns and the partitioned matrix of sensitivities to the respective Brownian mo-

tions driving asset volatility:

µ =

µw

µx

 ,σ =

σw

σx

 (4)

7



where µw is a (n−1)×1 vector that captures the expected return of the liquid assets; µx

is the drift of the illiquid asset; σw and σx are respectively (n−1)×n and 1×n matrices

that capture the sensitivities respectively of the liquid assets and the illiquid asset to the

Brownian motions.

Some of the implications of this construction are worth discussing before proceeding

with the model. First, by construction, arrivals of the liquidity opportunities embedded

in the Poisson structure are i.i.d over time. While this may be problematic over very

short horizons in which clustering, autocorrelation or liquidity spillover effects may be

present, these are less likely to play a role for long-term investors. A second simplification

is to assume that even though the private asset is illiquid, the investor can continuously

observe the evolution of its value over time, and when the exogenous Poisson shock hits,

the investor is able to realize this value. While in reality information frictions may be

present on a manager level (Sefiloglu, 2022), they are outside the scope of the asset

allocation problem, which ignores manager level frictions and focuses on aggregate asset

classes, assuming that the risk and return parameters of the model once calibrated to the

CMAs will already account for any such losses.

In the context of private asset classes, the random nature of liquidity arrivals (or

correspondingly, the periods of random length of illiquidity) can be interpreted in several

ways. Private equity, real estate, and infrastructure funds have uncertain dividend pay-

outs and it takes years to fully redeem investments (Metrick and Yasuda, 2010). Hedge

funds often have "gates" through which managers can at discretion restrict investor liq-

uidity to prevent a run on the fund (Darolles and Roussellet, 2023). Additionally, hedge

funds impose varying lock-up and notice redemption periods (Schaub and Schmid, 2013).

Also, the specific manager who will be delegated to implement a particular SAA exposure

is rarely known in advance,1. For these reasons, it is reasonable to assume that hedge

fund investments also face liquidity that is random within a certain expected waiting

1Modern institutions typically follow a structured investment process: first, the investment oppor-
tunity set is defined; then, the optimal SAA decision is made based on forward-looking risk-return
expectations for the asset classes, along with the investor’s constraints and risk tolerance. Only after
these parameters are set does the selection of managers for each asset bucket become relevant (see, e.g.,
Brennan et al. (1997); Martellini and Milhau (2020)).
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period at the time strategic allocations are determined.

In all cases, the secondary markets for private asset classes are unreliable and typically

involve significant discounts, making them a suboptimal strategy for unlocking liquidity

(Gourier et al., 2024). Therefore, I adopt a prudent investment approach which assumes

that in constructing the SAAs the investor does not rely on selling the private asset on

the secondary market for liquidity.

Investor portfolio dynamics: The investor’s total portfolio wealth Qt can be split

into liquid wealth Wt, invested into risky and riskless assets, and illiquid wealth Xt,

invested in the illiquid private asset. The only income the investor receives is from the

capital gains on the invested wealth. In line with the literature and empirics, the illiquid

asset cannot be used as collateral, and as a result, illiquidity cannot be circumvented by

pledging the asset and issuing debt instead. The investor controls the asset allocation first

through the liquid portfolio composition, defined by the allocation vector θt into liquid

risky assets (fractions defined as proportions from liquid wealth); and second, through

the transfers dIt between liquid and illiquid wealth, which are possible only when the

Poisson shock hits. The investor can consume directly only out of liquid wealth, so we

define the consumption rate as a fraction of liquid wealth: ct =
Ct

Wt
.

We can write the wealth dynamics of liquid and illiquid wealth as follows:

dWt/Wt = (r + θ′
t(µw − r1)− ct)dt+ θ′

tσwdZt − dIt/Wt

dXt/Xt = µxdt+ σxdZt + dIt/Xt

(5)

Naturally, then we have dQt = dWt + dXt.

Value function: The value function for a utility-maximizing dynamic investor, subject

to the wealth dynamics above, can then be written as

V (Wt, Xt) = sup
θs,dIs,cs

Et

∞∫
t

e−β(s−t)u(Cs)ds (6)
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which (as shown in Annex C.2) yields the HJB equation:

LC + Lθ + L − βV (Wt, Xt) = 0

where

LC = sup
Ct

{
u(Ct)− CtVW

}
(7)

Lθ = sup
θt

{
(r + θ′

t(µw − r1)VWWt +
1

2
VWWW 2

t θ
′
tσwσ

′
wθt + VWXWtXtθ

′
tσwσ

′
x

}
(8)

L = VXµx +
1

2
VXXX

2σxσ
′
x + η (V ∗ − V (Wt, Xt)) (9)

Denote the share of illiquid wealth (the allocation to the private illiquid asset) as:

ξt =
Xt

Qt

(10)

Using the homogeneity property of the value function, following from the homogeneity of

the CRRA utility (see Annex C.1), we can factor out total wealth and define a reduced

value function as:

H(ξ) ≡ V ((1− ξ), ξ) =

(
1

Qt

)1−γ

V (Wt, Xt) (11)

where H(ξt) is a finite, continuous and concave function, maximized at ξ∗ for ξ ∈ [0, 1).2

Liquidity opportunity arrives: Whenever liquidity is available, the investor opti-

mizes over the share of illiquid assets, thus moving to the top of the reduced value

function H(ξt). Then we have the strategic allocation to the illiquid private asset defined

as:

ξ∗ = argmax
ξ

H(ξ)

This is equivalent to choosing an optimal transfer amount dIτ = (ξ∗ − ξτ−)Wτ− where

ξτ− is the initial illiquid wealth fraction just before rebalancing occurs.

2See Ang et al. (2014) for proofs on the properties of this function.
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We have transformed the optimization problem (6) from one of finding the value

function V (Wt, Xt) itself, into a problem of solving simultaneously for the reduced value

function H(ξt) and for its maximizing point ξ∗. Furthermore, factoring out total wealth

in front of the optimization problems embedded in the HJB equation (7) and (8) shows

that the optimal consumption and allocation to liquid risky assets can be written as

functions of ξt and H(ξt) (see Annex C.2).

Dynamics during the periods of illiquidity: When the asset remains illiquid, the

investor cannot withdraw from or contribute to illiquid wealth, preventing the portfolio

from rebalancing to the strategic allocation target of ξ∗. Consequently, between Poisson

events, the share of the illiquid private asset fluctuates stochastically with the realized

dynamics of the value of the portfolio assets. Also, continuous consumption will drain

liquid wealth and increase the share of illiquid assets.

By design, consumption in the periods between the Poisson liquidity arrivals can be

funded from liquid wealth only, so by maximizing LC we arrive at a modified version of

the Envelope Theorem.3 We can then derive the optimal consumption rate ct as

c(ξt) =
(
(1− γ)H(ξt)−H ′(ξt)ξt

)− 1
γ
(1− ξt)

−1 (12)

In contrast to the fixed Merton optimal consumption rate in (27), the consumption rate

between trading events now is state dependent and varies with ξt.

The optimal investment in the risky liquid asset can be derived from (8) also as a

reaction function to the illiquid wealth share in the portfolio:

3To see that, note that from (7), at optimum, the marginal utility of liquid wealth is equal to the
value of a marginal change in liquid wealth, such that

u′(Ct) = VW (Wt, Xt) ⇐⇒ Ct = Iu′ (VW (Wt, Xt)) = (VW (Wt, Xt) )
− 1

γ

In the CRRA case in particular, VW (Wt, Xt) = W−γ
t ((1− γ)H(ξt)− ξtH

′(ξt)) and u′(ctWt) = u′((1−
ξt)Wt) = (1−γ)(cW )−γ . To compare this with the benchmark Merton case, see Equation (31) in Annex
B.1.
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θ(ξt) = (σwσ
′
w)

−1
(µw − r1)

(
− VW

VWWWt

)
︸ ︷︷ ︸

Φ(ξt)︸ ︷︷ ︸
Investment Demand

+(σwσ
′
w)

−1
σwσ

′
x

(
− VWXXt

VWWWt

)
︸ ︷︷ ︸

Ψ(ξt)︸ ︷︷ ︸
Hedging Demand

(13)

As a result, the allocation to liquid risky assets can be split into two parts. First is

the investment demand term, proportional to the liquid assets price of risk, and to an

investment curvature term Φ(ξt). The second term we can define as hedging demand.

Since Ψ(ξt) ≤ 0, this terms is dampening the liquid asset investment demand when the

correlation between the liquid sub-portfolio and the illiquid asset is positive, and increases

it if the correlation is negative, allowing the investor to hedge some of the volatility of

the illiquid private asset through increased liquid asset exposures.4 5

In this set-up, the illiquid allocation with a liquidity event ξ∗ and its corresponding

allocation of the liquid risky assets θ(ξ∗) represent the base strategic allocations to which

the investor returns whenever the Poisson shock allows. This will define the SAA alloca-

tion. In periods of illiquidity, when the allocation to the illiquid asset cannot be adjusted,

θ(ξt) will represent the optimal tactical allocation to liquid risky assets as a reaction to

the uncontrolled movements in the share of the private asset. The exact functional form

of the tactical allocation function will be determined numerically.

Certainty equivalent consumption: Apart from determining the optimal invest-

ment and consumption strategies, one additional goal is to compare different investment

strategies in utility-equivalent terms. For this purpose, define the lifetime utility value

4See Annex C.2 for analytical details into these terms.
5To gain intuition into the hedging and the investment terms of the allocation problem, I now simplify

the problem and look at a three-asset case with a liquid risk-free asset, liquid public equity, and an illiquid
private asset. This brings us back to the original set-up of Ang et al. (2014). Then we have the setup:

µ =
[
µ1, µ2

]⊺
,σ =

[
σ1 0

ρσ2

√
1− ρ2σ2

]
,Σ =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
The investment demand in the liquid risky asset then is given by µ1−r

σ2
1

Φ(ξt). The hedging demand term
is represented by σ2ρ

σ1
Ψ(ξt).
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generated by guaranteed continuous consumption stream CECt fixed at time t as:

∫ ∞

t

e−βsu(CECt)ds =
1

β
u(CECt)

The certainty equivalent consumption (CEC) then is what makes the investor indiffer-

ent between the risk-free stream CECt and the risky consumption stream underlying a

particular investment strategy, so we get:

CECt ≡ Iu

(
βEt

∫ ∞

t

e−βsu(Cs)ds

)
(14)

where Iu(.) stands for the inverse of the utility function. The we can then use the value

function from each dynamic investment strategy to value the CEC associated with it. For

example, we find that, for the Merton case with consumption rate cM (see Annex B.1),

the CEC per unit of total wealth is:

CECM = β
1

1−γ

(
1

cM

) 1
1−γ

For the illiquid case, the CEC (per unit of total wealth) will depend on the current share

of illiquid wealth:

CECt(ξ) = (β(1− γ)H(ξt))
1

1−γ (15)

4 Comparative statics of the private asset allocation

This section examines the model solution properties under a controlled setting which

disentangles the effects coming solely from illiquidity risk by varying the intensity of

the Poisson process governing the illiquidity risk and keeping all other properties of the

risky assets the same. I consider an investment universe containing a risk-free asset and

three risky assets with the same variance and expected return profile. One of the risky

assets is not publicly traded and thus is subject to illiquidity risk. In line with the model
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of illiquidity from Section 3, its allocation can, on average, be adjusted once every 1/η

years. The two liquid risky assets capture the comparative statics of different correlations

between the liquid and the illiquid assets and examine the strength of the substitution

effect when the illiquidity parameter intensifies.

There are two key assumptions in the baseline case: the private asset does not carry

an illiquidity premium, and it is assumed to be uncorrelated to the liquid public assets.

Table 1 provides a summary of all the model inputs. The choice for expected return

and standard deviation is consistent with the profile of Large Cap US Equity, and the

risk-free rate is aligned with the expected return on Money Market funds in the JP

Morgan long-term CMAs for 2025 (discussed in detail in Section (5)). The private asset,

unless specified otherwise, trades with an intensity of η = 1/10, implying a rebalancing

timeframe of approximately once every ten years. The coefficient of relative risk aversion

is set to γ = 6. This parameterization results in moderately aggressive portfolios - for

instance, in the Merton model, the optimizing investor allocates approximately 70% to

risky assets (equally distributed between the risky assets) and 30% to the risk-free asset.

There is a debate regarding the size of the liquidity premium and the correlations

between private and traditional asset classes. The difficulty in having a straightforward

estimates of these parameters lies in the tendency to observe oversmoothed and poten-

tially overstated private asset performance. Metrics like IRR complicate comparisons

with public equity equivalents and can be manipulated by private fund managers. Ad-

ditionally, performance assessment is hampered by infrequent valuations, selection bias

(as funds typically trade when successful), and reporting bias (with better-performing

funds more likely to disclose their results).6 For these reasons, I relax the two baseline

assumptions and evaluate the comparative statics of the model when the illiquid asset

bears a liquidity premium of 3% in line with estimates by Franzoni et al. (2012); and

when it has 80% with one of the liquid assets (labeled Public 2), inspired by Franzoni

et al. (2012); Ang and Sorensen (2012) who find that private and public equity are highly

correlated and exposed to the same underlying risk factors.

6See Ang (2014) for further discussion.
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Table 1: Baseline parametrization

Parameter Definition Default Value

r risk-free rate 3.1%
β personal discount rate 3.1%
µ1 = µ2 = µ3 risky assets expected return 6.7%
σ1 = σ2 = σ3 risky assets volatility 16.2%
ρ correlation between public asset 2 and the private asset 0 or 0.80
lp illiquidity premium of the private asset on top of µ3 0% or 3%
1/η average time (in years) between a trading opportunity arises 10
γ risk aversion parameter in the CRRA utility function 6

Note. The table shows the baseline parameter values used for the comparative statics exercise.

The Value Function: The blue surface in Figure 1a shows the shape of the investor’s

reduced value function H(ξ) and illustrates its sensitivity to the severity of the private

asset illiquidity.7 A higher 1/η implies longer expected waiting times before the investor

can adjust the allocation of the private asset back to its SAA.

As the expected waiting time increases, the maximum of the value function shifts

toward lower allocations to the illiquid private asset ξ, as indicated by the red curve

on the surface. This reflects the investor’s desire to reduce the strategic allocation to

the private asset. For example, when the expected waiting time is 1 year, the optimal

allocation to the private asset is 21%. This allocation, however, declines to 5.9% when

the waiting time extends to 15 years, reflecting the investor’s desire to mitigate illiquidity

risk already in the portfolio construction phase.

With higher illiquidity, the value function exhibits greater curvature over the realized

allocation of the private asset. As indicated in Equations (12) and (13) this curvature

plays a role in the liquid asset allocation and in the consumption rate adjustments during

the periods in which liquidity is not available. With longer waiting times, as the realized

private asset allocation drifts away from the strategic target, the tactical adjustments

become more prominent, and the consumption rate and the risky allocations are reduced

7The value function is derived numerically. See the value function iteration and quadrature algorithms
described in Annex A.
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even with mild deviations of ξ above the strategic target. This effect is illustrated in

Figures 1c and 1b.

The shape of the value function also indicates how sensitive investor welfare is with

respect to the portfolio share locked up in the private asset. The concavity of the value

function implies that under-investing in the private asset would lead to a loss of investor

welfare, as a potential source of diversification or return has been underappreciated.

At the same time, overallocating would also lead to a loss, as the investor bears more

illiquidity risk than is optimal according to their risk preferences. The steeper slope of

the value function shows that overallocating to the private asset is having an increasingly

negative impact on investor welfare when with higher illiquidity.

Strategic Asset Allocation: Table 2 shows further how the overall strategic portfolio

allocations are affected by the severity of the liquidity friction, considering the four cases

for the parametrization of the private asset: with and without a liquidity premium, with

and without correlation to a public asset from the investment universe. Each table first

shows the Merton solution with the full investment universe (row ’3m’), hypothesizing

that the private asset can always be traded, and the Merton solution only with the

two publicly traded assets and cash (row ’2m’), hypothesizing that the private asset is

excluded from the investment universe. The ’2m’ case thus serves as a basis for evaluating

the improvement in CEC terms of including a private asset in the portfolio. The ’3m’

provides a ceiling on maximum achievable CEC if the the private asset were fully liquid.

The model with illiquidity converges to the ’3m’ case when the Poisson intensity η is

large and converge to the ’2m’ case when it is small, implying large waiting times between

opportunities to rebalance the private asset allocation.

Table 2a looks at a case when the private asset has high diversification potential, i.e.

zero correlation to the two public assets. When trading can occur up to a year on average,

the optimal allocation with illiquidity is still close to the continuous trading optimal

allocation (row ’3m’) of 22.69%. As the trading friction intensifies, however, the allocation

to the private asset is significantly reduced, down to 5.95% with 15 years average waiting
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Figure 1: Optimal Solution
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Note. This figure shows the reduced value function sensitivity to the share ξ of the private asset in the
portfolio for the different severity of trading friction, 1/η. The red curve on top of the surface highlights
the optimizing strategic allocation to the private asset at each level of illiquidity. Panels (b) and (c)
show respectively the optimal consumption rate and the the optimal allocation to one of the liquid risky
assets (both as % of the total portfolio).

17



time. Overall, this shift becomes economically significant when the average waiting time

is above 2 years. In this baseline case, the reduction in the private asset allocation is

not in favor of liquid risky assets, but rather in favor of building stronger cash buffers.

This ensures that with prolonged periods of illiquidity the volatility of the public assets

will not drain total liquidity from the portfolio, and the investor can still keep robust

consumption until the next rebalancing opportunity arrives.

Table 2: Strategic Asset Allocation with a Private Asset

(a) High Diversification (ρ = 0; lp = 0)

1/η Cash Public 1 Public 2 Private CEC

3m 31.92 22.69 22.69 22.69 4.36
0.5 32.77 22.52 22.52 22.19 4.35
1 33.38 22.51 22.51 21.59 4.34
2 34.51 22.49 22.49 20.50 4.33
5 39.60 22.45 22.45 15.50 4.28
10 46.41 22.49 22.49 8.62 4.16
15 49.09 22.49 22.48 5.94 4.09
2m 54.61 22.69 22.69 - 3.93

(b) Low Diversification (ρ = 0.8; lp = 0)

1/η Cash Public 1 Public 2 Private CEC

3m 52.09 22.69 12.61 12.61 3.98
0.5 52.38 22.58 12.72 12.33 3.97
1 52.43 22.58 12.96 12.03 3.97
2 52.56 22.57 13.48 11.39 3.97
5 53.04 22.57 15.52 8.86 3.96
10 53.82 22.57 18.7 4.9 3.95
15 54.22 22.57 20.29 2.92 3.94
2m 54.61 22.69 22.69 - 3.93

(c) High Diversification, Premium (ρ = 0; lp =
0.03)

1/η Cash Public 1 Public 2 Private CEC

3m 13.01 22.69 22.69 41.61 5.40
0.5 14.83 22.38 22.38 40.41 5.37
1 15.95 22.34 22.34 39.37 5.36
2 20.56 22.24 22.24 34.96 5.30
5 35.24 22.20 22.20 20.35 4.91
10 43.70 22.33 22.33 11.64 4.55
15 47.27 22.48 22.48 7.78 4.39
2m 54.61 22.69 22.69 - 3.93

(d) Low Diversification, Premium (ρ =
0.8; lp = 0.03)

1/η Cash Public 1 Public 2 Private CEC

3m 41.58 22.69 (29.42) 65.14 5.23
0.5 42.45 22.41 (28.15) 63.29 5.20
1 42.70 22.36 (26.52) 61.46 5.19
2 43.41 22.29 (22.75) 57.05 5.16
5 49.29 22.24 2.92 25.55 4.67
10 51.47 22.33 11.15 15.06 4.39
15 52.52 22.43 14.55 10.50 4.27
2m 54.61 22.69 22.69 - 3.93

Note. This table shows the optimal SAA weights and Certainty Equivalent Consumption (CEC) as a
function of the expected waiting time (1/η, in years) to trade the illiquid asset. The rows 2m and 3m
stand for the continuous-trading Merton case with two and three risky assets, respectively. All numbers
are in percentages from total investor wealth.

When the private asset is correlated to a public asset, Public 2 in Table 2b, a substi-

tution effect appears - the liquid risky asset displaces the allocation to the correlated

private asset. Public asset 2, which is 80% correlated, serves as an effective substitute

when the illiquidity in the public asset intensifies. As the diversification benefits in this

18



case are small, we can see that despite the significant relocation from the private asset

into Public 2, the CEC losses are not significant, and CEC consumption stays around

3.9% in all cases. In contrast to the diversifying case, however, now cash buffers were al-

ready high even when the private asset was fully liquid. The high buffers protect against

the individual asset volatility which cannot be dampened in the portfolio through diver-

sification.

Consider the case when the illiquid asset bears a liquidity premium (Tables 2c and

2d). First, when the private asset allocation can be rebalanced relatively frequently (less

than 2 years on average) and a well-correlated publicly traded equivalent exists (Public 2

in Table 2d), the investor sells short the public equivalent and allocates the proceeds to

the illiquid private asset. This exploits the opportunity to harvest the illiquidity premia

of the private asset while also hedging its volatility through the short position in its public

equivalent. However, as the time to trade the illiquid asset extends beyond five years,

this strategy becomes suboptimal, and the investor transitions to a long-only portfolio.

The optimal allocation still amounts to about 10% in the private asset when illiquidity is

extremely low, indicating an ability of the investor to still accommodate the illiquidity risk

associated with the private asset. Note that in this case the substitution effect observed

earlier now works in reverse - the investor prefers the higher yielding private asset and

allocates less to Public 2 compared to the case when the illiquid asset has zero correlation

with it.

The Distribution of ξ: The dynamics of ξ over time are driven by several forces.

While the investor can return to the optimal SAA levels ξ∗ when a liquidity opportunity

arises, the rest of the time the realized allocation drifts freely based on the how the value of

the liquid subportfolio changes relative to the value of the illiquid allocation. In addition,

the continuous consumption out of liquid wealth creates an additional tendency for the

illiquid allocation to grow relative to the liquid one. Figure 2a shows a density plot of the

realized ξ for a simulated time path of the optimal investment portfolio under the baseline

case. In both the five-year and the 15-year liquidity waiting time, most of the distribution
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mass of the realized allocation is concentrated just above the SAA value ξ∗ indicated by

the vertical dotted line. As expected, in the 15-year waiting time, the optimal SAA to

the private asset decreases. At the same time, the right tail of the realized allocation

to the private asset becomes fatter, indicating that while the investor has preemptively

reduced the strategic allocation to the private asset compared to the more liquid case,

there is still a growing likelihood of extreme unintended over-allocation to the private

asset. Figure 2b further shows that the tendency for over-allocation becomes particularly

pronounced when the private asset carries a high liquidity premium. Especially in the 15-

year case, the median realized allocation to private assets is clearly above the strategic

level (the dotted vertical line at ξ∗), reflecting the persistent drift in ξ caused by the

prolonged illiquidity periods and the tendency for outperformance of the illiquid asset.

Figure 2: The Density of Realized Private Asset Allocation
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Note. Figures (a) and (b) show kernel plots of the realized allocation to the private asset without and
respectively with an illiquidity premium for the private asset. The vertical dotted lines indicate the
strategic allocation, ξ∗. The results are based on model simulation.

Optimal consumption and illiquidity-related consumption variability: Table 3

highlights through a simulation how illiquidity risk impacts the realized allocation to the

private asset and the realized consumption rate. In each case, the table shows a 95% range

and the median of each variable in a model simulation. To put the risk of illiquidity in

perspective, the numbers in bold show cases in which the realized consumption falls below
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the benchmark Merton optimal consumption of 3.78% evaluated when the private assets

are excluded from the investment universe. As the waiting time of liquidity increases

above two years, reasonable tail scenarios start appearing in which the investor needs to

significantly curb consumption due to portfolio liquidity dry-ups.

This risk of over-allocating to the private asset and consequently experiencing a liquid-

ity dry-up becomes particularly notable with prolonged expected waiting times between

rebalancing opportunities combined with an illiquidity premium on the private asset (ta-

bles 3c and 3d). In those cases, we observe that the 97.5 percentiles of the realized

private asset allocation increase substantially. The risk appears that the private asset

may dominate the whole portfolio without the investor being able to rebalance back to

the strategic targets.

Table 3: Private Asset SAA and Consumption Rate, 95% Range of Realized Scenarios

(a) ρ = 0; lp = 0

Allocation, ξ Consumption Rate

1/η 2.5% 50% 97.5% 2.5% 50% 97.5%

0.5 19.14 22.19 27.13 4.12 4.12 4.12
1 17.75 21.59 30.18 4.11 4.12 4.12
2 15.62 20.74 35.05 4.08 4.11 4.11
5 11.09 17.60 46.18 3.59 4.06 4.07
10 5.75 11.21 56.83 2.42 3.96 3.97
15 3.64 8.46 61.26 1.97 3.90 3.92

(b) ρ = 0.8; lp = 0

Allocation, ξ Consumption Rate

1/η 2.5% 50% 97.5% 2.5% 50% 97.5%

0.5 10.75 12.33 15.11 3.82 3.82 3.82
1 9.98 12.03 16.9 3.82 3.82 3.82
2 8.9 11.61 19.65 3.82 3.82 3.82
5 6.27 9.96 27.37 3.76 3.81 3.82
10 3.59 6.45 36.92 3.29 3.80 3.80
15 2.08 4.38 42.92 2.81 3.79 3.80

(c) ρ = 0.8; lp = 0.03

Allocation, ξ Consumption Rate

1/η 2.5% 50% 97.5% 2.5% 50% 97.5%

0.5 36.85 40.41 48.72 4.91 4.91 4.91
1 34.84 39.37 54.33 4.88 4.90 4.91
2 29.82 36.92 60.99 4.54 4.86 4.86
5 16.33 24.83 70.70 2.50 4.54 4.57
10 9.10 18.32 87.57 0.99 4.21 4.28
15 6.31 15.09 93.95 0.52 4.08 4.16

(d) ρ = 0.8; lp = 0.03

Allocation, ξ Consumption Rate

1/η 2.5% 50% 97.5% 2.5% 50% 97.5%

0.5 58.05 63.29 76.19 4.76 4.78 4.81
1 54.16 61.46 84.10 4.64 4.77 4.83
2 48.62 60.28 93.18 4.26 4.75 5.00
5 22.17 31.91 83.99 2.23 4.34 4.37
10 13.17 24.56 94.69 1.09 4.07 4.15
15 9.41 19.78 98.64 0.84 3.97 4.06

Note. This table shows the realized private asset allocations (q values) and consumption rates as a
function of the expected waiting time (1/η, in years) to trade the illiquid asset. The columns q = 2.5%,
q = 50%, and q = 97.5% indicate the quantiles of the respective variables. The numbers in bold show
the cases in which the realized consumption falls below the Merton optimal consumption of 3.78% when
the private asset is excluded. All numbers are in percentages from total investor wealth.
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Next, I compare the consumption rate with an illiquid private asset (solid blue curve

in Figure 3) against the consumption rate without it (lower dotted line, derived from the

Merton Model), and the consumption rate assuming, hypothetically, that the private asset

is fully liquid (upper dashed line, also derived via the Merton Model). The gap between

the two horizontal lines shows the overall potential for consumption improvement from

the private asset.8 However, its illiquidity prevents the full realization of this potential

and when its share is high, the investor is forced to curb consumption. This is captured by

the downward-sloping curve in the right section of the charts. Since illiquidity introduces

consumption dependence on the realized private asset holdings, as the realized allocation

to the private asset drifts above the strategic optimum, the investor will need to adjust

downward the consumption rate below its potential (the diamond at the top of the curve).

The shaded grey areas in the figure then show the 95% range of realized consumption

rates in a simulated model run. In this line of thinking, Figures 3c and 3d illustrate that

the presence of an illiquidity premium substantially increases the consumption potential.

At the same time, it also exacerbates the overallocation problem. The widening grey areas

reflect the resulting increased variability in realized consumption rates as a response to

the overallocation issue. In those cases, also the median allocation rate (indicated by

the black dash on the curve) notably exceeds the SAA level (the diamond at the top

of the curve). Overall, a higher (ξ∗), particularly driven by the high illiquidity premia

or diversification potential in the private asset, also contributes to greater consumption

reductions during periods of illiquidity.

Quantifying the benefits of optimal allocation to private assets: Next, we con-

sider the benefits and costs of investing in an illiquid asset. For this purpose, we quantify

investor welfare in risk-adjusted terms as the certainty equivalent consumption (CEC)

associated with the optimal investment strategy (see Section 3). The CEC with illiquidity

8As can be expected, the potential to improve consumption is higher when the private asset offers
stronger diversification potential, as in Figure 3a, or when it embeds an illiquidity premium, as illustrated
in Figures 3c and 3d. Conversely, Figure 3b demonstrates that a high correlation between the liquid and
illiquid assets significantly limits this potential.
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Figure 3: Consumption Rates with Private Asset (10-year illiquidity)
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(b) ρ = 0.8; lp = 0
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(c) ρ = 0; lp = 0.03
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(d) ρ = 0.8; lp = 0.03
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Note. This set of figures illustrates the effects of private asset illiquidity on consumption rates. The solid
blue curve represents the consumption rate of an investor holding a private asset with a 10-year average
illiquidity; the upper dashed line shows the consumption rates assuming full liquidity of the private
asset; and the lower dashed lines show the rate when investment is made in liquid public assets solely.
The shaded gray areas denote the 95% range of realized consumption rates, capturing the variability
introduced by illiquidity constraints. Panels (a) and (c) assume that the private asset is uncorrelated with
any publicly traded asset. Panels (c) and (d) assume a 3% illiquidity premium. The black arrow marks
the median realized consumption rate, while the diamond indicates the consumption at the strategic
allocation in the private asset.
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is a function of the initial allocation ξt, as derived in Equation (15). The solid blue curve

in Figure 5 illustrates this. Given the dynamic principal of optimality embedded in the

model, realizing this CEC is conditional on the investor optimally adjusting the portfolio

tactical allocation and returning to the optimal strategic private asset allocation ξ∗ given

by the model at the next liquidity opportunity. The solid gray line shows this optimal

strategic target. The vertical dashed gray line, on the other hand, is the Merton optimal

allocation, i.e. assuming that continuous rebalancing opportunities exist for the private

asset.

Define the allocation benefit from investing in the private asset class as the improve-

ment in CEC relative to investing only in liquid public assets. Formally:

Allocation Benefit =
CEC(ξ∗)

CECm(ξ = 0)
− 1, (16)

where CEC(ξ∗) represents the certainty equivalent consumption with the illiquid asset

at its optimal strategic weight, and CECm(ξ = 0) corresponds to the CEC when the

private asset is excluded from the investment universe altogether, with the optimal policies

evaluated through a Merton model.

Figure 4 summarizes the size of this allocation benefits. First, with no liquidity pre-

mia (Chart 4a), the allocation benefit is relatively large initially (around 10%) when the

private asset is diversifying and highly liquid, but declines gradually when the diversifi-

cation potential of the asset cannot be fully realized with higher illiquidity. When the

asset is not diversifying, the allocation benefit remains minimal, starting at around 1.5%

and declining to zero. Factoring in a liquidity premium for the private asset, the benefit

declines from 30% to around 10% at the high end of the illiquidity parameter.

Misallocation risk with private assets: Finally, define the misallocation loss as the

potential welfare loss from ignoring the illiquidity risk of the private asset. Using the

Merton model and assuming erroneously that the private asset allocation is adjustable

continuously leads to over-optimistic allocation recommendations, which later on will
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Figure 4: Allocation Benefit with Private Asset
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Note. This figure quantifies the benefit of allocating to the illiquid asset. The benefit is measured
as the percentage increase in certainty equivalent consumption. Figure (a) shows the benefit when no
illiquidity premia exists. Figure (b) specifies 3% illiquidity premia. The dotted lines correspond to the
benefit evaluated with a fully liquid asset through the Merton model.

constrain investment consumption. Formally, we define:

Misallocation Risk = −
(
CEC(ξliquid)

CEC(ξ∗)
− 1

)
, (17)

where CEC(ξliquid) is the CEC in the model with illiquidity at the Merton optimal

allocation to private assets, and the CEC(ξ∗) is evaluated at the optimal allocation

with illiquidity properly considered. Note that this formulation of the misallocation risk

represents a lower bound on the actual loss. The CEC(ξ) function implicitly assumes that

even when the private asset is misallocated the rest of the portfolio and the consumption

rate remain optimized.

Judging by the gap between the solid and the dashed vertical lines in Figure 5, the

misallocation risk increases with the convexity of the CEC curve and with the properties

of the private illiquid asset. When the expected waiting time to rebalance the portfolio is

high, or when correlations between the private asset and the liquid assets are lower, the

CEC curve becomes more convex. Also, a positive illiquidity premium and low correlation

provide over-optimistic Merton allocations, exacerbating the misallocation loss.
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Figure 5: Investor Welfare with Private Asset (10-year illiquidity)
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(b) ρ = 0.8; lp = 0
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(c) ρ = 0; lp = 0.03
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Note. This set of figures illustrates the effects of private asset illiquidity on investor welfare, measured as
the Certainty Equivalent Consumption rate as a percent of total wealth. The solid blue curve represents
the CEC of an investor holding a private asset with a 10-year average non-trading time as a function of
the initial allocation to the private asset, ξ. The dashed vertical lines indicate optimal allocation ignoring
liquidity risk. Panels (a) and (c) assume that the private asset is uncorrelated with any publicly traded
asset and bears no illiquidity premium. Panels (c) and (d) assume a 3% illiquidity premium. The black
arrow marks the median realized consumption rate, while the diamond indicates the consumption at the
strategic allocation in the private asset.
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5 Strategic Allocation with Private Asset Classes

Next, I part from the stylized calibration of the previous section and evaluate the allo-

cation to private assets based on actual long-term performance expectations. I use the

CMAs for 2025 compiled by JP Morgan,9 who use a combination of quantitative and

qualitative inputs and provide a 10-15 year outlook on returns, risks and correlations

across various publicly traded and privately asset classes. The private equity projections

are net of the fees and expenses charged by managers, so they reflect the final return that

can be expected by the investor.10

There are two primary reasons to rely on analyst-based capital market assumptions

rather than historical asset return data. First, using CMAs in the strategic allocation

is a standard practice among institutional investors and is often developed in-house or

by consultants by merging insights from quantitative researchers, industry experts, and

academics (Andonov and Rauh, 2022; Couts et al., 2023). SAA decisions are inherently

forward-looking, making the direct use of historical returns subject parametrization risk

to obsolete data (Terhaar et al., 2003). Second, using projections instead of historical

data avoids the biases inherent in the historical returns of private asset classes.11

In the consequent optimization, the liquid investment universe includes the traditional

liquid assets: equity and fixed income. The risk-free asset, represented by the money

market rate, is classified under short-term fixed income. I examine five distinct cases,

each focusing on a long-only investor. In each separate optimization, I consider adding

to the investment universe only one private asset class at a time: Core Real Estate,

Infrastructure, Private Equity, or Diversified/Macro Hedge Funds. This approach mirrors

9The data is publicly available on JP Morgan’s website: https://am.jpmorgan.com/content/dam/jpm-
am-aem/global/en/insights/portfolio-insights/ltcma/noindex/ltcma-full-report.pdf

10Further details on the approaches used by JP Morgan are available in their methodolog-
ical guide: https://am.jpmorgan.com/content/dam/jpm-am-aem/global/en/insights/portfolio-
insights/ltcma/noindex/ltcma-methodology-handbook.pdf

11Infrequent trading tends to over-smooth historical return data, leading to downward-biased estimates
of asset variance; secondary markets are often thin, with data frequently derived from appraisals; private
equity managers often have discretion over the timing of valuation reporting, creating incentives to
disclose performance only when it is favorable; and even when trading occurs, observable market values
are more likely to emerge when asset prices are high and sellers are active. For a summary of this
evidence, see Ang (2014); Brown et al. (2023, 2019).
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an investor interested in exploring a single private asset class out of several alternatives.

From a modeling perspective, this also simplifies the analysis by avoiding the complexities

of establishing dependencies between multiple Poisson processes across several illiquid

asset classes. Table (4) summarizes the input data for the asset classes used in this

study.

Table 4: Asset Class Characteristics and Correlation Matrix

Asset Class Return Volatility Sharpe Correlation

1 2 3 4 5 6 7 8 9 10

Fixed Income Money Market* 0 3.1 - -
U.S. Long Treasuries 1 4.3 12.83 0.09
U.S. Long Corporate Bonds 2 4.9 12.08 0.15 0.67

Equity U.S. Large Cap 3 6.7 16.26 0.22 -0.03 0.47
U.S. Small Cap 4 6.9 20.73 0.18 -0.1 0.38 0.9
EAFE Equity 5 8.1 17.61 0.28 -0.04 0.52 0.88 0.8

Liquid Alternatives U.S. REITs 6 8 17.22 0.28 0.19 0.54 0.77 0.76 0.71
Private Assets U.S. Core Real Estate 7 8.1 11.32 0.44 -0.19 -0.02 0.35 0.29 0.27 0.46

Global Core Infrastructure 8 6.3 11.01 0.29 0.24 0.2 0.47 0.41 0.55 0.36 0.32
Private Equity 9 9.9 19.62 0.35 -0.37 0.26 0.78 0.75 0.8 0.53 0.34 0.62
Diversified Hedge Funds 10 4.9 5.80 0.31 -0.21 0.31 0.68 0.64 0.7 0.42 0.32 0.43 0.79
Macro Hedge Funds 11 3.8 7.00 0.1 -0.09 0.05 0.16 0.14 0.24 0.1 0.01 0 0.26 0.48

Note. This table shows the Capital Market Assumptions based on the JP Morgan’s report for 2025.
These include the expected (net) returns, standard deviations of the asset classes considered here, and
the correlations between them.

The expected waiting times associated with the illiquid private assets are calibrated

based on estimates from the academic literature. Given the inherent difficulty in measur-

ing asset class illiquidity, I rely on crude approximations for the average expected time

to redeem the investment in each asset class. The timing of exit or redemption for most

private asset funds is uncertain, often contingent on market conditions for IPOs, mergers,

and acquisitions, which is also the reason why illiquidity is stochastic in this model. Sec-

ondary markets for private equity and hedge funds remain nascent, characterized by thin

trading volumes and significant pricing discounts (Kleymenova et al., 2012; Ramadorai,

2012; Nadauld et al., 2019). For this reason, they are not considered here.

For private equity, Metrick and Yasuda (2010) report a median exit time of approxi-

mately five years, but it can extend to more than 10 years. Andonov et al. (2021) observe

comparable exit times for infrastructure investments, as most investors access these as-

sets through closed-end funds structured similarly to private equity. Bitsch et al. (2010)

further highlight that while the underlying assets of infrastructure funds often have long

lifespans, the funds themselves exhibit exit times similar to those of private equity funds.
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Based on these findings, I adopt a calibration for the illiquidity parameter η of 1/5 and

1/10 for private equity and infrastructure funds. For Real Estate funds, Fisher and

Hartzell (2016) report median exit times ranging from 4.25 to 5.5 years, supporting again

a calibration of η = 1/5.

Hedge funds, in contrast, have much shorter illiquidity horizons related to gates im-

posed by the manager or varying lock-up periods and redemption notice requirements.

Although these contractual clauses are typically known once a fund manager is selected,

ex-ante they vary across funds. I calibrate their illiquidity to η = 1, aligning with the

findings reported in Schaub and Schmid (2013).

Table 5: Portfolio Allocation and Welfare Metrics under Liquidity Scenarios

Private Equity Infrastructure Real Estate Diversified Hedge Funds Macro Hedge Funds
Liquid Illiquid 5Y Illiquid 10Y Liquid Illiquid 5Y Illiquid 10Y Liquid Illiquid Liquid Illiquid Liquid Illiquid

Fixed Income 63.20 67.02 67.99 49.21 56.78 62.94 30.57 54.87 23.07 29.13 57.97 58.25
- Short Term 30.92 48.56 53.81 47.11 51.74 55.55 9.13 39.89 8.99 15.71 47.90 48.18
- Long Term 32.27 18.47 14.18 2.10 5.03 7.39 21.44 14.99 14.08 13.41 10.07 10.07
Equity 0.19 4.66 11.17 5.20 10.17 14.13 18.02 20.43 3.34 5.29 16.47 16.50
Liquid Alternatives 0.40 11.14 11.93 16.39 14.95 13.83 0.05 4.07 14.42 14.08 13.34 13.33
Private Assets 36.15 17.09 8.82 29.12 18.03 9.01 51.31 20.55 59.13 51.46 12.13 11.84
CEC 4.59 4.31 4.14 4.13 4.09 4.02 5.25 4.60 4.24 4.21 3.95 3.95
Median Realized ξ 36.15 20.34 13.41 29.12 20.44 12.13 51.31 24.60 59.13 51.46 12.13 11.84
Median Realized c 4.32 4.09 3.94 3.95 3.92 3.86 4.83 4.31 3.98 4.02 3.81 3.81
Allocation Benefit 16.65 9.51 5.11 4.78 3.87 2.20 33.46 16.78 7.70 6.98 0.27 0.27
Misallocation Risk - 3.69 12.49 - 0.58 5.43 - 16.68 - 0.19 - 0.00

Note. This table shows model results for a long-only investor.

Table 5 first presents the model solution for the optimal strategic allocation. Em-

bedding illiquidity into the portfolio optimization influences the investor’s consumption

rate, allocation decisions, and consequent welfare. In each case, for comparison reasons, I

consider first the hypothetical situation in which the private asset can be traded contin-

uously. Comparing against this, it can be seen that considering the illiquidity risk of the

private assets significantly alters the composition of the liquid sub-portfolio. The most

notable shift is the substantial increase in short-term fixed-income allocations. As noted

earlier, the higher cash buffers mitigate the risk of significant disruptions in consumption.

The reduction in the allocation to the private asset class when illiquidity is considered

is particularly pronounced for private equity, where the allocation declines from 36.15%

under the liquid assumption to 17.09% for a five-year expected waiting time and fur-

ther to 8.82% for a ten-year waiting time. This is accompanied by a substitution effect
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where the allocations to public equity and liquid alternatives (e.g., REITs) are increased,

rising from zero to approximately 11.17% and 11.93%, respectively, in response to the

reduced role of private equity. Similar reallocation patterns are observed for Real Estate,

which tends to be substituted partially by REITs, and Infrastructure, which is partially

substituted by Public Equity. Hedge funds, on the other hand, are comparatively much

more liquid. They show a similar trend but to a lesser extent. Among hedge fund strate-

gies, Diversified Hedge Funds exhibit a more pronounced substitution effect due to their

higher correlation with public equity, while Macro Hedge Funds maintain relatively stable

allocations. The relatively high allocation to the risk-free asset (here: short-term fixed

income) is driven by the relatively high interest rate in the CMAs. I do not put additional

restrictions on cash.

The inclusion of a private asset class in the portfolio, even after accounting for its

illiquidity, yields measurable allocation benefits. These benefits, expressed as percent-

age increases in certainty equivalent consumption (CEC), range from 0.2% to 16%. The

highest allocation benefit is observed for Real Estate, which provides significant diversi-

fication advantages, while the lowest benefit is for Macro Hedge Funds, reflecting their

lower risk-adjusted returns (as shown in Table 5).12 Yet, the the inclusion of illiquid-

ity risk in the optimization significantly lowers the estimated allocation benefit from the

estimate which ignores illiquidity. The shift is most notable for Private Equity, where

the allocation benefit drops from 16% when only variance risk is considered, down to 5%

when the expected time between liquidity events is extended up to 10 years.

As a result, ignoring illiquidity exposes investors to substantial misallocation loss.

Allocating according to a liquid model leads to a 3% welfare loss for private equity

assuming a five-year expected waiting time, and extends up to to 12% for a ten-year

waiting time. Infrastructure investments exhibit relatively low misallocation risks for the

5-year expected waiting times but face up to a 5% welfare loss if the expected waiting time

is extended to 10 years. Real Estate, possibly due to its diversification benefits, incurs

12The baseline CEC for a portfolio excluding private assets altogether is 3.937 per $100, serving as a
benchmark against which the allocation benefits are measured.
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the highest misallocation risk among private assets. Even with a five-year waiting time,

welfare losses due to misallocation can reach 16%. Hedge funds demonstrate significantly

lower misallocation risks.

6 Conclusion

This paper underscored the role of illiquidity when private asset classes are part of the

investor’s strategic allocation mix, and quantifies the degree to which they improve the

certainty equivalent consumption of a long-term investor. I find that the allocation gains

are tempered when illiquidity risk is properly accounted for. Ignoring it, on the other

hand, can lead to overallocation and significant welfare losses, particularly for highly

illiquid assets such as private equity and real estate.

The dynamic portfolio choice model presented here provides a unified framework to

handle illiquid private assets. Further extensions can capture the nuances of each specific

private asset class. In addition, fixed costs of investment, typically a concern for smaller

investors, can be included in the framework as private assets require strong expertise

and due diligence process which comes at an initial cost to develop. Also, the modeling

of secondary markets was avoided here. Yet, as they become more liquid fund exit

alternatives, including them in the model can be explored as well. In any case, however,

the dynamic portfolio choice model presented here provides an intuitive framework for

the discussion of illiquidity in the asset allocation problem, and allows the use of CMAs

typically part of the institutional investor’s asset allocation toolbox.
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A Discretization & Numerical Solution Methods

This section outlines the numerical approaches used to find the reduced-form value func-

tion H(ξ) and the optimal controls for the portfolio choice problem with illiquidity defined

in Section 3.13

A.1 The trading probability and the Poisson process

Figure 6: Relationship between p and η
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The plot shows the connection based on the probability to trade p in an illiquid asset within a year and
1/η, the average waiting time in years between trades.

First, we define the probability p with which the investor trades the illiquid asset over

a discrete time period ∆t. This probability will be a function of the intensity η of the

Poisson process that indicates the relocation opportunities. To show that formally, note

that a Poisson process has stationary and independent increments, where the number of

events that occur during any time increment of length ∆t is Poisson distributed with mean

η∆t. Then the probability that n events occur over the time increment can be written

as: P (Nt+∆t − Nt = n) = e−η∆t (η∆t)n

n!
. We can then show that p, as the probability of

having at least one trading event over time period ∆t is such that

p = 1− e−η∆t (18)

13The model presented here and code to reproduce the results of this paper is available at
https://github.com/danielkdimitrov/portfolioChoiceIlliq
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Figure 6 illustrates this functional relationship over an annual horizon. It is well-known

that the that 1/η represents the waiting time between two Poisson counts, so correspond-

ingly, for a more appealing representation, I plot on the x-axis the expected time between

two trades.

A.2 Discretizing the Bellamn equation:

Now, we look at time discretization of the dynamic optimization problem. The discretized

Bellman equation can then be solved through value function iteration combined with

standard numerical techniques.

Define the growth rate in liquid Rw,t+∆t(ct,θt) =
Wt+∆t

Wt
and illiquid wealth Rx,t+∆t =

Xt+∆t

Xt
for the cases when rebalancing is not possible (i.e. dIt = 0 in (5)), such that the

Euler discretization of the continuous stochastic process (3) holds, ass:

Rw,t+∆t = 1 + (r + θ′
t(µw − r1)− ct)∆t+ θ′

tσw

√
∆t∆Zt

Rx,t+∆t = 1 + µx∆t+ σx

√
∆t∆Zt

(19)

where ∆Zt is a column vector of standard normal random variables.14

Then, we can define the growth in total wealth Rq,t+∆t =
Qt+∆t

Qt
, and the change in

the illiquid asset share ξt+∆t as:

Rq,t+∆t = (1− ξt)Rw,t+∆t + ξRx,t+∆t

ξt+∆t = ξt
Rx,t+∆t

Rq,t+∆t

(20)

Proposition: The dynamic problem defined in Section 3 can be solved through the

discterized Bellman equation of the form:

(21)
H(ξt) =

max
(θt,ct)

{
u(ct(1− ξt))∆t+ δ

(
pH∗Eξt

[
R1−γ

q,t+∆t

]
+ (1− p)Eξt

[
R1−γ

q,t+∆tH(ξt+∆t)
])}

14A Gaussian quadrature approach will be used for the space-discretization of the normal distribution
and for the evaluation of the expectations in the Euler equation presented next (cf. Section A.4).
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where p is the discretized probability of being able to trade next period (cf. Equation

(18)), δ = e−β∆t is a discount factor, H(.) is the reduced value function of Equation (11),

and H∗ = maxξ H(ξ).

Proof: It is easy to derive equations (20):

Rq,t+∆t =
Qt+∆t

Qt

=
WtRw,t+∆t +XtRx,t+∆t

Qt

= (1− ξt)Rw,t+∆t + ξRx,t+∆t

ξt+∆t =
Xt+∆t

Qt+1

=
Xt

Qt

Xt+∆t

Xt

Qt

Qt+∆t

= ξt
Rx,t+∆t

Rq,t+∆t

The dynamic optimization problem with illiquid assets is defined through the in-

tertemporal objective given in ((6)) and the law of motion given in (5). Using the Bell-

man principle of optimality we can tranform the dynamic problem into its discret time

version15:

V (Wt, Xt) = max
(θt,dIt,ct∈A)

{u(Ct)∆t+ δEWt,Xt [V (Wt+∆t, Xt+∆t)]}

with δ = e−β∆t as a discrete-time discount factor, and where the expectation is conditional

on the initial liquid wealth Wt and illiquid wealth Xt at time t. Using the homothetic

properties of the CRRA utility from Equation 11, we can rewrite the Bellman equatoin:

V (Qt, ξt) = max
(θt,ξt,ct∈R)

{u(ct(1− ξt)Qt)∆t+ δEQt,ξt [V (Qt+∆t, ξt+∆t)]}

Q
(1−γ)
t H(ξt) = max

(θt,ξt,ct∈R)
{Q(1−γ)

t u(ct(1− ξt))∆t+ δEQt,ξt [Q
(1−γ)
t+∆t H(ξt+∆t)]}

15To get intuition on the discretization step from the classic Merton case, note that the discrete
Bellman equation V (Wt) = sup(πt,Ct) {u(Ct)∆t+ e−β∆tE[V (Wt+∆t)]} can be shown to converge to its
continuous counterpart for ∆t → 0. Multiply the equation by eβ∆t, subtract V (W ) from both sides and
divide by ∆t and this results in: eβ∆t−1

∆t V (W ) = sup(πt∈Rd,ct≥0) {u(ct) + 1
∆tEt[V (Wt+∆t)− V (Wt)]}

Let ∆t → 0, then eβ∆t → 1 and also by the L’Hôpital rule we have that eβ∆t−1
∆t → β. As a result

1
∆tEt[V (Wt+∆t)−V (Wt)] → Et[dV ] which makes discretized equation equivalent to the continuous time
version: sup(πt,Ct) e

−βtu(Ct) + E
[
d(e−βtV (Wt))

]
dt = 0

38



The investor will set ξt+∆t = ξ∗ whenever trading is possible, coming to the top of

the value function, H(ξ). If trading is not possible, the investor cannot rebalance and

is stuck with suboptimal levels of illiquid holdings ξt+∆t, and the ratio will float away in

a random direction from last period’s value as the prices of the two risky assets move.

Since that case is suboptimal, the value function will be lower and at H(ξt+∆t). This is

illustrated in Figure 7.

Figure 7: Dynamic Asset Allocation and State Transition

Current State. Opti-
mize given: ξt, H(ξt)

Adjust illiquid holdings to
strategic allocation:

H∗ = maxH(ξ)

Return back to strategic target
allocations:

ξt+∆t = argmaxH(ξ)

θt+∆t = θ(ξ∗)

Illiquid allocation cannot be ad-
justed:

ξt+∆t = ξt
Rx,t+∆t

Rq,t+∆t

Adjust liquid allocations as a
response:

θt+∆t = θ(ξt+∆t)

Rebalan
cing, p

No rebalancing, 1− p

This chart illustrates the dynamics behind the optimal choice problem. In the coming period, the illiquid
asset share floats freely to ξt+∆t. With probability p, the investor can trade in the illiquid asset and set
it back to the optimal target of ξ∗ by maximizing the known function H(ξ). With probability 1− p, the
investor cannot trade and is stuck with the illiquid asset share of ξt+∆t.
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Combining the two, we can write the Bellman equation as:

Q
(1−γ)
t H(ξt) =

max
(θt,dIt,ct∈R)

{
Q

(1−γ)
t u(ct(1− ξt))∆t+ δ

(
pEQt [Q

(1−γ)
t+∆t ]H

∗ + (1− p)EQt [Q
(1−γ)
t+∆t H(ξt+∆t)]

)}
Note, that by canceling out Qt and by embedding it in the expectations the conditional

part of the expectation with respect to Q can be dropped and we arrive to Equation

(21).

A.3 Value Function Iteration:

Based on the discretization from Annex A.2, we can solve the portfolio choice dynamic

problem through value function iteration. Discretizing ξ and evaluating the system one

period ahead will allow us to iterate (21) until the iterative approximation of the value

function H(ξ) converges. The procedure will eventually yield a numerical approximation

of the value function and the optimal solution for the policy functions c(ξ) and θ(ξ). So,

the goal is to find the approximating function H̃(.) evaluated on a fixed grid ξ̃ which best

approximates the true theoretical function H(ξ) underlying the HJB equation (C.2). We

use the following iterative procedure:

Initialization: Discretize the random space (the random variables ∆Z1 and ∆Z2

in (19)) through a simulation or strategically selected (Gaussian) quadrature points

(see Annex A.4).

Select an approximation grid of N gridpoints for ξt: ξ̃ = {ξ1, ..., ξN} ∈ [0; 1),

j = 1, .., N . I use N = 20. Select a class of approximating functions H̃(a; ξ̃)

which will approximate the true value function H(ξ) and initialize the functional

parameters a. In particular I use a cubic spline due to its flexibility to capture

strong curvature of the H() function at the upper edge of ξt. Fitting the spline over

the logarithmized values of the evaluated function also improves the convergences.

Select an initial guess for the maximum H̃∗ of the value function. As a starting

point for the iteration we use the analytical two-asset Merton solution. We can
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then initiate the following iterative algorithm.

1. Optimization: For each ξj in the grid evaluate numerically optimal consumption

and liquid asset allocation:

c∗,k, θ∗,k+1 = argmin
{
u(c(1− ξj))∆t+ δ

(
pH̃∗E

[
q̂(c, θ, ξj)

1−γ
]

+ (1− p)E
[
H̃

(
ak; ξ̂(c, θ, ξj)

)
q̂(c, θ, ξj)

1−γ
])}

where ξ̂() and q̂() are next-period’s dynamics calculated through (20), and k =

1, ..., p is a counter measuring the iteration run.

2. Update: For each ξj and the optimal control policies found in the previous step

update values of the value function that lie on the grid. Update the fit of the

approximation function H̃(ak+1; ξ) based on the new values. Update H̃∗,k+1 =

argmaxξ H̃(ak+1; ξ).

3. Stopping: The algorithms stops if
∥∥∥ln(−H̃(ak+1; ξ))− ln(−H̃(ak; ξ))

∥∥∥2

< ϵ, oth-

erwise we go to Step 1. I use ϵ = 0.16

A.4 Gauss-Hermite Quadrature

I use quadrature approximation to evaluate the expectation terms in the numerical section

of this paper. Multi-dimensional quadrature methods are less common, so I provide here

a discussion of this approach, based on (Rust, 1996; Judd, 1998; Cai et al., 2013) and

show how the recipe can be adapted to the discretized Bellman equation defined in (21).

Univariate case: We can start with a discussion of a one-dimensional quadrature.

This will be used to generalize the problem to multiple dimensions. Gaussian quadrature

approximates an integral of the form:

∫ b

a

f(x)w(x) dx ≈
m∑
i=1

wif(xi)
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where w(x) is a weight function, xi are the quadrature nodes, wi are the quadrature

weights, and m is the number of quadrature points.

When dealing with integrals involving a normally distributed random variable (or

the logarithm of a log-normally distributed variable), Gauss-Hermite (GH) quadrature

is particularly useful. It applies a weight function w(x) = e−x2 and integrates over the

entire real line. The nodes xi are the roots of the Hermite polynomial, and the weights

wi are determined accordingly to accurately approximate the integral.

Note, however, that when evaluating the expectation of f(y) for a random variable y

which is normally distributed with y ∼ N(µ, σ) we have

E(f(y)) = (2πσ2)−1/2

∫ ∞

−∞
f(y)e−

(y−µ)2

2σ2 dy

To reconcile this with the GH approximation, we first use a change of variable y =
√
2σx+ µ and then apply the given quadrature approximation such that

E(f(
√
2σx+ µ)) = (π)−1/2

∫ ∞

−∞
f(
√
2σx+ µ)e−x2

dx ≈ 1√
π

m∑
i=1

wif(
√
2σxi + µ)

Multivariate case: Similarly, for a multivariate normal vector y ∼ N(µ,Σ), where

µ is an n × 1 mean vector and Σ is a positive semi-definite covariance matrix, and

f(x) : Rn → R a scalar-valued function, the expectation E[f(y)] can be evaluated using a

change of variable after performing a Cholesky decomposition Σ = σσ⊤. By substituting

y =
√
2σx+ µ, the integral

E[f(Y )] =
1

(2π)N/2|Σ|1/2

∫
RN

f(y)e−
1
2
(y−µ)⊤Σ−1(y−µ)dy

can be transformed to:

E[f(Y )] =
1

πN/2

∫
Rn

f(
√
2σxi + µ)e−x⊤xdx

where xi is a n× 1 vector quadrature node for i = 1, . . . ,m.
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Then, in the multi-dimensional space, we can use the quadrature product rule to

perform the approximation

E[f(Y )] ≈ 1

πn/2

m∑
i1=1

. . .

m∑
in=1

wi1 . . . win · f
(√

2σxi1,i2,...,in + µ
)
= (22)

where xi1,i2,...,in =
(

xi1 , xi2 , . . . , xi,n

)′
is a vector representing the i-th multivariate

quadrature node.16 In particular, for further clarity we can write

f
(√

2σxi1,i2,...,in + µ
)
≡ f



√
2 (σ11xi1) + µ1,

√
2 (σ21xi1 + σ22xi2) + µ2,

. . .
√
2 (σ11xi1 + · · ·+ σnnxin) + µn


with µi as elements of the vector of expectations, and σ11,σ22, . . . as elements of the σ

matrix.

With this in mind, it becomes trivial to evaluate the expectation terms in (21) using

the following steps:

1. Draw m weights and nodes from a uni-variate GH quadrature as wij and xij where

i = 1, . . . ,m is the index of the quadrature points. The index j of the respective

risk factor17 will come into play in the next step.

2. Construct in a m×n matrix the Cartesian product of n copies of the univariate GH

nodes form step (1). Each row of this matrix represents the transposed xi quadra-

ture node vector defined earlier. Denote by z1j ,2j ,...,mj
=

(
x1j , x2j , . . . , xm,j

)′

the j-th column from that matrix.

3. Similarly, construct the Cartesian product of n copies of the univariate GH weights

form step (1). This produces the weights wjk needed in Equation (22).
16Here we assume that the same number m of nodes is used to evaluate each risk factor. In general,

this need not be the case, and different number of nodes could be drawn for each risk factor.
17Which in our case corresponds to dZj , or the j-th element of the multivariate Brownian motion

vector dZ.
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4. In the discretized dynamic Equation (19) set ∆Zj,t ≡
√
2z1j ,2j ,...,mj

for each ∆Zj,t

being an element of the vector of discretized Brownian motions ∆Zt and evaluate

the gross return of the liuqid and corresponding the illiquid wealth. This produces

an m× 1 vector of returns for each wealth process, evaluated at the corresponding

multivariate quadrature nodes.

5. Evaluate Rq,t+∆t, ξt+∆t and H(ξt+∆t) at each node j.

6. Finally, evaluate the expectations terms in Equation 21 through the quadrature

approximation defined in (22).

B Benchmark Liquid Market: The Merton Model

B.1 Optimization

First, consider the benchmark case where all assets can be continuously traded. A repre-

sentative investor holds a liquid financial portfolio out of which she can withdraw (con-

sume) continuously the rate ct. The investor has control over the asset allocation by

setting the risky asset investment proportions collected in the column vector πt.18 The

wealth dynamics are then determined by the return of the portfolio net of the consump-

tion rate:
dWt

Wt

= (r + π′
t(µ− r1)− ct)dt+ π′

tσdZt (23)

Subject to these wealth dynamics, the investor optimizes over time her expected lifetime

utility:

V (Wt) = sup
(πs,Cs)

Et

∞∫
t

e−β(s−t)u(Cs)ds (24)

giving rise to the indirect utility of wealth function V (Wt), with β a subjective discount

rate, and t ≤ s.

Applying the Bellman principle, we can derive the Hamilton-Jacobi-Bellman (HJB)

18More generally, πt can be interpreted as exposures to factor excess returns.
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equation:

LC + Lπ − βV = 0

LC = sup
Ct

{
u(Ct)− CtVW

}
Lπ = sup

πt

{
(r + π′

t(µ− r1))VWWt +
1

2
VWWW 2

t π
′
tΣπt

} (25)

where VW and VWW are the first- and second-order partial derivatives of the value function

with respect to wealth.

Through a guess and verify strategy (cf. Annex B.3), the value function can then be

determined in closed form as

V (Wt) =

(
1

c

)γ
W 1−γ

t

1− γ
(26)

where c = Ct/Wt is the optimal consumption rate which can be shown to be fixed over

time and given by

c =
β + r(γ − 1)

γ
+

1

2

γ − 1

γ2
∥λ∥2 (27)

In this setting, the investor can trade continuously and thus can always keep allo-

cations at these base levels. Optimizing over π provides the optimal asset allocation

vector:

π = − VW

WtVWW

Σ−1(µ− r1) =
1

γ
(σ′)−1λ (28)

The fraction − VW

WVWW
= 1

γ
defines the investor’s relative risk tolerance given an indirect

utility V (W ). The optimal risky allocation then is determined through the interaction of

the investor’s risk tolerance with the price of risk of each specific asset in the investment

universe.
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B.2 The HJB equation and optimal solution

In order to derive the continuous-time Bellman equation, we examine the value function

defined in (24) over a short time period ∆t. Assuming that the strategies for πs and Cs

are set in advance and stay constant for the time interval s ∈ [t, t+∆t), and applying the

Bellman principle of optimality, we can split today’s value function into an optimizing

decision over the upcoming time span (from t until t + ∆t) and an optimal strategy

afterwards:

V (Wt) = sup
(πs,Cs)

{∫ t+∆t

t

e−β(s−t)u(Cs)ds

}
+ e−β∆tE[V (t+∆t,Wt+∆t)] (29)

Note that the time subscript from the expectation has been dropped, as the wealth

dynamics are driven by independent random shocks, implying that knowledge of the

present does not help in forecasting the expected value function, so the unconditional

expectation can be used instead of the conditional.

Multiplying both sides by 1
∆t
eβ∆t and rearranging:

eβ∆t − 1

∆t
V (Wt) = sup

(πs,Cs)

1

∆t

{∫ t+∆t

t

e−β(s−t−∆t)u(Cs)ds

}
+

1

∆t
E
[
V (Wt+∆t)− V (Wt)

]

We can evaluate the above equation for ∆t → 0. First, the by L’Hopital rule we have

that lim∆→0
eβ∆t−1

∆t
= β. Second, lim∆→0

1
∆t

∫ t+∆t

t
f(s)ds = f(t). Using the definition of a

drift term in a stochastic differential equation by denoting it as E[dV (t,Wt] we get the

continuous time Bellman equation as

βV (t,Wt) = sup
(πt,Ct)

{u(Ct)}+ E
[
dV (t,Wt)

]
(30)

Apply the Itô rule on the stochastic term dV (t,Wt) in (30) and substitute in the

budget constraint for dWt

dV = VWdWt + 1/2VWW [dWt]
2
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= −CtVWdt+ VWWt(rdt+ π′
t(µ− r1)dt+ π′

tσdZt) +
1

2
VWWW 2π′

tΣπtdt

Using the fact that E[dZ] = 0 we can derive the drift term of the Bellman equation as

E [dV (t,Wt)] dt =

[
−CtVW + VWWt(r + π′

t(µ− r1)) +
1

2
VwwW

2π′
tΣπt

]
dt

which after substitution yields the HJB equation of Proposition (33):

βV (t,Wt) = sup
(πt,Ct)

u(Ct)− CtVW + VWWt(r + π′
t(µ− r1)) +

1

2
VwwW

2π′
tΣπt

B.3 Solving for the value function

We are using the verification approach for solving the HJB equation. This involves first

solving the optimization part and finding the optimal π and C with the yet unknown

value function.As a second step, we solve the resulting HJB equation by making a guess

for the value function.

We can derive optimal consumption as:

u′(Ct) = VW

=⇒ Ct = (VW )−
1
γ

(31)

This is the Envelope Theorem, implying that at optimality the marginal utility from

consuming a little more needs to be the same as the marginal value of investing a little

more.

Similarly, the optimal allocation is

π = − VW

WtVWW

(σ′)−1λ (32)

Substituting the optimal consumption and allocation terms, (31) and (32), in (25)

47



simplifies the HJB equation to:

βV =
γ

1− γ
V

1−1/γ
W + rWtVW − 1

2

V 2
W

VWW

∥λ∥2 (33)

where ∥.∥2 represents the norm of a vector.

This second order Partial Differential Equation can be solved by making a guess for

the value function of the form

V (Wt, t) = g(t)γ
W 1−γ

t

1− γ

Substituting in (33) verifies that the guess solves the PDE for g(t) = 1
A
, where

A ≡ β + r(γ − 1)

γ
+

1

2

γ − 1

γ2
∥λ∥2

=
β + r(γ − 1)

γ
+

1

2

γ − 1

γ2
(µ− r1)′(σσ′)−1(µ− r1)

(34)

The optimal consumption share is thus

c =
Ct

Wt

=
u′(VW )−1

Wt

= A

where we make use of the Envelope Theorem in Equation (31), and u′(.)−1 indicates the

inverse function of the first derivative of u(.). Note that g(t) is a constant function. In

the finite horizon case, it will be a deterministic function of time.

C Dynamic Model with Illiquidity: Proofs and Deriva-

tions

C.1 Illiquid market: Homogeneity of the value function

The proof follows from Ang et al. (2014). For CRRA utility in particular, the value func-

tion V (Wt, Xt) is homogeneous of degree 1− γ, such that V (kWt, kXt) = k1−γV (Wt, Xt)
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for any k > 0. This is a direct consequence of the fact that the budget constraint dynamics

are linear in wealth and have constant moments, independent of the corresponding wealth

states. Then it is reasonable to accept that for an optimal solution {W ∗
s , X

∗
s , dI

∗
s , c

∗
s, θ

∗
s}

also {kW ∗
s , kX

∗
s , kdI

∗
s , c

∗
s, θ

∗
s} will be optimal as well for any k > 0, so that scaling both

liquid and illiquid wealth up or down by the same number does not change the optimal

investment and consumption rates given that we also scale the wealth transfers dI by the

same number. As a result, we can write

V (kWt, kXt) = sup
θ,dI,c

Et

 ∞∫
t

e−β(s−t) (kcs(1− ξs)Ws)

1− γ

1−γ

ds

 = k1−γV (Wt, Xt)

⇐⇒ V (Wt, Xt) =

(
1

k

)1−γ

V (kWt, kXt)

Then, setting k = 1/(Wt +Xt) we get

V (Wt, Xt) = (Xt +Wt)
1−γV ((1− ξ), ξ) = (Xt +Wt)

1−γH(ξ)

where ξ is the portion of total wealth invested in the illiquid asset x and (1 − ξ) is the

portion invested in the liquid asset. The additional proof that H(ξ) is concave is available

in (Ang et al., 2014).

C.2 Deriving the HJB equation

Here we derive the HJB equation for the illiquid-asset problem, starting with the contin-

uous time Bellman equation established in (30):

βV (Xt,Wt) = sup
(ξt,θt,Ct)

{u(Ct) + E[dV (Xt,Wt)]}

Making use of the Ito rule for jump processes, we can write the drift of the equation as:

E[dV ] = E

[
VwdW

c + VXdX
c +

1

2

(
VWW [dW c]2 + VXX [dX

c]2 + 2VWX [dX
cdW c]

)
+ (V ∗ − V )dN

]
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where we denote as dXc and dW c the continuous portion of the wealth dynamics. Using

the Ito rule, then we get the corresponding quadratic variation terms:

[dW c
t ]

2 = W 2
t θ

′
tσwσ

′
wθtdt

[dXc
t ]

2 = X2
t σxσ

′
xdt

[dW c
t dX

c
t ] = WtXtθ

′
tσwσ

′
xdt

since we know that

dW c
t = W c

t ((r + θ′
t(µw − r1)− ct)dt+ θ′

tσwdZ)

dXc
t = Xc

t (µxdt+ σxdZt)

and denoting the jump size in the value function when a liquidity opportunity arises

as V ∗ − V (Wt, Xt), such that the expected jump size over a short period of time is

η(V ∗−V (Wt, Xt))dt. Note that whenever the Poisson jump process hits, we have inferred

that the value function jumps to V ∗ = (Wt +Xt)
1−γH∗.

This yields the given HJB equation

LC + Lθ + L − βV (Wt, Xt) = 0

where

LC = sup
Ct

{
u(Ct)− CtVW

}
Lθ = sup

θt

{
(r + θ′

t(µw − r1)VWWt +
1

2
VWWW 2

t θ
′
tσwσ

′
wθt + VWXWtXtθ

′
tσwσ

′
x

}
L = VXµx +

1

2
VXXX

2σxσ
′
x + η (V ∗ − V (Wt, Xt))

To solve for consumption and liquid investment in terms the illiquid asset holdings,
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we apply the substitutions

ξt =
Xt

Wt +Xt

V (Wt, Xt) = (Wt +Xt)
1−γH(ξt)

such that

VW = (W +X)−γ ((1− γ)H(ξ)− ξH ′(ξ))

VX = (W +X)−γ ((1− γ)H(ξ) + (1− ξ)H ′(ξ))

VWW = (W +X)−γ−1
(
−γ(1− γ)H(ξ) + 2ξγH ′(ξ) + ξ2H ′′(ξ)

)
VXX = (W +X)−γ−1

(
−γ(1− γ)H(ξ)− 2(1− ξ)γH ′(ξ) + (1− ξ)2H ′′(ξ)

)
VWX = (W +X)−γ−1 (−γ(1− γ)H(ξ)− 2(1− ξ)γH ′(ξ)− (1− ξ)H ′′(ξ)ξ)

The partial derivatives are implied using the Chain Rule such that ∂ξ
∂X

= 1−ξ
W+X

and
∂ξ
∂W

= − ξ
W+X

, where H ′(ξt) and H ′′(ξt) denote the first and second partial derivatives of

H(ξ) with respect to ξ. Substituting these in the HJB equation we can solve for optimal

consumption

c∗t =
(
(1− γ)H(ξt)−H ′(ξt)ξt

)− 1
γ
(1− ξt)

−1

and optimal liquid risk asset investment

θ∗t = −k1H(ξt) + k2H
′(ξt) + k3H

′′(ξt)

k4H(ξt) + k5H ′(ξt) + k6H ′′(ξt)

where k1, .., k6 are known constants defined by the market parameters and the investor’s

risk aversion such that

k1 = −(1− γ)(µ1 − r) + γ(1− γ)σ2ρσ1ξ

k2 = (µ1 − r)ξ − σ2σ1ρξγ(2ξ − 1)
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k3 = −σ2σ1ρξ
2(1− ξ)

k4 = −γ(1− γ)(1− ξ)σ2
1

k5 = 2γξ(1− ξ)σ2
1

k6 = ξ2(1− ξ)σ2
1

Note that this also implies that investment and hedging curvature terms ( Φ(ξ) and

respectively Ψ(ξ) in (13)) can be written as a function of ξt such that:

Φ(ξ) =

(
− VW

VWWWt

)
=

1

1− ξ

(
(1− γ)H(ξ)− ξH ′(ξ)

−γ(1− γ)H(ξ)− 2(1− ξ)γH ′(ξ) + (1− ξ)2H ′′(ξ)

)
Ψ(ξt) = − VWXXt

VWWWt

=
−γ(1− γ)H(ξ)− 2(1− ξ)γH ′(ξ)− (1− ξ)H ′′(ξ)ξ

−γ(1− γ)H(ξ)− 2(1− ξ)γH ′(ξ) + (1− ξ)2H ′′(ξ)
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