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Abstract

We use market-based estimates of systemic risk and a structural framework for

credit risk assessment to address the problem of regulating banks’ macroprudential

capital buffers. We sketch three approaches to allocating capital buffers across

systemic banks: equalizing the expected impact between systemic and non-systemic

institutions, minimizing aggregate systemic risk, and balancing the social costs and

benefits of capital requirements. In our application to the European banking sector

we find substantial differences with current capital requirements. Capital buffers

play a key role in managing banks’ contributions to systemic distress, so our findings

have material implications for systemic risk in the EEA.
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1 Introduction

Regulators worldwide use macroprudential capital requirements as one of the key instru-

ments to manage ex-ante the risks of a systemic crisis. Increasing the loss-absorbing

capacity of large, economically important, interconnected banks reduces the chances of

their default in adverse circumstances, and thus curtails the possibility that they can trig-

ger cascading distress of related institutions. In a recent report, the ESRB sums up the

ambitions and challenges ahead for regulators in using the instruments at their disposal:

The experience that has been gained with the application of macropruden-

tial provisions in the last ten years highlights the need for more consistent,

forward-looking and proactive countercyclical use of macroprudential instru-

ments.1

According to the regulatory frameworks in place, banks which are found to be domes-

tically or globally systemically important (D-SIBs and G-SIBs respectively) are required

to maintain additional loss-absorbing capital buffer to the minimum requirement in order

to mitigate the possible negative impact of their failure on the domestic or respectively

the international financial systems.

As of today, however, there exists very little theoretically backed guidance on how

to calibrate the macroprudential capital add-ons. This not only makes it difficult to

assess the adequacy of macroprudential buffers in any given country but has also led

to buffers of widely diverging stringency across countries within the Eurozone, as each

country applies the general guidelines differently. For want of a generally accepted basic

framework, aligning these diverging approaches has proven to be difficult.2

1Cf. ESRB (2021).
2ESRB (2017) recognizes that the majority of countries use a bucketing approach, in which banks

with similar O-SII scores are bucketed together and assigned the same buffer requirement. However, the
numbers of buckets and the methods for their classification differ across countries. For example, even
though the favored method by most regulators tends to be an equalizing approach, where the relative
expected impact of a systemic bank gets equalized by higher capital buffers to that of a non-systemic
bank (Cf. Section 4), the assumptions and parameter choice behind the methodology have been very
diverse across countries in their implementation. This inevitably affects the final calibration of the buffers
significantly.
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In the regulatory landscape, the G-SII framework regulates the capital buffers for

banks which are systemic in a global context, while the O-SII framework in Europe cap-

tures the potential for spillover of financial shocks from domestic banks to the domestic

real economy. In both cases central banks rely on a set of assigned regulatory scores of sys-

temic impact to identify globally and domestically important banks. Broadly speaking,

banks are ranked according to a number of indicators such as size, interconnectedness,

substitutability and importance in the lending market, complexity, and cross-border ac-

tivity. Based on each bank’s overall weighted score, regulators determine the size of the

add-on requirements on top of the minimum loss-absorbing capacity that banks have to

hold. This is done either through approaches aiming to equalize the default-probability

weighted scores between systemic and non-systemic institutions, or through direct map-

ping from the systemic score of a bank to its capital requirement. Both frameworks

determine the size of an add-on buffer, where eventually banks need to satisfy only the

larger of the two.3

There is, to the best of our knowledge, currently no approach that can provide model-

based guidance on how high capital buffers should be. In this paper we answer precisely

that question, following up on the credit approaches used to measure systemic risk in

Dimitrov and van Wijnbergen (2023).

On the academic front, there is a vast and growing literature on measuring systemic

risk and assessing the contribution that individual banks make to it by deriving corre-

lation and tail dependencies from asset prices. This literature leverages market data for

evaluating the contributions and sensitivities of individual banks to systemic shocks (Le-

land, 1994; Segoviano and Goodhart, 2009; Zhou, 2010; Huang et al., 2012; Adrian and

Brunnermeier, 2016; Acharya et al., 2017). On the other hand, regulators have largely

remained agnostic to the use of model-based approaches for the calibration of macropru-

3The scoring approaches behind the two frameworks share a common background despite some nu-
ances. In mapping from systemic scores to buffers, there are more notable differences. The G-SII
framework relies explicitly on expected impact equalization (Cf. Section 4), while the O-SII framework
allows either direct mapping (bucketing) or equalization approaches to be used. Cf. EBA (2020); ESRB
(2017)
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dential capital requirements, adhering to the established scoring methods instead.4

There is also extensive academic literature on macroprudential policy, but its focus is

almost exclusively on interventions aimed at limiting household leverage in the mortgage

market and on breaking the leverage-credit-housing build-up of systemic risk (Acharya

et al., 2022). Instead, we look at regulators’ ability to set additional buffer requirements

on top of systemic banks’ microprudential capital as a way of internalizing the implicit

costs these institutions pose on the financial system.

We use market-driven estimates of systemic relevance implied by asset pricing theory.

Relying on market data offers an objective way to verify the adequacy of the currently

assigned macroprudential buffers and eliminates the well-documented drawbacks of using

transactions data, balance sheet data and regulatory scores to assess systemic impor-

tance.5

Methodologically, we rely on credit risk approaches to quantify the probability of mul-

tiple defaults happening at the same time. It should be noted that there is a link between

our approach and the credit-leverage-housing prices cycle view on macroprudential pol-

icy: one can expect that funding of housing booms makes banks also more prone to joint

distress. We aim to capture this feature by allowing for systematic factors to drive banks’

asset portfolio correlations and consequently the probability of their joint distress.

Furthermore, building on Dimitrov and van Wijnbergen (2023), we break away from

the use of equity return data to assess distress dependencies. Using equity returns domi-

nates the systemic risk measurement literature (Adrian and Brunnermeier, 2016; Acharya

et al., 2017), but at least in Europe the presence of privately held, state-owned, and/or

coöperative banks rules out this channel of inferring asset correlations. Instead, we rely

on market data from CDS contracts, where most key European banks are traded, to

extract the required information on covariance structure.

4See Busch et al. (2021) who try to reconcile the market-based approaches to evaluating systemic
impact and the policy scoring approaches and acknowledge that employing a market based measure
provides stronger empirical foundation for the construction of the empirical scores in the G-SII framework.

5For example, a number of studies find that G-SIBs tend to reduce activities affecting their systemic
scores at year end ahead of the reporting date, presumably as a way to lower their capital buffer surcharges
(Behn et al., 2019; Berry et al., 2021; Garcia et al., 2021).
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There are several key mechanisms behind our approach. First, we use a default

threshold approach to relate the default risk of a single bank to its capital requirements.

This follows from the observation that equity under limited liability is in fact a call option

on the assets of the firm, as default occurs when the market value of the firm’s assets falls

below the face value of its debt (Merton, 1974). Developing the argument a step further,

we relate analytically the default probability to the ratio of common equity to debt that

banks are required to hold. By requesting higher capital buffers, regulators force banks

to deleverage, thus making them safer.

Second, as a measure of systemic risk exposure, we look at the propensity of multiple

banks to default at the same time. We rely on a Vasicek-type factor model typically used

for the estimation of the risk of a portfolio of loans. In this approach, a set of common

factors across all banks drives the common variation in their creditworthiness. The in-

dividual exposure of banks to the market factor (or factors) will determine the degree

to which their risk is driven by the market and the degree to which it is idiosyncratic.

Time co-variation in the single-name CDS spreads of the underlying banks allows us to

estimate these factor exposures.

Third, we develop two approaches to map measures of systemic importance into add-

on macroprudential buffers. The first one builds on the Equal Expected Impact (EEI)

approach through which supervisors aim at equalizing the expected default loss between

systemic institutions and a non-systemic reference bank. In this approach, regulators use

the systemic score that each bank gets as a crude measure of its social Loss Given Default

(sLGD). By managing banks’ probability of distress through setting buffer requirements,

the expected losses of distress are equalized.6 Using the same philosophy, we develop

an alternative approach that is based on market prices and the size of banks’ liabilities,

rather than on regulatory scores.

To that end, we develop a novel bank-specific measure of systemic importance based

on implied default correlations, the Systemic Cost of Default (SCD). This measure quan-

6Cf. EBA (2020) for a brief overview of the approach and ESRB (2017) for an international comparison
of its application in the EU. FRB (2015) provide a similar overview as it relates to the G-SII framework.
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tifies the cost of distress of a financial institution beyond its expected default losses by

also considering its tendency to default together with other institutions. We show that

such a measure can be split into a microprudential and a macroprudential component.

We demonstrate how addressing an individual bank’s default risk through higher capi-

tal buffers not only lowers its own expected default costs, but also lowers the indirect

systemic costs of other banks by lowering the potential that it may associate with other

bank’s concurrent default. We interpret this as a positive safety spillover effect from the

introduction of macroprudential buffers. We show how using this new measure allows the

application of the EEI approach to be fully based on information embedded in market

prices.

In what follows, we also demonstrate that the resulting mapping from scores to buffers

with the EEI approach depends on the reference institution chosen and the weight this

institution gets assigned. In order to overcome this shortcoming, we also develop an

alternative to the EEI by formulating the capital calibration problem as a two-step op-

timization problem. In the first step, macroprudential capital buffer requirements are

set for individual banks to minimize the Expected Shortfall (ES) subject to an average

capital ratio for the sector as a whole. This first step in our optimization-based approach

is related to the approach proposed by Acharya et al. (2017) who refers to an average

tax rate that can be allocated across systemic institutions to make them internalize the

externality they pose on the financial system. We take this approach one step further by

also showing how the average can be calibrated as well. In that second step we derive

the target rate from a trade-off that results when banks’ capital buffers are raised. On

one hand, the higher loss-absorbing capacity in the system reduces the expected costs of

financial distress. On the other, a higher capital requirement can induce output losses

if it results in reduced availability of bank credit. It is up to a policymaker to find the

optimum between the two effects.

Finally, we need to address several concerns typically raised regarding the use of CDS

contracts in estimating banks’ default probability and default correlations. First, we fo-

cus on CDS prices of contracts written on subordinate debt. Subordinate debt is typically
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not rescued during bail outs, so the corresponding CDS contracts are not contaminated

by the implicit put option provided by Central Banks’ bail outs. Furthermore, for cen-

trally cleared contracts counterparty risk is largely eliminated, thus removing another

potential source of pricing noise. There are possible liquidity issues, but illiquidity is

often a precursor of insolvency, so we do not try to explicitly incorporate liquidity risk

premia. Diamond and Rajan (2011) for example make the argument that illiquidity and

insolvency are difficult to disentangle: illiquidity is often an indicator of higher credit risk.

Brunnermeier and Pedersen (2009) also argue that funding liquidity and market liquidity

are strongly interconnected. In that sense, funding liquidity is linked to default probably,

while also less liquid CDS contracts could indicate that the market is not willing to fund

contracts dependent on a firm’s credit prospects.

This paper continues as follows: Section 2 discusses the relation of our study to

the wider literature; Section 3 discusses the mechanics of the credit model behind our

estimates of systemic risk, which allows us to go from observed CDS spreads to asset

variance and systemic risk relations; Section 4 develops the credit default version of the

EEI approach and presents empirical results using data on key European banks; Section

5 shows the risk optimization problem underpinning the process of regulating systemic

risk and provides a cost and benefit approach to calibrate the aggregate level of macro

buffers; and finally, Section 6 concludes.7

2 Relation to the Literature

This paper is related to several disparate strands of the literature.

First of all, we build on existing studies that quantify systemic risk through asset

price co-movements (Lehar, 2005; Huang et al., 2012; Adrian and Brunnermeier, 2016;

Brownlees and Engle, 2017; Acharya et al., 2017; Engle, 2018). The approaches developed

in this area are largely free from economic structure, in the sense that they rely on

very loose, if any, assumptions on the functioning of markets, on bank behavior, or the

7Annex A.1 discusses the dataset used for the empirical evaluation.
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macroeconomy as a whole. The CoVaR approach of Adrian and Brunnermeier (2016) for

example, relies on quantifying the tail loss of the system, given that a single bank is in

the tail of its equity returns distribution. While intuitively appealing, the quantile nature

of their measure makes it difficult to decompose or add up to a total systemic figure. In

contrast, the MES approach by Acharya et al. (2017) and the DIP measure by Huang

et al. (2012) define codependency as the expected loss of a bank given that the system is

its tail. The additivity of the expectation terms allows for a more intuitive aggregation

of these measures, as we will show in Section 5. This is one of the reasons we follow their

definitions of systemic dependence.8

Furthermore, we relate to the securitization literature on modeling the clustering of

defaults in a credit portfolio (Vasicek, 1987; Hull and White, 2004; Gibson, 2004; Tarashev

and Zhu, 2006). Conceptually, the universe of banks in an economy can be viewed as a

portfolio of defaultable loans, where the liability size of each bank represents the exposure

that stands at default, and the potential default losses are indicative of the relative cost

each institution will impose on the economy if it becomes distressed. Systemic risk then

relates to the potential for multiple large defaults to occur at the same time as in Huang

et al. (2012); Puzanova and Düllmann (2013). The role of the regulator then is to manage

the credit risk of that portfolio.

In terms of modeling of default probabilities, we relate to the literature studying

bank fragility via structural firm modeling (Gropp et al., 2006; Chan-Lau and Sy, 2007;

Bharath and Shumway, 2008). Most notable is the distance-to-default (DD) measure

(Merton, 1974; Crosbie and Bohn, 2002) which compares the current market value of

assets to the default barrier of the firm. From that point of view, we contribute also

to the literature on Distance-to-Capital, which relates Merton’s DD to banks’ regulatory

capital requirements as in for example Harada et al. (2013); Chan-Lau and Sy (2007). We

imply banks’ asset variances from the observed CDS spreads and their observed CET1

8Note that the two approaches, the MES, and the DIP, are conceptually very similar. The main
difference is that the former defines the tail of the distribution of systemic scenarios as a quantile of the
portfolio’s distribution, while the latter sets it as losses above a fixed threshold. Informally, we will use
a fixed threshold, but will still use the term MES as it has become more widely acknowledged in the
literature.
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capital holdings. This extends an idea developed by Russo et al. (2020) on linking the

observed CDS spread to regulatory capital to imply banks’ asset variance.9

At the same time, we relate also to the literature evaluating the long-term economic

impact of capital buffers. One major strand of this literature solves for optimal capital

buffers by equating the marginal social costs of raising buffers and making banks safer with

the social costs this entails. The cost of having to raise more capital is often quantified

through empirical estimates evaluating the overall effect of increased microprudential

requirements on the economy, as in Miles et al. (2013); BCBS (2010); Firestone et al.

(2017); Cline (2017). These approaches take it for granted that the Modigliani-Miller

(MM) proposition on the neutrality of debt and equity financing does not hold, due to

e.g. information asymmetries, bankruptcy costs, tax advantages of debt financing, etc.

Usually, that makes capital a more expensive source of finance even if the market price

of risk is taken into account.

Whether stricter requirements for equity financing (higher capital ratios) lead to

higher risk-adjusted costs of financing for banks is an empirical question. Empirical

arguments have been made in both directions. In fact, Admati et al. (2013) collect a

number of strong arguments in support of (and evidence for) why deleveraging the fi-

nancial system will present little if any higher risk-adjusted costs. In their view higher

capital requirements would offset private incentives to take on socially excessive risk and

thus would lower equity risk premia more than MM predicts, thus actually lowering the

average cost of capital for banks; and second, would reduce the already distortionary in-

centives that come with e.g. any tax benefits or implicit government guarantees on banks’

debt. Toader (2015) provides supporting empirical estimates for this view, arguing that

9A recent critique on the use of the Merton model to evaluate banks’ default risk needs to be acknowl-
edged as well. Nagel and Purnanandam (2020) show that the Merton firm model misses a key property
of the asset structure of banks: a bank does not share in the upside of the assets of the borrower.
Banks’ assets typically represent revolving collateralized loans whose payoff strongly deviates from the
log-normality assumption embedded in the Merton model. As a result, estimating the Merton model in
good times from observed equity value and variance may underestimate the true default probability of a
bank. Our approach, however, implies default probabilities from observed CDS rates without reference
to the Merton model, as shown in Annex A.4. In addition, the fact that we focus explicitly on downside
tail risk scenarios, where the Merton model is relatively robust, mitigates concerns that systemic risk
estimates may be underestimated due to the model’s normality assumptions.
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the increased capitalization of European banks in the past has actually lowered their

aggregate funding costs. More recently, Dick-Nielsen et al. (2022) use a large dataset

of US banks and find that investors adjust their expectations in a way that preserves

the MM proposition, basically rendering equity as expensive as debt once the price of

risk is taken into account. On the other hand, Baker and Wurgler (2015) put forth the

low-risk anomaly as a counterargument. They estimate that historical equity returns for

less risky banks are higher on a risk-adjusted basis, a behavioral anomaly that is not

strongly present in the debt market. As a result, MM’s proposition on the irrelevance of

the capital structure fails, and making banks safer may lead to higher aggregate funding

costs for them, which may be passed on to the public in their view.

The strong disagreement in the literature is the reason why we prefer not to take a

view on the size and social relevance of any MM offsets from equity financing. Instead,

as we explain in Section 5.2.2, we rely on quantifying the short-term effects from higher

macroprudential capital requirements on the size of the aggregate lending stock, an effect

that has been documented more clearly empirically (Cappelletti et al., 2019; Degryse

et al., 2020; Favara et al., 2021).

Alternatively, some have taken a more macroeconomic approach of equalizing at the

margin the costs (in terms of reduced bank lending to the non-financial sector for example)

and benefits in terms of lower expected costs of defaults. To do this credibly one would

need to embed the framework in a full-fledged macro-finance model. Such models have

been developed but they either tend to abstract from risk contagion between banks by

modeling the financial sector as a single large bank, like in Cline (2017), or as a continuum

of ex-ante homogeneous banks. Both approaches make the concept of ex-ante systemic

importance difficult to implement in a practical application (Malherbe, 2020; Schroth,

2021; Mankart et al., 2020). We, therefore, offer two alternative approaches to quantifying

the required macroprudential buffers: one which builds on actual practice and a novel

approach more related to recent academic research on systemic risk and macroprudential

policy.

In the first one, we stay close to the method followed by regulators in practice through
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what is called the EEI approach; EEI stands for Equal Expected Impact. Here, we relate

to the policy-based literature on utilizing expected impact (FRB, 2015; Passmore and

von Hafften, 2019; Jiron et al., 2021; Geiger et al., 2022).

In the second approach, we break from the current policy framework by developing

a two-step optimization problem which can be used to determine the overall level of

macroprudential capital and its allocation across systemic banks. First, we formulate

the buffers problem as a constrained optimization problem of minimizing systemic risk

subject to a target aggregate buffer level. Second, we take a macroeconomic approach

and look at empirical estimates of the effect of lending shocks on short-term economic

fluctuations (Barauskaitė et al., 2022) and combine them with estimates on the effect

of increasing capital requirements on lending. This allows us, in the second step, to

determine the socially optimal level of the average capital buffer. As a result, we avoid

explicitly taking a stance on the MM controversy discussed earlier. Instead of aiming to

quantify the impact on the cost of capital when capital buffers change, we directly look

at estimates on the reduction of lending from banks subject to systemic buffer add-ons.

Both steps taken together allow for the derivation of a full set of bank-specific macro-

prudential buffers by also embedding in the estimates the trade-off between the expected

costs of systemic defaults against the expected costs of reduced credit to the public, and

thus potentially lower aggregate output, when buffers are raised.

3 A Model of the Banking System

In this section, we set up a model of the financial system with multiple banks subject to

default risk. First, in Sections 3.1 - 3.4, we consider banks’ default risk in isolation; and in

Section 3.5 we define what drives distress correlations and look at how CDS data can be

used to obtain the relevant empirical estimates. In Section 3.6 we introduce the measure

of Systemic Cost of Default which takes into account the impact of a given bank’s distress

on the conditional probability of other banks to be in distress also. Finally, we analyse a

quantitative example of the model in Section 3.7.
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3.1 Financial Distress, Capital Requirements and the Default

Threshold

There are N banks in the financial system; i ∈ (1, . . . N) is a bank indicator. Assume that

a stochastic latent variable Ui ∼ N(0, 1) governs the risks to a bank’s creditworthiness

over the coming one-year period. A higher realization of Ui indicates a better state of

nature and consequently a lower default probability over the coming one-year period.10

Now assume that default occurs if the latent variable Ui falls below a threshold Xi.

This leads to the following default indicator function:

1i ≡

1 if Ui ≤ Xi

0 otherwise
(1)

Ui is not directly observable by depositors or the regulator, not even when Ui crosses the

critical threshold, more on which follows below.

Next, we relate the default threshold to the capital ratio of a bank. This will allow us

to endogenize the threshold Xi and to measure the effect of capital regulation on banks’

default probabilities. For the purpose, first we need to flesh out the basic fabric of the

structural model which allows defaults.

Assume then that the (unobserved) market value of a bank’s aggregate Risk Weighted

Assets (RWA) Vi,t follows Merton’s dynamics (Merton (1974)) in continuous time under

the risk-neutral distribution

d lnVi,t = rdt+ σidWi,t (2)

10Bolder (2018); McNeil and Embrechts (2005) provide an extensive discussion of this class of default
threshold models commonly utilized in the credit risk literature and in practice. Note that the model can
easily be generalized to incorporate a non-Gaussian distributions for Ui, allowing for example for fat tails,
skew and extreme dependency, which are often observed in asset returns. The securitization literature has
developed a rich framework to account for that. In contrast to loan data, however, defaults in systemic
institutions are rare, so any calibration of a richer parametric model than the normal distribution becomes
difficult to justify. For this reason, we continue here with the standard Gaussian framework. However,
it needs to be noted that even when the default of individual banks is governed by a Gaussian latent
variable, the aggregated losses generated for the system will not be Gaussian.
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where r is the risk-free rate, σi is the standard deviation of the bank’s RWAs, and dWi,t

is a Brownian motion. Default occurs at maturity (time t + T ) when the bank’s RWAs

fall below a fixed default threshold Di.11

We can then write the default probability for the bank as

PDi,t = P(Vi,t+T ≤ Di) (3)

= P

(
Vi,t exp

(
(r − σ2

i

2
)T + σiWi,t+T

)
≤ Di

)

Consider next the well-known measure of Distance to Default (DD):12

DDi,t =
ln

Vi,t

Di
+
(
r − σ2

i

2

)
T

σi

√
T

(4)

Using this concept we can rewrite the expression for the probability of default as:

PDi,t = P

Wi,t+T√
T︸ ︷︷ ︸

Ui

≤ −DDi,t︸ ︷︷ ︸
Xi


So we can interpret the term Wt+T√

T
as the latent creditworthiness variable Ui from

Equation (1). Similarly, the default threshold Xi then equals the negative of Merton’s

DD.

Furthermore, denote as ki the capital ratio of the bank: the fraction of its equity to

its (risk-weighted) assets. Assume now that T = 1 and suppress the time t notation going

11Our set-up is a minor adaptation from the original specification of the Merton firm model. We
interprete Vi,t as the market value of a bank’s RWA, rather than of its total assets. This implies that
σi should be interpreted as the standard deviation of the RWA. Also, in our setting, Di needs to be
interpreted as the default threshold in that relation as well. This allows us to interpret bank’s equity-to-
assets ratio directly in policy context, as capital requirements for the purposes the we consider here are
set as a proportion of the RWAs (Cf. Annex A.2). Our specification can always be modified to match the
original Merton set-up by adding a bank-specific scaling factor accounting for the ratio of risk-weighted
to actual assets, as in Russo et al. (2020).

12Formally, DD measures the risk-adjusted distance at debt maturity from the expected firm asset-
value to the default threshold: DDi,t =

E log(Vi,T )−logDi

σi

√
T−t

. Cf. for example, Lando (2004) for clarifications
and details on this.
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further.13 We abstract from debt maturity complications and assume that all bank debt

is short-term. This seems reasonable since call deposits are the dominant liability of most

banks. Equity is the asset value net of debt (Ei = Vi −Di), so the capital capital ratio

ki equals:

ki =
Ei

Vi

=
Vi −Di

Vi

=⇒ Vi

Di

=
1

1− ki

Inserting that expression into equation (4) implies the functional relationship

DD(ki) =
− ln (1− ki) +

(
r − 1

2
σ2
i

)
σi

(5)

Finally, by combining (1) and (5) we get a relation between the default probability

over a year from now and the current capitalization ratio:

PD(ki) = P(Ui ≤ −DD(ki)) = Φ

(
ln (1− ki)−

(
r − 1

2
σ2
i

)
σi

)
(6)

Next, we discuss how to extract the σ parameter for each bank by observing banks’

CDS spread and current capitalization.

3.2 Implying Banks’ Asset Variances

Relationship (6) is useful in two ways. First, it provides the default probability which

a regulator can then target by setting the overall capital requirements. This is the key

mechanism through which the regulator in our setting will be able to reduce the contri-

bution to systemic risk of an institution (cf. Sections 4 and 5).

In order to optimally set the capital requirements ki with regard to the financial

system as a whole, and not only with regard to the standalone risk of a single bank, the

regulator needs to know the (co)variance structure of banks’ asset returns. This is the

second way in which equation (6) is helpful: it can be used to extract the implied asset

13In assuming T = 1, we follow Lehar (2005) and interpret T as the time until the next audit of the
bank, at which time an assessment takes place of whether the bank meets regulatory capital requirements.
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variance from observable data.

To do so, we first extract the current default probabilities from observed CDS market

prices by using the approach outlined in Duffie (1999) and Tarashev and Zhu (2006)

which leads to the pricing formula:

PDi =
aCDSi

a(1− ERRi) + bCDSi

(7)

where a and b are known constants, CDSi is the spread on the CDS contract written on

bank i, and ERR is the expected recovery rate (RR) in case of default.1415

Then, given the current capital ratio ki and the CDS-implied default probability, we

can derive the implied volatility of a bank’s RWA’s by inverting relationship (6) and

solving it numerically for σi. We can thus write the implied volatility derived from (6)

as a function of the capital ratio and the PDi we derived earlier:

σ̂i(ki,obs, PDi) (8)

where ki,obs is the current observed CET1 ratio of the bank, and PDi is the current default

probability on which the bank’s CDS trades.

Figure 1 illustrates the relationship between σ̂i(ki, PDi) and ki for three different

levels of the default probability. Each upward-sloping line traces out σ̂i(ki) as a function

of ki for a specific value of PDi. Increases in the observed default probability produce

upward shifts in the curve. The figure shows, quite intuitively, that if we observe a

14Annex A.4 provides the details behind this CDS pricing formula. We use an ERR assumption of 20%
to extract the PDs, in line with the prospect of the subordinate CDS contracts provided in Bloomberg.
Since we use subordinate debt CDSs on financial institutions, the standard ERR assumption is fairly
conservative.

15The literature tends to employ a wide range of assumptions on the ERR term. In the systemic
literature, it is particularly difficult to set the parameter as observations of defaults of systemic institu-
tions and consequent valuation of the collateral are very rare. Puzanova and Düllmann (2013) set the
ERR conservatively at 0%; Kaserer and Klein (2019) calibrate it based on the liability composition of
the systemic institutions, assuming that deposits have a higher recovery rate than long-term corporate
debt; Huang et al. (2009) set it to 55%; Huang et al. (2012) calibrate the ERRs to Markit survey data
and show that they exhibit very little time variation.

15We use a numerical root-finding algorithm to solve for the variance in (6) given a PD and ki,obs. We
utilize the Python implementation for root-finding of a scalar function with the ’brentq ’ method, which
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Figure 1: Implied RWA Volatility
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Note. This figure shows the relationship between bank capitalization and the asset variance implied
through the Distance-to-Default relationship. We vary the level of the observed default probability and
show how this shifts the implied curve.

highly capitalized bank whose debt protection is priced at the same level as that of a low

capitalization bank, it follows that the market perceives the assets of the first bank to be

riskier than that of the second bank. For a fixed PD, the higher the capitalization of a

bank is, the higher the variance must be in order to produce the observed credit risk.

Table 2 in the Annex shows the implied asset standard deviations for the European

sample of banks used in the consequent empirical analysis.

3.3 On the use of Risk-Neutral Probabilities

Before we continue, it is worth discussing the set-up of the framework that we develop

from a probability theory point of view. First, the model that we build is implied fully

from asset prices and via option pricing theory. As a result, expected default losses and

probabilities are based on the risk-neutral distribution (the Q measure), and cannot be

interpreted as physical losses and probabilities, i.e. under the P measure. But we can

nevertheless still calibrate the capital buffers by comparing the current expected value

under Q of the distress losses of the banks in the system.

There are several reasons for that. First, in this setting macroprudential capital

is determined through impact-equalization tools and distress minimization approaches.

This is different from the standard risk management setting employed in micro-prudential

applies Brent’s root-finding algorithm.

16



regulation, in which capital buffers are set to cover the value of potential physical losses

in e.g. 99.9% of the possible real-world scenarios.

Moreover, what matters for the size of the macro-prudential dependencies in our

approach is implied asset variance and banks’ distress dependencies, and we know from

Gershanov’s theorem (cf. Shreve (2000)) that only the drift parameter of a stochastic

process is affected by the change of measure from P to Q, while its variance (or covariance

matrix in case of a multidimensional process) is not.

Second, we know from asset pricing that that the current market consistent value of a

financial contract is the same, regardless of whether (1) you evaluate the contract’s future

cash flows using expected values under the P-measure discounted by a corresponding risk-

adjusted interest rate including the correct risk premium, or (2) whether one takes risk

neutral expectations while using the safe rate of interest for discounting. The measures

of systemic risk that we will define can then be interpreted as the fair value of a contract

that pays off when a bank or the system is in distress. This is also the interpretation that

for example Huang et al. (2012) use in defining their DIP (Distress Insurance Premium)

measure of systemic risk, which is based on estimation of the risk-neutral probabilities of

bank failure.

3.4 Micro and Macroprudential Capital requirements

Following the regulatory framework used by Central Banks, we assume that the capital

requirements for each bank can be split into a micro- and a macroprudential component:

ki = ki,micro + ki,macro

The micro component can be seen as the minimum regulatory requirement that banks

need to satisfy in view of their own creditworthiness. These include to a large extent

capital ratio requirements that are fixed at the same level for all banks, such as the

minimum capital requirement (MCR) and the capital conservation buffer (CCB). We

also allow, however, for a bank-specific micro component in order to capture Pillar 2
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Requirements (P2R) (see Annex (A.2) for more detail).

The macro component, on the other hand, is a capital buffer set in the context of the

system as a whole. Through this buffer, the regulator’s objective is to safeguard financial

stability. Going forward, we take the microprudential requirement ki,micro as a given, as

its analysis is outside the scope of the regulatory task that we consider here.16 Within

this setting, the regulator only needs to determine the required minimum ki,macro as an

add-on to the micro component for each systemic bank in order to curb the aggregate

systemic risk.

We will represent ki by Common Equity Tier 1 capital (CET1) with the view that

it is the main going concern capital ratio in the Basel III framework. We abstract from

the various types of capital and assume that CET1 is a good representation of a bank’s

equity.

Going forward, we take a two-step approach. In the first step, we derive the implied

variance of the risk-weighted portfolio of assets for all banks from observing their current

capital ratio and current default probability. In the second step, we abstract from the

fact that banks may want to hold capital headroom above requirements, for example, to

avoid ex-post penalties for violating the minimum capital requirements (cf Gornicka and

van Wijnbergen (2013)). Assuming that the minimum requirements are binding, we put

all banks on an equal footing and vary the required macroprudential buffers above the

minimum capital requirement and the capital conservation buffer.

3.5 Banks’ Asset Correlations

In Section 3.1, we were modeling banks in isolation from each other. The next step is

to set a process that drives the correlations between different banks’ latent variables. In

our approach, this is done through a set of common unobserved factors. The common

component thus drives the probability of multiple banks becoming distressed at the same

time. The exposure of each bank to these factors is determined by observing co-variations

in the default probabilities of different banks. This approach is statistical in nature and
16For a discussion of the size of microprudential buffers, see BCBS (2010).

18



we do not aim to find a direct interpretation of the factors; however, they have commonly

been associated with market, industry, and geographically specific risk drivers (Pascual

et al., 2006).

Formally, we can write:

Ui = ρiM +
√

1− ρiρ′iZi (9)

where M = [m1, . . .mf ]
′ is the vector of f common latent factors, Zi is the bank-specific

factor, ρi = [ρi,1, ..., ρi,f ] is a vector of factor loadings, such that ρiρ
′
i ≤ 1. Without loss

of generality, all factors are selected to be mutually independent with zero mean and a

standard deviation of one.17 In our baseline model, we use the standard Gaussian Copula

framework, where all factors M and Zi are assumed to be generated by standard normal

distributions. Furthermore, since we operate under the assumption of the Merton model,

the covariance matrix is fixed and we do not presume the existence of correlation premia.

Note that one gets the well-known Vasicek loan portfolio model as a special case from

Equation 9 by assuming a single common factor and the same factor exposure across all

banks. Furthermore, note that the process in (9) is constructed to have a zero mean and

unit variance, thus ensuring consistency on a univariate level with earlier assumptions

(cf. Equation (2)).

In Annex A.3 we discuss the estimation procedure of the Gaussian factor model with

a correlation matrix which itself is estimated from the default probability time series

implied by the observed CDS spreads. Finally, Table 2 in Annex A.1 shows the fitted

model exposures for the European sample of banks. This will be one of the key inputs in

the our subsequent systemic risk analysis.

17The use of statistical/latent factors, estimated from the common time variation in asset prices appears
often in the systemic risk literature, even with studies that do not track credit risk correlations. See
for example Pelger (2020) who uses five-minute tick data from the NYSE to identify a statistical factor
model accounting for systemic risk and finds economic interpretation for the factors; and Billio et al.
(2012) who uses Principle Component factors to evaluate the evolution of systemic risk in the context of
dynamic network interlinkages.
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3.6 Systemic Costs of Default

Next, we construct a measure of the Systemic Cost of Default of a bank. The measure

includes the expected losses in case of default of the bank, but also goes beyond that,

taking into account how likely it is for the bank to become distressed at the same time

as other related banks are distressed. We argue that a proper measure of systemic costs

should capture four key properties:

• It should take into account distress dependencies between banks, thus focusing

explicitly on the one-sided probability of the realization of joint tail events

• One should be able to decompose total expected costs into direct (due to the own

default of a given bank) and indirect costs (due to the unexpected losses from the

potential simultaneous default of other related banks)

• With zero correlation between a bank and all other banks in the financial system,

its indirect effect should be zero

• The measure should be positively related to the relative size of the bank

To satisfy these properties we define the SCD for bank i as its (a) expected loss given

that it is in distress (labeled direct cost), plus (b) the additional losses of all other banks

conditional on bank i’s distress, to the extent that their losses exceed their unconditional

expected costs of distress. We label the latter term indirect cost. Both components are

weighted by the bank i’s own probability of distress.

We first define the potential losses for bank i one year from now as a fraction of its

outstanding liabilities as

Li = 1iLGDi (10)

The losses are zero if the bank does not default (1i = 0) and are equal to the Loss Given

Default (LGDi) otherwise. Going forward, we will assume that the LGDs are known and
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fixed, in which case the only source of uncertainty is whether default happens or not.18

Next, define systemic losses Lsys, measured as a fraction of all outstanding liabilities

in the system, as the sum of all banks’ potential losses over the coming year Li and

weighted by the share wi of their liabilities in the total liabilities of the sector:

Lsys =
N∑
i=1

wiLi (11)

As a result, one can also view the size of the liabilities of individual banks in the sector

as the Exposure at Default for the policymaker. This relates the model to the approach

taken in the securitization literature to price portfolio of loans, where this model was

initially developed.

This allows us to define the SCD for bank i as the expected default loss in the sys-

tem, conditional on bank i becoming distressed, weighted by the probability of the bank

actually becoming distressed:19

SCDi = E(Lsys|1i = 1)PDi (12)

Due to the linearity of the expectations operator, we can break down the SCD into a

direct component, corresponding to the weighted loss if bank i itself is in its tail, and an

indirect component, corresponding to the expected loss of all other banks in the system

18Note that we write the following expression for the general case where LGDs are allowed to be
heterogeneous across banks. In all applications however, we will assume that the LGDs are the same for
all banks. In general, however, the same setting outlined here can be used even if they are modelled as
random and possibly correlated processes across banks as in Dimitrov and van Wijnbergen (2023).

19Note that you can also write the term E(Lsys|1i = 1) as E(Lsys|Li > L) where L < LGDi is some
loss threshold (more on it later). Then we can see this measure as a combination to the MES of Acharya
et al. (2017) and the CoVaR by Adrian and Brunnermeier (2016). Similarly to MES, we evaluate average
losses given that one entity is in the tail of its distribution. The difference is, however, that we invert
the conditioning: we focus on a bank’s contribution to systemic risk, not on its sensitivity to systemic
losses. This allows us to relate to the regulatory framework which sets national and global systemic
capital buffers to counteract the contribution each bank has on national or global systemic losses. From
that point of view we also relate to the CoVaR.
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again if bank i is its tail.

E(Lsys|1i = 1) =
∑
i

wiE(Li|1i = 1)

=
∑
j ̸=i

wjE(Lj|1i = 1) + wiE(Li|1i = 1)

Since the LGD terms are known and fixed for all i, we can then write the SCD as:

SCDi =
∑
j ̸=i

wjLGDjE(1j|1i = 1)P(1i = 1) + wiLGDiE(1i|1i = 1)P(1i = 1)

Formally, define PDj|i ≡ E(1j|1i = 1) as the default probability of bank i, conditional

on bank j defaulting. Then, we can write the suggested systemic loss function as:

SCDi = wiLGDiPDi︸ ︷︷ ︸
Direct Cost (Microprudential)

+
∑
j ̸=i

wjLGDj

(
PDj|i − PDj

)
PDi︸ ︷︷ ︸

Indirect Cost (Macroprudential)

(13)

The expression above illustrates clearly how microprudential regulation directly tar-

gets the own default for bank i, while macro-prudential regulation acknowledges the fact

that additional costs will occur because of unexpected defaults of other related banks,

to the extent that the default of bank i correlates with defaults of these other banks.

If bank defaults are uncorrelated we have that PDj|i = PDj, and the macro-prudential

term disappears from Equation (13).

Also, Equation (13) shows that micro- and macro-prudential policies are not com-

pletely disconnected. There will be a positive spillover effect from one into the other:

lowering the probability that bank i will default will not only reduce its direct systemic

costs but will also lead to lower (expected) indirect costs associated with bank i’s distress.

At the same time, we can also see that the factors affecting the two types of policies are

different: any change in the correlation between banks, for example, will affect only the

macro and not the micro component, as it plays out only in the PDj|i terms and not in

the PDi.
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3.7 A Quantitative Example

Before turning to the empirical application in Sections 4 and 5 we will illustrate some

implications of the model using a quantitative example. Assume for simplicity that

there are ten equally-sized banks and that all their liabilities are lost in case of default,

i.e. wi = 1/10 and with LGDi = 100%. Assume further that in the base case all

banks i = 1, ..., N have the same high exposure to a single systematic factor such that

ρi = ρ. Assume that banks stay at the minimum microprudential requirements of 7%.20

Also, define Nd =
∑

i 1i as the total number of defaults in the system. We will vary

consecutively the systematic factor exposure, the macro-buffer add-on for one of the

banks, and the target bank’s relative weight to the other banks, respectively.

In Figure 2, we vary the banks’ exposure to the systematic factor ρ driving the cor-

relation between banks’ assets. The figure shows that as the correlation between banks

increases, the expected number of defaults conditional on bank i’s default (E(Nd|1i = 1))

increases, while the average unconditional number of defaults (E(Nd)) remains unchanged

(cf. Fig. 2a ): the average number of (unconditional) defaults is unrelated to the degree

of default correlation in the system. To get an intuition for this outcome, remember that

statistically the expected value of several random variables, in our case representing the

occurrence of default, is independent of the correlation between the variables. However,

once we observe a single default, the likelihood of further simultaneous defaults occurring

is higher when the system is more correlated.

A second and related fact is shown in Figure 2b: PDj|i, the conditional default prob-

ability of another bank defaulting given a default in bank i, increases with ρ. The

consequences of these dependencies for the SCD are shown in Figure 2c: the direct costs

of default (the first term in the RHS of equation (13)) are independent of the correlation.

But the indirect costs (the second term in the RHS of equation (13)) rise with increasing

ρ, starting from zero when there there is no correlation between bank defaults. Obviously

then, the total SCD (the sum of direct and indirect costs) equals the direct costs for zero

20We use 7% micro buffers as a rough figure to capture the requirements of 4.5% CET1 capital and
2.5% CCB buffer and ignoring P2R at this point.
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Figure 2: Asset Correlation
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Note. This set of figures shows an example of a system with multiple banks. The charts illustrate the
effect of higher bank asset correlations (through higher common factor exposures) on the number of
defaults, on default probabilities, and thus on the estimated indirect costs, respectively.

ρ but increase with higher ρ in line with the indirect costs.

Consider next the effect of increasing the macroprudential capital requirement for

bank i while keeping the capital requirement of all other banks at 7% (cf. Fig.3). We can

observe several interesting facts. First, the unconditional expected number of defaults

E(Nd) decreases slightly since bank i’s default probability is reduced. But conditional on

bank i defaulting there is actually an increase in the expected number of defaults (cf. Fig.

3a). Similarly, the unconditional default probability of bank i goes down, when ki,macro

goes up. At the same time, the conditional probability of another default happening

given that bank i defaults actually increases in ki,macro (see Fig. 3b).

These results (a higher expected number of defaults and a correspondingly higher

probability of default for bank j ̸= i given that bank i defaults) do not mean that the rest

of the system becomes riskier. They captures the fact that as the default of bank i gets

less likely, observation of it actually taking place indicates more severe market distress,

which in turn implies that more banks will be affected on average. In our setting, severe

market distress will materialize with the occurrence of a larger drop in the common factor

M in the latent factor model (9). So increasing the capitalization of bank i does make

the system safer, as can be seen in the gradual reduction in both the direct and indirect

costs associated with the bank (Fig. 3c).

Finally, Figure 4 shows the effect of increasing the relative size of bank i while de-
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Figure 3: Raising macroprudential Capital Requirements
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Note. This set of figures shows an example of a system with multiple banks. The charts illustrate the
effect of higher macroprudential buffers on the number of defaults, on default probabilities, and thus on
the estimated direct and indirect costs, respectively. The exposure of all banks to the systemic factor is
set to ρ = .9.

creasing the relative size of all other banks proportionally so as to satisfy the adding up

requirement
∑

iwi = 1. The impact is not trivial: as wi increases (and
∑

j ̸=iwj decreases

correspondingly), Figure 4c shows that the direct costs of default go up but that the

indirect costs are in fact reduced. Other affected banks are still similarly affected but

now they become relatively smaller. Bank i, on the other hand, becomes relatively larger

and has a larger direct impact on the system simply in terms of the total cost covering

its own default. The net effect is that the SCD for bank i increases. To gain intuition

into the direction of the net effect, relate this result back to the definition of SCD in

equation (13): the fact that the term (PDj|i−PDj)PDi is positive (given that bank j is

positively correlated to bank i) indicates that as wi increases at the expense of the wj-s,

the relative sizes of all other banks, the bank’s SCD will increase as well.

3.8 Positive Spillovers of Macroprudential Capital

When macroprudential requirements are set for a number of key institutions, the pol-

icymaker should consider potential positive safety spillovers between banks: increasing

the macroprudential capital requirements of one bank lowers the SCD of other banks by

reducing their indirect cost of default. This can be seen in equation (13): increasing the

capital ratio of banks j, lowers the indirect costs for bank i as long as the PDj|i decreases
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Figure 4: Relative Weight and the number of defaults, default probabilities and the SCD
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(c) Social Cost Decomposition

Note. This set of figures shows an example of a system with multiple banks. The charts illustrate the
effect of higher bank relative size on the estimated direct and indirect costs. As illustrated, the number
of defaults and default probabilities are not affected by bank size.

faster than PDj.

We illustrate the positive spillovers of capital regulation with another example. Build-

ing on our previous case, assume again that the financial system consists of ten players,

each with the same exposure to the systematic factor of 0.9. Now, we assume that the

first bank accounts for 50% of the total liabilities in the system, the second bank ac-

counts for 20%, and that the other banks accounting for the rest are non-systemic and

are equally sized. The policymaker sets macro capital buffers using the EEI approach.

In doing so it needs to consider the interaction between bank 1 and bank 2’s costs of

default. That in turn implies that the regulator has to determine the optimal capital

buffers simultaneously for the two systemic banks. Assume that the reference size of a

nonsystemic institution is wref = 10%.

Figure 5 illustrates the impact of this interaction. First, consider Figure 5c where the

PD of the second largest bank in the system (bank 2) is evaluated as its capital ratio

is varied. As one should expect, both its conditional and its unconditional probability

of failure are decreasing when more macroprudential capital is allocated to it (i.e. when

k2,macro goes up). Due to the positive correlation between the banks the PD2|1 curve lies

above the PD2 curve: observing a default for bank 1 increases the chance we will also

observe a default in bank 2 as well.

As k2,macro increases, both PD2|1 and PD2 converge to zero monotonously but PD2|1
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Figure 5: Positive Spillovers of a macroprudential capital Increase
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Note. This set of figures shows a quantitative example of a financial system consisting of multiple banks.
Bank 1 and 2 dominate the sector with the former accounting for 50% of the sector and the latter
accounting for 20%. Charts (a) and (b) illustrate the positive spillovers from making the other dominant
bank safer; Chart (c) shows the effect of higher macro buffers on the bank’s conditional and unconditional
default probabilities. Chart (d) illustrates how the macro buffers of the two banks are set simultaneously
in line with the EEI approach at the point where the two isolines cross and are equal to the SCD of the
reference bank’s SCD.

goes down faster than PD2. As a result, looking at (13) from the point of view of bank

1, the difference term embedded in the indirect cost will be positive for any k2,macro. This

indicates that increasing the macroprudential buffer of bank 2 will both lower the direct

SCD of bank 1 and its indirect costs. This is illustrated in Figure 5a: the SCD1(k1,macro)

curve shifts down once k2,macro is increased.

A point worth noting is that as a smaller bank becomes safer, the positive spillover

towards the larger bank will tend to be low in contrast to the spillovers towards a smaller

bank when a larger one becomes better capitalized. In our example, as the smaller bank

(bank 2) has its macro capital buffers increased from 0% to 10%, this hardly shifts the
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SCD curve for the large bank (bank 1) to the right; see again Fig. 5a. But when the

much larger bank 1 becomes better capitalized, the reduction in the SCD for bank 2 is

much more substantial (see Fig. 5b).

In the next section, we discuss the Equal Impact approach to macroprudential capital

buffers, which is widely used in practice. In this approach the regulator picks the macro-

prudential requirements aiming to set the SCD of each systemic bank equal to the SCD

of a reference non-systemic institution (SCDref ). In Figures Figures 5a and 5b this is

represented by the straight dotted line. Note in that case that the effect of the positive

spillovers is lower, the lower the reference SCD is. The reason is that a low reference

SCD implies a more conservative policy, in the sense of a stricter requirement for banks

to increase their own capital. With high levels of own capital, the PD of a bank is already

close to zero, implying that capitalizing other banks in the system cannot lower SCD for

this particular bank much further. Thus, in Figure 5b shifts to the right of the SCD2

curve (with increased macro buffers of bank 1 from 0% to 10%) become negligible when

bank 2 itself is already well capitalized, in this example with k2,macro above 10%.

As we just argued, the two systemic banks in our example influence each other. This

means maintaining one bank’s SCD at the desired SCDref level can be done by either

using its own macro buffer or by adjusting the buffer of the other systemic bank. This

is demonstrated in Figure 5d where we show the two iso-SCD contours for respectively

bank 1 and bank 2. The two banks will both have a SCD equal to the reference SCDref

at the point where the two iso-lines for (k1,micro, k2,micro) cross. The non-linearity we

are discussing is exemplified by the fact that the iso-SCD curves are not strictly vertical

(for bank 2) or strictly horizontal (for bank 1). Since the shifts in SCD from the safety

spillovers become larger when the reference SCD is larger, the non-linearity will become

correspondingly more prominent in that case.

Up until now, we have explored the concept of systemic risk arising through asset

correlations and among other things discussed the sometimes surprising impact of capital

buffers on the SCD of both a given institution and of the system as a whole. Evaluating

the SCD of banks can be a useful way to measure the systemic importance of banks. That
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analysis in itself, however, does not tell us (or regulators) how high these buffers should

be in order to safeguard financial stability. The obvious next step is to ask precisely that

question. We show two approaches in answering this question. First, the Expected Equal

Impact approach we already touched upon briefly, and second, a more general explicit

optimization-based approach using Acharya et al. (2017)’s Expected Shortfall concept.

3.9 A Note on our Banking Model

Before proceeding with the model calibration, we need to discuss one key embedded as-

sumption of the model. Implicit in our setting is the assumption that once a policymaker

changes the capital requirements, banks will comply directly. Modeling any potential

shifts in the risk choice of banks, and endogenizing asset correlations or variances is out-

side of our scope. There are several reasons for that. First, the loans that banks hold at

a given moment of time are typically fixed over the medium run, so shifts in the com-

position of the portfolio are not immediately feasible. Risk choice thus concerns only

new loans, and it will take a while before a bank is able to achieve a new desirable risk

allocation. Second, in light of the lack of strong empirical evidence of how banks react to

increased capital requirements, endogenizing risk choice would expose our results to the

possibility of stronger model misspecification. Dependent on the type of friction that the

bank is experiencing, debt overhang with respect to the old loans or risk shifting with

respect to new loans, the optimal reaction of a bank to capital requirement may go either

way (Bahaj et al., 2016; Bahaj and Malherbe, 2020; Jakucionyte and van Wijnbergen,

2018). As a result, we focus on the more tangible interactions that can be estimated

with reasonable accuracy from the available data and assuming that variance and factor

exposures remain static as indicated in (6) and in (9).
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4 The EEI Approach with Default Correlations

4.1 Systemic Risk and the EEI framework: Theory

The philosophy behind the EEI approach is to use the additional macroprudential buffers

as a way to bring down the expected social cost of default for a systemically impor-

tant institution to that of a reference non-systemic anchor. The cost of default, in the

G-SII and O-SII regulatory frameworks, is measured through the scores assigned to in-

stitutions according to their size, interconnectedness, substitutability, complexity, and

cross-jurisdictional activity. The overall score, thus, provides rough guidance on the in-

stitutions’ systemic importance. In this case, a low threshold value can be used as an

anchor representing a non-systemic reference institution. Eventually, the probability-

weighted score of each systemic institution needs to be equalized to the corresponding

probability-weighted score of the anchor.

But when systemic risk as a consequence of asset return correlations is explicitly

recognized, an alternative way of implementing the EEI approach becomes apparent,

one where the expected tail risk impact of distress is equalized taking explicitly into

account the empirically measured default correlations between institutions. We discuss

this alternative now.

Consider the fact that default probabilities are a function of capital requirements

through the default threshold approach established in (4). We can then define the SCD

of a benchmark or reference institution which has no indirect cost associated with other

institutions, and as a result, holds only micro-prudential capital:

SCDref (ki,micro, wref ) ≡ wrefLGDrefPD(kref,micro) (14)

Refer to this bank as the reference bank. The next step is to equalize the SCD of bank

i presumed to have a systemic relevance to the expected SCD of the reference bank. This

is done by requiring the systemic bank to raise its capital ratio by ki,macro. In that sense,

the macroprudential capital requirements are additional buffers that come on top of the
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Figure 6: Optimal Macro Buffers
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Note. Figure (a) shows the optimal macroprudential buffers for a bank using the EEI approach. Charts
(b) and (c) respectively show the optimal buffer if we vary the common factor exposure, and thus the
average default correlation between the banks in the system. Chart (c) shows the results if we vary the
relative size of the bank.

stand-alone microprudential buffers ki,micro:

SCD(ki,micro + ki,macro, wi; ρi) = SCDref (kref,micro, wref ) (15)

Figure 6a visualizes the impact of macroprudential buffers by plotting the SCD against

macroprudential capital requirements ki,macro using the parametrization from the base

example discussed earlier in Section 3.7. We, first of all, show the SCD associated with the

reference institution in this figure; for that institution, ki,macro = 0. This benchmark line

is labeled SCDref . Obviously, this is a horizontal straight line, since the macroprudential

buffer that is varied along the horizontal axis does not apply to the reference institution.

The SCD line for the systemic bank starts at ki,macro = 0, and, as the diagram shows, is

much higher at that point than the SCD of the reference institution, which of course is why

the systemic bank is subjected to macroprudential buffers, to begin with. Both banks’

microprudential buffer is set at 0.07 in this example. Figure 6a furthermore indicates,

in line with previous discussions, that the social costs (both direct and indirect) of the

systemic bank’s distress are decreasing when higher macroprudential capital requirements

are applied: cf the downward sloping line labeled SCDi in Figure 6a.

The regulator can derive the buffer that will establish equal expected impact by raising

ki,macro and so lowering the systemic bank’s SCD to the point where it equals SCDref .
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At that point, the default probability of the systemic bank is lower than the default

probability of the reference bank to such an extent that its total expected SCD is equal

to the SCD of the reference bank. This happens at the point where the SCDi curve

crosses the SCDref line at ki,macro = k∗
i,macro in Figure 6a, where the macro add-on is

calculated to be slightly below 10%.

Figure 6b shows the optimal macroprudential buffer ratio k∗
i,macro as a function of the

bank’s exposure to the systematic factor, captured by ρ. Higher exposure to the factor

implies a higher correlation between bank pairs, which in turn results in a higher indirect

cost component of the SCD for the bank. And therefore a higher ρ leads to a higher

optimal macroprudential capital requirement ki,macro: the ki,macro(ρ) line slopes upward

in Figure 6b.

Figure 6c shows, for two different values of the correlation parameter ρ, the impact on

k∗
i,macro of increasing the relative size of bank i at the expense of the other non-reference

banks in the system. The reference bank weight in the EEI calculation is kept fixed at

10%. For the high correlation case (ρ = 0.9) relative size obviously does not matter too

much. The reason is that in that case what happens with one bank is more than likely

to happen with the others too at the same time, so even when the bank is smaller, it

is optimal for the regulator to require that it holds high macro buffers. The curve then

is relatively flat when wi starts increasing. But for low correlation (in the figure the

line corresponding to ρ = 0.2) relative size does have a significant impact on the optimal

macroprudential buffer size. For low ρ we find that the larger bank i is relative to the rest,

the more aggressive the macroprudential requirements should be. The larger the bank

is, the more it dominates the system, so even with low correlation, the optimal ki,macro

converges to the high correlation case as the relative size of the bank under consideration

increases.

4.2 Systemic Risk and the EEI framework: Empirics

With the theory behind the EEI approach worked out, we next present an empirical

application of the model. Figure 7 presents the results for the Dutch subsample of
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Figure 7: Optimal Macro Buffers: EEI Approach
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Note. This figure shows (a) the implied macroprudential buffers for the Netherlands; and (b) the cor-
responding probability of default as a function of the size of the reference bank. Table 3 in Annex A.5
shows the complete model results for all countries in the analysis.

banks in order to illustrate the main point on the analysis. Part (a) shows the resulting

macroprudential capital from by equalizing each bank’s impact to that of the reference

entity. Part (b) then shows the resulting default probabilities at that level of capital.

The reference entity is constructed by assuming that it has zero exposure to the

systemic factors, holds only microprudential capital, and the volatility of its assets is

equal to the average of the asset volatility for all banks in that country.

In the figure, we show the impact of varying the size of the reference institution wref

on the buffers estimated through the EEI approach. As we saw earlier, the smaller the

assumed reference size, more conservative is the policymaker in setting the optimal macro

buffers and the lower the tolerance is for individual bank default. In other words, the

lower the threshold for designating a bank as systemic, the higher the capital buffers

will be for all systemic banks which are managed by that anchor, and thus the lower

the tolerance for their default will be. As a result, capital buffers are decreasing, while

the default probabilities of individual banks are increasing with the chosen size of the

reference institution.

For a smaller bank, such as for example VB in the Netherlands, the default probability

is allowed to be higher over the range of reference scenarios, while the default probability

of a larger bank as INGB in the same country is suppressed significantly. The size of
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the assigned capital buffers, however, does not correlated perfectly with size. The largest

buffers are assigned to RABO, which is the second largest bank in the Netherlands after

ING. This is the result of the bank being the more sensitive to systemic factor shocks with

exposure to the main common factor ρ1 of .95 versus .75 for ING. Furthermore, RABO’s

implied asset standard deviation is higher than that of the other two large banks, INGB

and ABN, as can be seen in Table 2.

For completeness, we apply the same approach to each country in our sample. Again,

the system in each case is considered to be the set of banks domiciled in that country,

thus mimicking the current regulatory process behind the O-SII framework. The same

findings illustrated above are confirmed here as well.

Overall, we find that the EEI buffers are larger than the range within which current

O-SII buffers have been set (within the range of 0% to 3% for the sample period). One

potential reason for that difference is the fact that unlike the regulatory expected impact

approaches, the SCD that we use explicitly incorporates the sensitivity of other banks’

default to the default of systemic bank, the indirect component. The regulatory approach

captures interconnectivity only fractionally through the regulatory systemic score based

on intrasystem holdings (EBA, 2020; BCBS, 2021).

5 The Expected Systemic Shortfall Approach

One potential downside of the EEI approach is its dependence on an arbitrarily chosen

and sized anchor. Regulators may not have a reliable way to pick the key parameter of

the equalization method: the relative size of the reference institution (wref ). Or similarly,

they may be unable to defend their parameter choice as it inevitably leads to the question

of how large a bank can be before it is considered systemic. Instead, a regulator may

have a much better view on what is the average capitalization that the sector can handle

without hurting the lending capacity of systemic banks excessively, thus slowing down

economic activity.

We therefore develop an alternative approach to calibrate the buffers, again relying
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on the credit framework of Section 3. Going forward, in Section 5.1 we first work out the

theory of what we label the ESS approach, and in Section 5.2 we apply it empirically. In

the process, we estimate the capital buffers in two steps. First we apply the minimum

risk approach to the calibration of systemic buffers, targeting the current average level of

O-SII buffer rates set by the regulator. After that we investigate whether the average O-

SII rate corresponds to a socially optimal solution which balances the costs and benefits

of an increase in capital buffers.

5.1 The Expected Systemic Shortfall Approach: Theory

The ESS approach starts out with a policymaker who takes a portfolio risk-management

perspective to the banking sector as a whole; but rather than targeting a fixed anchor

like in the EEI approach, the regulator aims to minimize the downside risk of the whole

portfolio. The risk of the portfolio is managed by assigning macroprudential buffers across

banks deemed to be systemic, thus lowering their impact on the potential portfolio losses.

The policymaker controls the overall level of accepted risk by setting a target average

buffer rate and then allocates bank specific buffers around that average. This set-up is

in fact inspired by Acharya et al. (2017) who allocate bank specific macroprudential tax

rates subject to an average target. We directly target the systemic banks’ capitalization.

5.1.1 Expected Shortfall and Systemic Risk

The banks in our policymaker’s portfolio constitute the financial system. We then define

the Marginal Expected Shortfall (MES) of a bank as its average loss conditional on total

systemic losses being above a threshold L:

MESi = E
(
Li|Lsys > L

)
(16)

The parameter L can be seen as governing the policymaker’s tolerance to systemic

losses, as it indicates the aggregate losses as a percentage of the outstanding liabilities

above which regulators assume that a systemic financial crisis is occurring. A higher level
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of L indicates that the policymaker is willing to tolerate larger losses before stepping in.

Therefore the higher the intervention threshold L is, the lower the level of the macro

buffers.21

We can also quantify aggregate systemic risk (Expected Systemic Shortfall, ESS) as

the potential default loss on a portfolio containing all banks in the financial system for

which the supervisor is accountable given that that aggregate loss exceeds L:

ESS ≡ E
(
Lsys|Lsys > L

)
=
∑
i

wiMESi (17)

where the last line follows from the additivity property of expectations and the fact that

all MESi terms are conditioned on Lsys > L. This provides a useful interpretation of the

MES: a bank’s weighted MES represents the portion of total systemic risk that it brings

in. Lowering the bank’s MES by imposing higher capital buffers thus will lower overall

systemic risk.

Figure 8 illustrates the behavior of the MES and the ESS using the example set-up

considered earlier. Our findings about the properties of the SCD in Section 3.6 also

apply here. First, the ESS and the weighted MES increase with the correlation between

banks’ assets (cf. Fig. 8a). Second, higher capitalization of bank i lowers its MES and

thus lowers total systemic risk (cf. Fig. 8b). Third, the positive spillovers from increased

capitalization of one bank also apply here: the optimal macroprudential buffer for bank

1 becomes lower, once the buffer for bank 2 is raised (cf. Fig. 8c). Finally, Figure 8d

shows the combination of bank 1 and bank 2 buffers which can produce the same level of

systemic risk.

Writing the ES of the system as a function of all banks’ capital ratios we can refor-

mulate the policymaker’s problem as one of minimizing total ESS by choosing the size of

21We calibrate the parameter L in Section 5.1.3. Note also that we use the MES naming loosely
here, as strictly speaking the original Acharya et al. (2017) measure defines L as the tail quantile of the
distribution, while we define it as a fixed threshold in line with the Distressed Insurance Premium (DIP)
measure of Huang et al. (2012).
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Figure 8: Expected Systemic Shortfall

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
SS

, M
E

S

ESS
wiMESi

(a)

0.10 0.15 0.20 0.25 0.30
ki, macro

0.0

0.1

0.2

0.3

0.4

0.5

E
SS

,M
E

S

MESi

ESS

(b)

0.00 0.05 0.10 0.15 0.20 0.25
k1, macro

0.00

0.10

0.20

0.30

0.40

0.50

ES
S

k2, macro = 0.0
k2, macro = 0.1

(c)

0.00 0.05 0.10 0.15 0.20 0.25
k1, macro

0.00

0.05

0.10

0.15

0.20

0.25
k 2

,m
ac

ro

0.20
0.25

0.30
0.350.400.45

(d) ESS
Note. This figure illustrates quantitatively the properties of the ESS and MES in a universe with 10
banks. The same set-up as in Section 3.8 is used.

the macro buffers for each bank in the system simultaneously:

ESS(k) = min
N∑
i=1

wiMES(ki,macro)

s.t.

N∑
i=1

wiki,macro = k

(18)

where k is a target average macroprudential add-on, and MES(ki,macro) evaluates (16)

for bank i given a macro buffer of ki,macro on top of the microprudential requirement.22

22Equivalently, this optimization can also be seen as maximizing the net benefit of reduced systemic
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5.1.2 Determining the optimal k

The obvious next question is: what should the optimal level of average macroprudential

buffers k be? Policymakers, as indicated earlier, will use this quantity as a target against

which to allocate systemic buffers between banks.

For this purpose, we look at the policymaker’s problem as one of maintaining a healthy

supply of credit in the economy while managing the risk of a systemic crisis from ma-

terializing. Higher capital requirements reduce the probability of a financial crisis, but

they also bring the risk of inducing a reduction in lending if banks struggle to satisfy

the stricter regulatory constraints. The policymaker thus needs to balance the two costs

for the economy. We formalise this choice by for a start defining a welfare cost function

measuring the social cost of holding capital buffers:

Wc = λ · ESS(k)︸ ︷︷ ︸
GDP Loss in a Banking Crisis

·P (k) + η(k − k0)︸ ︷︷ ︸
GDP Loss in Raising Buffers

·(1− P (k)), k0 = 0 (19)

In this setting, k0 is the initial level of macroprudential capital buffers, λ is a multiplier,

to be define next, which translates expected tail losses in the financial sector to losses

for the wider economy, expressed as a decline in GDP. We define the probability of a

financial crisis P (k) and the expected losses in a financial crisis ESS(k) endogenously,

where the macro-prudential buffers accross banks are determined optimally in line (18).

It is straightforward to show that:

∂P (k)

∂k
< 0;

∂ESS(k)

∂k
< 0

risk compared to the case with micro-buffers only. In that case, the objective can be written as

max

{∑
i

wi (MES(0)−MES(ki,macro))

}

s.t.

N∑
i=1

wiki,macro = k

producing essentially the same optimization problem.
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where the partial derivative reflects what we already established earlier, that higher overall

buffer levels lower the probability of individual and systemic distress and the realized

systemic losses.

Note that L determines the intervention threshold for the regulator, and implicitly can

be linked to the regulator’s loss tolerance. Below L the regulator provides LoLR funding

to stave off a crisis, but when losses exceed L a financial crisis becomes unavoidable. In

line with the previous section, we treat all losses on a relative scale, i.e. as a percent of

the size of the system measured by the outstanding liabilities of the financial sector.

On the other hand, if no systemic distress occurs, the public has to bear the cost to

the economy of imposing k capital buffers. We quantify this cost through the response

of aggregate output (Y ) to an increase in capital requirement. This response runs via

reduced credit lending in the economy, as banks need to satisfy the higher capital require-

ments by accessing the possibly more expensive source of financing that common equity

imposes, or by reduced risk-shifting incentives.23 Our goal is to quantify this response as

the relative rate of change term, but without specifying a full-blown macro model:

η = −dY/dk

Y
= −

(
dY

dC

C

Y

)(
dC

dk

1

C

)
(20)

where C is the total equilibrium level of credit in the economy. η then represents the

percentage drop in GDP for a one percentage point increase in the macroprudential ratio

requirement.

Finally, the policymaker chooses the optimal k that minimizes (19). The first-order

condition implies that at the optimum k the expected benefits of a marginal increase in the

macroprudential capital levels in terms of reduced expected crisis losses just compensates

for the marginal increase in the macroeconomic costs associated with an increase in the

23Cf. Jakucionyte and van Wijnbergen (2018) for a discussion on the macro effects of higher capital-
ization of the banking system with risk-shifting and debt overhang problems through the latter’s impact
on aggregate credit supply.
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aggregate level of the macroprudential buffers in the absence of a financial crisis:

λ

(
P
∂ESS

∂k
+

∂P

∂k
ESS

)
= η

(
(k − k0)

∂P

∂k
− (1− P )

)

5.1.3 Calibration of the welfare cost optimization

Consider now the parametrizing of the optimization problem (19) which will allow us to

set the socially optimal average buffersize k. The core assumption behind our approach

is that increased capitalization requirements will lead to a negative lending shock; low

average capitalization, on the other hand, will lead to increased probability of a financial

crisis and increased welfare loss. We refrain from making explicit assumptions about the

channel through which lending is reduced, this would require a full banking model, which

is outside of the scope of this paper. Also, we refrain from the approach used in part

of the literature of quantifying specific Modigliani-Miller deviations and of estimating

the subsequent pass-through of the associated higher financing costs to the public.24

Empirically, the two questions have been a matter of debate: see for example Dick-

Nielsen et al. (2022), who cast doubt on the claim that deviations from MM would

increase significantly the cost of capital to banks.

Instead, we focus on studies quantifying the relationships between output and lending

shocks on one hand, and lending decline due to capital requirements on the other. By

combining the two, we hope to capture the overall causal effect from increased capital

requirements to output losses.

Empirically, macroprudential buffers have been found to constrain the supply of credit

for the individual banks that are targeted. Using regulatory data Cappelletti et al. (2019)

find that in the short run banks identified as O-SII cut the credit supply to households

and the financial sector, even though in the medium run this tendency is diffused. In

a diff-in-diff setting Behn and Schramm (2021) do not find a significant effect on the

overall lending activity of G-SIB designated companies, but find a significant shift towards

24Cf. Cline (2017); Brooke et al. (2015); Miles et al. (2013) for an extensive discussion of the approach
using MM offsets.
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lending to less risky counterparties. Degryse et al. (2020) find a more pronounced effect

by focusing on a narrower time window and unexpected G-SIB designations. Favara et al.

(2021) look at the US and find that banks designated as G-SIBs do reduce their credit

supply but the aggregate effect is muted as firms switch to non-G-SIB banks. In their

estimate, a one percentage point increase in macroprudential capital surcharges leads to

loan commitments by GSIBs banks to fall by 3–4% on average relative to other banks.

We use their upper estimate as the most conservative figure on the negative impact of

capital requirements on the supply of credit on the economy in the short run. This gives

us an estimate of the term (dC/dk)(1/C) in 20.

On quantifying the impact of reduced credit supply to lower GDP growth, we rely

on Barauskaitė et al. (2022), who in a BVAR framework identified with sign and in-

equality restrictions, determine that a 1% reduction in loan supply would result in a

worst-case scenario in about .6% reduction in GDP growth.25 This provides an estimate

of (dY/dC)(C/Y ). Combining these two numbers (4% and 0.6%) gets us a baseline figure

for the η in equation (20) of .024.

Table 1: Model Calibration

Variable Value Source

L .09 Implied from Laeven and Valencia (2020)
(dY/dC)(C/Y ) .006 Barauskaitė et al. (2022)
(dC/dk)(1/C) -.04 Favara et al. (2021)

η .024 (dC/dk)(1/C)(dY/dC)(C/Y )
λsev .22 Implied from Reinhart and Rogoff (2009)
λmod .15 Implied from Romer and Romer (2017)
λmild .98 Implied from Romer and Romer (2017)

Note. This table shows the parameter values for the policymaker social optimization problem. All
parameters are in decimal points.

Next we need to calibrate L, the threshold loss parameter of government involvement

to prevent a financial crisis from becoming systemic. To do that, we refer to Laeven and

Valencia (2020) who evaluate bank restructuring fiscal costs associated with systemic

crises to at least 3% of GDP. This number has also been used as a minimum bank capital

25Refer in particular to Figure 3 in Barauskaitė et al. (2022) outlining the impulse-response functions
from a credit supply shock.
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shortfall rate in policy exercises, as in Brooke et al. (2015). Within the Euro-area for the

period under consideration, total bank liabilities are around three times the value of GDP,

which implies an L of around 9%.26 Note the current conservative assumption of LGD

of 80% implies that expected number of defaults at threshold will be
∑

i wi1i = 11.25%,

since under fixed LGD the systemic losses are defined as LGD
∑

iwi1i.

Finally, we need to set λ, which translates systemic financial losses (captured by the

ESS estimate) into a consequent GDP loss. We comply with the evidence gathered by

Romer and Romer (2017) who reject the hypothesis of a non-linearity, and model λ as a

scalar. In our setting, this parameter also allows us to anchor the GDP losses to a realistic

baseline figure, overcoming any potential misspecification of the LGD assumption which

provides the scale of the ESS figure. To do so, we assume that the baseline figure of

GDP losses that the literature estimates, is occurring in a world without macroprudential

buffers. Then, we refer to three base cases, which encompass the range of peak-to-through

GDP loss estimates, associated with a systemic crisis.27 We consider three cases, (1) a

severe crisis is provided by the estimate of Reinhart and Rogoff (2009) of 9% GDP peak-

to-through loss, (2) a moderate crisis at 6%, and (3) a milder crises of 4%, where the last

two are estimates from Romer and Romer (2017). Scaling the ESS with micro capital

buffers only to that figure, we find the λ estimates provided in Figure 1.

We next implement this model empirically to our universe of European banks. We

do this in two steps: First, in Section 5.2.1, we determine the optimal bank-specific

macroprudential buffers subject to the current average. In step two in Section 5.2.2 we

determine the optimal average buffer using the approach outlined earlier.

26Refer to Eurostat’s database to source the value of deposit holding institution’s liabilities relative to
GDP for the countries in the Euro-area, and weight by the relative size of each country.

27Cf. Brooke et al. (2015); BCBS (2010) for a review of this literature.
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Figure 9: O-SII Buffers vs. Model-Based
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Note. This figure shows the 2021 O-SII required rates against the capital requirements based on mini-
mizing the country-specific ESS. The numerical data underlying this figure are given in Table 4 in Annex
A.1.

5.2 The Expected Systemic Shortfall Approach: Empirics

5.2.1 Model-Based versus Policy O-SII Rates

Next we turn to the empirical application of the ESS model established in Section 5.1.

We present two approaches. The first is country-specific. We mimic the O-SII framework

and calibrate the model separately for each European country in our universe, assuming

that local authorities are responsible for setting the policy and that they disregard cross-

border correlations. Accordingly, k is set equal to the weighted average O-SII rate within

the country. In the second approach we take a Europe-wide view and calibrate the model

assuming all banks are part of a single system. In the Europe-wide case the buffers take

into account cross-country correlations too and k is at the European O-SII average.28

Figure 9 shows the results of the country-specific case and compares them to the

current national O-SII rates. We also include the EEI scores for the banks included.

Figure 9 brings out two noteworthy features. First the results of our country-specific
28In the country-specific approach we consider only countries with more than one bank in the sample.
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case very closely match the O-SII capital buffer rates as they are currently set by local

authorities. Apparently local authorities are rather successful in allocating buffers in line

with individual banks’ contribution to national systemic risk.

Figure 10: Local vs. Euro-Scale Model
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Note. This figure compares the model-based systemic buffers (1) calibrated to a European system, and
on the average European O-SII rate (evaluated at 1.25% over the sample); (2) calibrated to the system
composed of local banks only, and based on the country average O-SII rate. The model-based capital
buffers are evaluated against the average O-SII rate in the sample. The numerical data can be found in
Table 4 in Annex A.1.

Figure 10 then compares the ESS approach based on country averages for k with the

ESS outcomes based on an Europe-wide average buffersize k. In the Europe-wide case

the model consistently prefers to allocate higher buffers to the universe of French banks

and to some of the Spanish banks, while it compensates by allocating lower buffers to the

Netherlands and Germany. This discrepancy between optimal and actual buffers arises

to a much lesser extent when the comparison is with country-specific k averages, so it can

mostly be attributed to the fact that under the ESSlocal approach regulators measure the

impact of local banks on the local economy only, while under the ESSEurope approach

they explicitly take the Euro-wide systemic correlations into account.

Figure 11 below goes a bit further on a smaller group of banks. We carve out from
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the analysis the four Dutch banks, to illustrate how the choice of k affects the optimal

solution. In the first panel we can see that the optimal macroprudential requirements

increase practically linearly with the relaxation of the constraint (see Fig. 11a); the

next panel shows that the default probabilities decrease nonlinearly in k, reflecting the

properties of the conditional density function underlying these measures. (see Fig. 11b).

Figure 11: Minimizing ESS, Dutch Sub-sample only
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Note. This set of figures shows the level of macroprudential buffers per bank (a), the tolerated default
probability (b), and the decline in systemic risk (c) and (d), for a given macroprudential average target
add-on.

As indicated in (17), the weighted average MES provides the ESS measure. Figure

11c shows that increasing k substantially mostly decreases the risk contributions of the

largest banks in the system (INGB, RABO and ABN) while the smaller bank (VB) is not

affected significantly. As a consequence, total systemic risk, quantified through the ES

of the system, decreases as buffers go up: Figure 11d shows the percentage reduction in

ES, measured relative to the case where banks hold only microprudential buffers. These
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results highlight the importance of the choice of he average buffer target, to which we

turn in the next section.

Figure 12: Macroprudential Cost Calibration
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Note. This set of figures shows the calibration of the social disutility function and the resulting optimal
k. Chart (a) shows the risk-neutral probability that a financial crisis occurs when it is defined as bank
losses greater than 3% of GDP. Chart (b) shows the resulting welfare cost introducing macroprudential
buffers. The model is calibrated for three cases: Severe (9% ), moderate (6%) and mild (4%) GDP loss
triggered by a financial recession. The grey lines show the optimal macro capital buffers in each case,
evaluated at 16.5%, 14.4% and 11.7% respectively.

5.2.2 Social Optimal versus Current Capitalization Rates

Figure 12 shows respectively the estimated probability of a financial crisis (defined as

bank default losses exceeding 3% of GDP) as a function of the average macroprudential

buffers; and the welfare cost function with the three parametrization scenarios on the

severity of the financial crisis. A policymaker pick the level of k which minimize the

expected cost.

Note the strong convexity of the cost function in each of the parametrizations. As

macro buffers are initially introduced, we see a rapid decrease in the cost function. This

is due to the high probability of a financial crisis estimated in a system with no macro

buffers. As the buffers increase, the probability of a financial crisis decreases and the

expected welfare costs given a crisis decrease at the same time. When the size of the

buffers increases further, at some point the marginal benefits become smaller and more
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weight in the cost function is put on the economic cost of maintaining those higher buffers.

As a result, the decrease in expected costs slows down and is consequently reversed.

From Figure 12b one can also read the macro buffer average at which Wc is minimized.

The higher the expected GDP decline associated with a systemic crisis (modelled through

the pass-trough rate λ from financial losses to GDP decline), the higher is the more

conservative the policymaker needs to be in lowering the probability of such a crisis, and

thus the higher the optimal capital ratio. In the first case (solid black line with severe

expected crisis), welfare is optimized at k of 16.5%. For a moderate and milder estimate,

the optimal value is 14.4% and 11.7% respectively. The expected GDP cost associated

with maintaining the optimal buffers is between .5% and .7%, where the output costs

are higher in the high buffer case because they are triggered by a much bigger crisis, and

at the same time higher buffers are associated with higher credit supply decline by the

banks that need to maintain them.

Figure 13 shows the distribution of the total capital buffers from the model across the

banks in our European sample, but this time set to an average out to the optimal k instead

of at the currently actual level. We include three calibration cases and their corresponding

optimal average buffer sizes in the sample. We now compare the model outcomes not

to the required O-SII buffers (as we did in Figures 9 and 8b) but to the actual total

CET1 capitalization, capturing the fact that banks may be subject to additional buffer

requirements that were not discussed so far, the countercyclical buffer CCyB and the P2

buffers SyRB29.

Once again we find some geographical areas where banks seem undercapitalized rel-

ative to the model’s recommendation and others with apparent overcapitalization com-

pared to the model optimum. The clearest outlier is France, where the model recommends

higher capital ratios for all banks in the sample except Crédit Mutuel (CRMU), a coöper-

ative bank. The model output also indicates that Germany’s Deutsche Bank (DB) and

Spain’s Santander (SANT) should have higher capital than they currently have. On the

other hand, Dutch and Swedish banks appear to have significantly higher capitalization

29See Annex A.2 for details on these policy frameworks.

47



Figure 13: Model-based optimal capital ratio’s (%)
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Note. This figure shows the current CET1 capitalization ratios (ki) vs. the model-based total capital
requirements ( k∗i ), i.e. the current micro (MCR, CCB, and P2R) plus the model macro requirement, at
the socially optimal kThe numerical data underlying this figure are given in Table 4 in Annex A.1.

ratios than required by the model.

The two Italian banks in our sample, Intesa Sanpaolo (INTE) and Unicredit (UNIC),

are also highlighed, even though the difference between actual and model outcomes is not

that high. Even though the median spread on the Italian banks in our sample appears

to be the highest compared to that of other countries throughout the evaluation period

(see Chart 16a), the two banks are smaller on a European scale (as Table 2 shows they

are less than half the size of BNP for example) which lowers the potential that they will

dominate the system and thus lowers the need for larger buffers to control for systemic

concerns within Europe.

In Figure 14 we show how the optimized buffers change the impact each bank has

on the system. The figure shows two evaluations of the SCD defined in Section 3.6 as

a measure of this expected impact. In the first case, we evaluate each bank’s SCD with

the buffers set at the actual rate as of 2021; and next to it we evaluate the SCD with the

48



optimal level of buffers. The latter obviously lead to much lower values for the expected

SCD for relatively large banks (i.e. with a large wi) but actually a lower SCD for smaller

banks (with a lower wi). This illustrates the difference between the EEI and the ESS

approaches discussed so far. In the former case, the policimaker seeks to equalize the

systemic impact across all banks; while in the later aggregate systemic risk is suppressed

by being much stricter with the largest contributors.

Figure 14: Actual vs. Optimized SCD (%)
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Note.This figure shows the SCD value for the banks in our sample in the initial case, i.e. at current
capitalization; and in the ESS socially optimal case with the λmod calibration.

Some have argued against using information derived from CDS prices because the

results would be too volatile to be of use in actual regulatory practice. Market data

tends to be volatile and the general concern is that this may lead to volatile estimates of

the recommended capital ratios. And in fact, changing capital requirements too often may

in the long run be counterproductive as banks may become overburdened with satisfying

stricter requirements only to see them relaxed after a while.

To address this concern we evaluate the optimal macro requirements, given a socially

optimal k repeatedly using a rolling estimation approach. This allows us to check the

sensitivity of the model calibration to new data coming in. Specifically, we use a window

of 156 weeks based on which we optimise the model to determine the appropriate capital

buffers for each bank. The window is then shifted one week further over time, after which

we again derive the optimal cross-section of the buffers. Figure 15 shows the results.
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Unlike what one may have expected, the time series for bank-specific macroptudential

buffers are very smooth, the capital buffers do not move erratically with CDS movements;

changes happen only gradually and to a minor extent. The fact that weights are part of

an inherently nonlinear optimization problem disciplines sudden shifts in PDs in response

to actual CDS market movements.

Figure 15: Macroprudential Capital Buffers over Time
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Note. This figure shows the rolling-window estimates over time of the socially optimal macro buffers
based on the ESS method. k is fixed at 14.4%, i.e. the calibration with the λmod calibration. For clarity
we show only the labels of the 10 banks with highest buffer estimates.

6 Conclusions

In this paper we address the problem of calibrating the macroprudential capital buffers

of banks. To that end, we develop a novel framework that links systemic risk to the size

of the minimum capital requirements. The approach that we develop aims to speak both

to academics and regulators.

First, we develop a credit portfolio model, which endogenizes the default thresholds

of banks. This makes the model suitable for policy analysis aimed at determining the

optimal macroprudential requirements for each bank in the universe considered.

Second, we defined a tail-risk-based measure of the expected cost of default of a
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systemic institution and applied it to the risk-equalization approach used by regulators

to determine systemic buffers in the O-SII and G-SII frameworks. The equalization

approach is widely used by regulators, but as we show, in determining the size of the

buffers, it is very sensitive to the choice of the reference parameters, such as the size

of the non-systemic institution. As a result, going a step further, we embedded the

credit model in a portfolio risk framework allowing us to formulate the problem as a risk

minimization exercise subject to an average capital buffers target. With this in mind, we

show that significant readjustment of the O-SII buffers would occur between countries if

the regulation were to be implemented on a European rather than on a domestic scale.

We apply the framework to a universe of 27 large European banks. We use CDS

data to infer the default probabilities, asset variances, and default correlations between

the different institutions. Using CDS prices rather than equity returns has an important

advantage: it allows us to integrate into the analysis systemic banks which are not traded

on the equity market. The modeling results show considerable heterogeneity between

European countries in the level of current capital requirements relative to the systemic

cost different banks pose. We then construct a solution assuming a hypothetical single

European regulator who has the authority to set socially optimal buffers for banks in the

Eurozone.

Finally, we set up an optimization-based cost/benefit analysis of capital requirements,

specifying not just the benefits in terms of reduced contributions to systemic risks, but

also the costs of higher capital requirements in terms of reduced credit availability. At

the optimum, the first-order condition comes down to equating the marginal costs and

marginal benefits of increasing the average macroprudential capital ratio. Consequently,

solving for each bank’s macroprudential buffer is done in two steps: first, we optimize the

average capitalization rate for all the banks in the sample taken together to determine

the average macro buffer the financial system should bear. Then we optimize individual

banks’ macroprudential ratios subject to that average.

Thus we relate the discussion of macroprudential capital buffers to an earlier discus-

sion on the economic cost of capital (BCBS, 2010). We estimate a cross-sectional average
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of 14.4% macroprudential add-on on top of the microprudential requirements of 4.5%

minimum, the 2.5% CCB and the bank-specific P2R CET1 component. This presents a

reasonable balance between staving off the materialization of a systemic financial crisis

and the cost of inducing a negative lending shock on the economy through the stricter

regulation.The average buffer is even higher if one forsees a higher pass-trough from

financial losses to GDP decline in a systemic crisis. Again, once the average rate is allo-

cated across the individual European banks in our sample, we see a notable heterogeneity

between countries in the gap between their current capitalization and the model-based

prescription.

There are several other possible extensions that future research can address. First,

the currently proposed portfolio approach could be extended to incorporate specific core-

periphery features that have been documented for the financial network in Europe.30

The addition of a network structure, thus, can foster the causal interpretation of the

systemic cost of default estimates that we provide, and could allow for the distinction

between banks which are drivers of systemic risk vs. banks which are just sensitive to its

materialization from others. Second, one may want to focus on capturing further sources

of heterogeneity between banks. For example, it is possible to extend the default model

to include types of loss-absorption capacity other than equity, such as subordinated debt

or senior unsecured debt. Additionally, one might consider heterogeneity in the lending

market as a way of capturing the segmented nature of these markets across Europe,

which would allow a more granular view of the social costs of increasing capital buffers

across different jurisdictions. Finally, one can also think of an econometric framework

that would allow the separation of cyclical vs. structural components of systemic risk,

tailoring the size of calibrated buffers more concretely towards structural drivers and

reducing any pro-cyclical effects.

Overall, we have provided a flexible modeling basis that can be used as a stepping

stone for further discussions on the macroprudential frameworks and on the calibration

30Cf. Glasserman and Young (2016); Bräuning and Koopman (2016); Jackson and Pernoud (2021);
Andrieş et al. (2022) for arguments and modeling highlights in this direction.
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of the size of banks’ capital buffers.
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A Appendix

A.1 Input Data

We use data from 27 European banks. The dataset includes weekly CDS prices on

subordinate debt provided by Bloomberg; annual end-of-year balance sheet liability size

figures; current CET1 capitalization ratios, provided by FactSet; and the banks-specific

P2R rates which are publicly available through European regulators.31 In line with the

rest of the buffers in this study, we only consider the CET1 portion of the P2R framework.

A three-factor latent model is then estimated based on weekly CDS data in the pe-

riod from August 2019 to August 2022. The use of weekly data allows us to reduce

the estimation noise from daily trading and calibrate the model on longer-term spread

co-movements. The number of factors were chosen as a scree plot of the Principle Com-

ponents of the data showed that three latent factors capture more than 80% of the

co-variation in the movements of the CDS spreads.

The data encompasses several major tail events for the European economy - the initial

Covid shock as of the beginning of 2020 and the first lockdowns, the start of the war in

Ukraine with fears of gas shortages as of the beginning of 2022, and the inflation spikes

and interest rate tightening by the Fed and the ECB. Figure 16 shows the evolution of

the CDS spreads in our sample for the evaluation period.

Throughout, we use an LGD assumption of 80% (i.e. ERR of 20%) in line with

the prospect provided in Bloomberg of these subordinate CDS. This is a conservative

assumption when it comes to extracting the default probabilities from the CDS data, and

yet it does not make a difference in the estimation of the EEI-based buffers of Section 4

or the ES buffers of Section 5, as it is assumed to be the same for all banks essentially

putting them on the same level playing field with respect to expected losses in default.

In the final estimation of the average level of macro buffers (Section 5.1.2) we adjust

the passthrough rate (λ) from financial losses to a drop in GDP to make sure that the

arbitrary choice of LGD does not affect the evaluation of the expected costs of a financial

31See https://www.bankingsupervision.europa.eu/banking/srep/html/p2r.en.html
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Figure 16: CDS Prices (bps)
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crisis for the economy.

The variances of the banks’ assets are implied based on the observed CDS rate and

capitalization as of August 29th, 2022 using the method outlined in Section 3.2. Table 2

summarizes the input data and the implied model parameters.

A.2 Regulatory Capital Requirements

Here we provide a short overview of the different regulatory capital requirements32

32For a general discussion see Hull (2018); and for details on the latest implementations and regulatory
debates see EBA’s guidance on the O-SII framework; ESRB’s systemic reports; BIS’s guidance on the
G-SIB framework.
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1. Minimum Capital Requirement (MCR)

• Pillar 1:

– Common equity Tier 1 capital (CET1) has to be at least 4.5% of risk-

weighted assets (RWA).

– Total Tier 1 capital at least 6% of RWA.

– Total (Tier 1 and Tier 2) capital of at least 8% of RWA.

– Leverage Ratio (Tier 1 Capital/Total Exposure) at least 3%. Total expo-

sure includes on- and off-balance sheet exposure, derivatives exposure, and

securities financing transaction exposures. No risk-weighting is applied.

• Pillar 2 (P2R): bank specific microprudential capital requirement that aims to

cover risk which are not (fully) covered by the Pillar 1. Partially satisfied with

CET1 capital. Pillar 2 Guidance (P2G) is not legally binding but may have

implications on the distributional capacity to shareholders.

2. Combined Buffer Requirement (CBR)

• Capital Conservation Buffer (CCB) (Basel III) to be maintained in normal

times. If levels fall below requirements, banks restrain dividends and bonus

payments until capital has been replenished. CET1 add-on of 2.5% of RWA.

• Countercyclical Capital Buffer (CCyB)

– Applied country-wide. Similar to CCB but at the discretion of national

authorities. It is a CET1 add-on of between 0% and 2.5% of the bank’s

domestic RWAs.

• Systemic risk buffer (SyBR)

– Additive to other buffers. Designed to address risk spillover from the

economy (from the system) to individual banks.

– At the discretion of national authorities aiming to address risks that are

not covered by the CCyB or the G-SII/O-SII buffers.
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– May apply to all banks, particular individual banks, and across a subset

of exposures (e.g. on the residential exposure of the RWAs as in e.g.

Belgium, Germany, etc.).

• Global Systemically Important Institution (G-SII) buffers on Globally System-

ically Important Banks (G-SIBs):

– Part of the combined buffer requirement. Typically ranging between 0%

and 2.5%.

– Designed to address negative spillovers from individual banks to the global

economy.

– Framework and assessment methodology set by the Basel Committee on

Banking Supervision (BCBS) and applies to banks globally (ranking in

categories based on size, complexity, cross-jurisdictional activity, inter-

connectedness, substitutability of activities)

– Enforced by national authorities.

• Other Systemically Important Institution (O-SII) buffers

– Part of the combined buffer requirement. Typically ranging between 0%

and 3%, where the maximum of G-SII and O-SII applies.

– National authorities have the discretion on the size of the buffer surcharge.

– Designed to address negative spillovers from individual banks to the na-

tional economy.

– Guidelines set by European Banking Authority (EBA) (ranking in cate-

gories based on size, importance, complexity, and interconnectedness).

– Measurements and enforcement by national authorities on a “comply or

explain” basis.

A.3 Latent Factor Model Estimation

On a given day we don’t observe the market value of a bank’s assets, but we observe how

far it is from the default threshold. This is implied by the default probability associated
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with the market price of a CDS contract traded, such that

PDi,t = P(Vi,T ≤ Di) = P(Ui ≤ −DDi,t) = Φ(−DDi,t)

where Φ(.) is the cumulative standard normal distribution, and t are periodic observations

of the default probability, in our case with weekly frequency. This implies the DD measure

at the end of the trading week

DDi,t = −Φ−1(PDi,t) (21)

Observed changes in the default probability can then be linked to the changes in the

asset value by first-differencing (21) and relating it to (4):

∆Φ−1(−PDi,t) = ∆DDi,t =
lnVi,t − lnVi,t−1

σi

√
T − t

(22)

More importantly, this allows us to infer the correlation structure between the latent

default variables. For example, the correlation between banks i and j can be written as

Corr(Ui,t, Uj,t) = Corr(∆DDi,t,∆DDj,t) ≡ ai,j (23)

Based on these observed correlations, we can construct the target correlation matrix

towards which to fit the latent factor model of (9) as

Σ ≡


1 a12 a13 . . . a1N

a21 1 a23 . . . a2N

. . . . . . . . . . . . . . . . . . . . . . . .

aN1 xN2 xN3 . . . 1

 (24)

The parameters of (9) can then be estimated by minimizing the sum of squared differ-
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ences between the observed correlations above and the factor-model implied correlations:

min
ρi,...,ρj

N∑
i=2

N∑
j=1

(aij − ρiρ
′
j)

2 (25)

A.4 Inferring PDs from observed CDSs

We infer the banks’ default probabilities from single-name CDS close prices using the

approach outlined by Duffie (1999). It is based on the simplifying assumption that

recovery rates (RR) are known and constant over the horizon of the contract.33

With this in mind, we can proceed with identifying the equation for pricing a CDS

contract. By market convention, at the initiation date t of the contract the spread CDSt

is set to ensure that the value of the protection leg and the premium leg of the contract

are equal, such that the contract has a zero value:

CDSt

∫ Tcds

t

e−rτ τΓτdτ︸ ︷︷ ︸
PV of CDS premia

= (1− ERRt)

∫ Tcds

t

e−rτ τqτdτ︸ ︷︷ ︸
PV of protection payment

(26)

where Tcds is the maturity date of the CDS contract, τ > t is future time after the

initiation of the contract, rτ is the annualized instantaneous risk-free rate, CDSt is the

observed CDS spread for the day, qτ is the annualized instantaneous risk-neutral default

probability , Γτ = 1 −
∫ τ

t
qsds is the risk-neutral survival probability until time τ , and

ERRt is the expected recovery rate in case of default, assumed to be constant over time.

For simplicity, we assume that the yield and the probability default curves are flat

over the lifetime of the CDS contract once the contract is established. Then, we can set

rτ = rt and qτ = qt over the lifetime of the contract initiated at time t. Then the default

33We do not try to identify expected recovery rates separately from the observed CDS data. There are
alternative and more sophisticated approaches (cf Pan and Singleton (2008); Christensen (2006); Acharya
and Johnson (2005); Duffie and Singleton (1999)). However, given the identification challenge between
PDs and RRs, the simplifying assumption we employ in estimation is widely used in the literature and
is difficult to improve.
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probability q at time t follows from equation (26):

qt =
aCDSt

a(1− ERRt) + bCDSt

(27)

with a =
∫ Tcds

t
e−rτdτ and b =

∫ Tcds

t
τe−rτdτ . Setting Tcds − t = 5 to capture 5-year CDS

contracts, we can imply the annualized default probabilities.
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A.5 Model Outcome Tables

Table 2: Model Input Data

Country Code Name weuro wlocal CDS(bps) PD(%) ρ1 ρ2 ρ3 σ̂(%) kCET1 kP2R

Austria ERST Erste Group 1.51 100.00 79.80 2.12 0.92 0.02 0.03 7.81 14.50 0.98

Belgium KBCB KBC 1.67 100.00 214.03 2.51 0.16 0.14 (0.14) 8.66 15.50 1.05

Denmark DANK Danske Bank 2.66 100.00 266.43 3.08 0.95 0.10 0.10 10.21 17.40 1.01

Finland NORD Nordea 2.82 100.00 131.16 1.58 0.60 (0.70) 0.19 8.72 17.00 0.98

France BNP BNP Paribas 13.24 37.59 163.10 1.94 0.96 0.20 0.06 6.81 12.89 0.74
CRAG Credit Agricole 10.51 29.85 156.92 1.87 0.95 0.22 0.07 6.08 11.60 0.84
CRMU Credit Mutuel 4.15 11.79 206.83 2.43 0.51 0.08 (0.05) 10.53 18.80 0.98
SOCG Societe Generale 7.32 20.78 192.76 2.27 0.94 0.18 0.06 7.48 13.71 1.19

Germany BAY Bayern LB 1.34 8.43 64.24 1.94 0.91 (0.08) 0.02 9.23 17.30 1.13
COMZ Commerzbank 2.33 14.61 317.91 3.62 0.95 0.17 (0.01) 8.22 13.60 1.13
DB Deutsche Bank 6.64 41.68 328.06 3.72 0.92 0.14 (0.08) 8.03 13.20 1.41
DZ DZ Bank 3.14 19.74 49.95 1.78 0.85 0.00 0.10 7.99 15.30 0.96
HESLN Helaba 1.07 6.70 69.33 2.00 0.92 (0.07) 0.08 7.61 14.30 0.98
LBBW LBBW 1.41 8.84 51.96 1.80 0.90 (0.03) 0.08 7.63 14.60 1.03

Italy INTE Intesa Sanpaolo 5.28 54.04 323.84 3.68 0.91 0.14 0.05 8.51 14.00 1.01
UNIC Unicredit 4.49 45.96 362.50 4.07 0.92 0.12 0.02 9.38 15.03 0.98

Netherlands ABN ABN Amro 1.99 19.54 104.46 1.26 0.73 0.01 (0.26) 8.03 16.30 1.13
INGB ING 4.71 46.22 70.71 0.86 0.75 (0.07) 0.10 7.37 15.89 0.98
RABO Rabobank 3.15 30.94 157.35 1.88 0.95 0.15 0.07 9.23 17.40 1.07
VB Volksbank 0.34 3.30 95.29 1.16 0.65 0.10 (0.21) 11.28 22.70 1.69

Spain BBVA BBVA 3.22 20.49 230.76 2.69 0.94 0.17 (0.02) 7.20 12.75 0.84
CAIX Caixabank 3.38 21.51 225.64 2.64 0.19 (0.09) (0.51) 7.37 13.10 0.93
SAB Sabadell 1.25 7.97 365.34 4.10 0.31 (0.10) (0.64) 7.62 12.22 1.21
SANT Santander 7.87 50.03 214.60 2.51 0.96 0.16 (0.00) 6.74 12.12 0.84

Sweden SEB Skandinaviska EB 1.59 35.09 139.54 1.67 0.64 (0.71) 0.03 10.30 19.70 1.01
SWED Swedbank 1.32 29.20 164.63 1.96 0.65 (0.38) (0.25) 9.81 18.30 1.01
SWEN Handelsbanken 1.61 35.70 133.98 1.61 0.67 (0.63) 0.06 10.06 19.40 1.01

Note. This table shows the banks in our analysis universe, their relative size, CDS spreads as of the
evaluation date, implied PD, the implied st. dev. of thier assets, the estimated factor model loadings,
total CET1 capitalization ratio, and the P2R capital requirement. The two columns weuro and wc show
the liability size of the institutions on a European and on a domestic scale, repsectively.
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Table 3: Model Output: EEI Approach

kmacro (%) PD(kmacro) SCD(kmacro)

Country Bank 1% 5% 10% 1% 5% 10% 1% 5% 10%

France BNP 10.46 7.47 5.92 0.18 0.84 1.69 0.13 0.63 1.26

CRAG 8.37 5.66 4.34 0.20 0.92 1.75 0.13 0.63 1.26
CRMU 14.76 9.75 7.06 0.82 3.59 6.74 0.13 0.63 1.26
SOCG 11.25 7.86 6.18 0.22 1.07 2.09 0.13 0.63 1.26

Germany BAY 14.16 10.14 8.10 0.36 1.62 3.06 0.13 0.63 1.26

COMZ 12.67 9.07 7.38 0.26 1.21 2.24 0.13 0.63 1.26
DB 12.70 9.20 7.47 0.18 0.89 1.74 0.13 0.64 1.26
DZ 11.91 8.40 6.54 0.31 1.40 2.74 0.13 0.63 1.26
HESLN 10.73 7.32 5.58 0.36 1.60 3.03 0.13 0.63 1.26
LBBW 10.68 7.36 5.59 0.37 1.57 3.00 0.13 0.63 1.26

Italy INTE 13.89 10.28 8.31 0.21 0.99 2.01 0.15 0.75 1.50

UNIC 15.63 11.64 9.70 0.24 1.12 2.13 0.15 0.75 1.50
Netherlands ABN 10.79 6.94 4.94 0.51 2.32 4.43 0.15 0.74 1.47

INGB 10.75 7.54 5.91 0.27 1.21 2.31 0.15 0.74 1.47
RABO 14.44 10.55 8.42 0.33 1.44 2.82 0.15 0.74 1.47
VB 13.13 7.22 4.29 1.68 6.94 11.98 0.15 0.74 1.47

Spain BBVA 10.62 7.29 5.67 0.26 1.24 2.38 0.11 0.55 1.10

CAIX 9.57 5.95 4.11 0.50 2.32 4.41 0.11 0.55 1.10
SAB 8.12 4.05 1.88 1.06 4.66 8.72 0.11 0.55 1.10
SANT 10.32 7.22 5.69 0.16 0.84 1.69 0.11 0.55 1.10

Sweden SEB 17.21 12.71 10.39 0.28 1.38 2.73 0.17 0.87 1.74

SWED 15.37 10.81 8.49 0.38 1.89 3.67 0.17 0.87 1.74
SWEN 16.55 12.26 10.00 0.30 1.39 2.73 0.18 0.87 1.74

Note. This table shows the optimal buffers based on the EEI Approach. We show the estimated macro-
prudential capital buffers and the resulting risk-neutral default estimates for the individual banks. The
results are shown for reference bank size of 1%, 5% and 10% relative to the total size of the banking
sector. The results are estimated on a local country scale. For the reference bank in each country, we
assume the LGD follows the standard assumption. The variance of the reference bank’s assets is assumed
to be the average of the asset variances for all banks in that country.
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Table 4: ESS Approach: Model Output Data

k =O-SII Average k = Social Optimum

Country Names O-SII k
osii,loc

kloc,osiii,macro keur,osiii,macro CET1r k∗mild k∗mod k∗severe

Austria ERST 1.00 0.34 14.50 11.17 11.92 12.49

Belgium KBCB 1.50 0.37 15.50 11.54 12.36 12.98

Denmark DANK 3.00 0.57 17.40 13.31 14.55 15.49

Finland NORD 2.00 0.60 17.00 13.58 14.90 15.89

France BNP 1.50 1.13 2.63 1.39 12.89 32.39 38.19 42.54
CRAG 1.00 1.13 2.10 1.16 11.60 27.50 32.13 35.60
CRMU 0.50 1.13 0.86 0.63 18.80 16.01 17.90 19.32
SOCG 1.00 1.13 1.48 0.89 13.71 22.01 25.26 27.70

Germany BAY 0.50 1.36 0.31 0.60 17.30 11.01 11.69 12.20
COMZ 1.25 1.36 0.50 0.88 13.60 12.82 13.92 14.75
DB 2.00 1.36 1.34 2.08 13.20 20.98 23.94 26.16
DZ 1.00 1.36 0.66 1.11 15.30 14.14 15.59 16.69
HESLN 0.50 1.36 0.25 0.52 14.30 10.37 10.93 11.35
LBBW 0.75 1.36 0.32 0.62 14.60 11.04 11.75 12.28

Italy INTE 0.75 0.86 1.08 0.90 14.00 18.09 20.47 22.25
UNIC 1.00 0.86 0.92 0.83 15.03 16.63 18.66 20.18

Netherlands ABN 1.50 2.10 0.44 1.41 16.30 12.20 13.16 13.88
INGB 2.50 2.10 0.97 2.61 15.89 17.03 19.16 20.75
RABO 2.00 2.10 0.66 1.92 17.40 14.27 15.73 16.82
VB 1.00 2.10 0.11 0.67 22.70 9.74 9.98 10.17

Spain BBVA 0.75 0.75 0.68 0.52 12.75 14.18 15.67 16.78
CAIX 0.38 0.75 0.71 0.54 13.10 14.55 16.11 17.28
SAB 0.25 0.75 0.29 0.32 12.22 10.94 11.58 12.06
SANT 1.00 0.75 1.58 1.01 12.12 22.68 26.17 28.79

Sweden SEB 1.00 1.00 0.36 1.03 19.70 11.35 12.13 12.72
SWED 1.00 1.00 0.30 0.91 18.30 10.86 11.53 12.03
SWEN 1.00 1.00 0.36 1.04 19.40 11.40 12.20 12.79

Note. This table shows the optimal buffers based on the ESS model output. The columns show for
each bank in the universe the regulatory O-SII macroprudential capital buffers for 2022; the country
weighted average, k

osii,loc
: the optimal buffer rate at country scale calibrated to the country O-SII

average; keur,osiii,macro: the optimal buffer rate at European scale, calibrated to the European O-SII average
of 1.25%.
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