The Tipping Point: Low Rates and Financial Stability^{a,b}

Davide Porcellacchia

DNB Annual Research Conference, 29 October 2020

European Central Bank

^aLink to the paper's latest version on www.dporcellacchia.com.

^bThis paper represents my own views, not necessarily those of the European Central Bank or Eurosystem.

Research question

What is the effect of low interest rates on financial stability?

Very quick answer:

- Excessively low rates lead to bank insolvency.
- With the right model, we can quantify the tipping-point rate.

Literature

Effect of low rates on bank profitability.

 Borio, Gambacorta, and Hofmann (2017), Altavilla, Boucinha, and Peydró (2018), Claessens, Coleman, and Donnelly (2018), and Ampudia and van den Heuvel (2019).

Effect of low rates on wider economic developments:

- 1. Credit supply. Brunnermeier and Koby (2018) and Eggertsson et al. (2019).
- 2. Risk taking. Maddaloni and Peydró (2011), Jiménez et al. (2014), Di Maggio and Kacperczyk (2017), Martinez-Miera and Repullo (2017), and Heider, Saidi, and Schepens (2019).

Liquidity creation and financial stability.

• Diamond and Dybvig (1983), Allen and Gale (1998), Gertler and Kiyotaki (2015), Quadrini (2017), Segura and Suárez (2017), and Fernández-Villaverde et al. (2020).

Franchise value of deposits.

• Di Tella and Kurlat (2017) and Drechsler, Savov, and Schnabl (2018).

Introduction

What is the effect of low interest rates on financial stability?

Two effects:

- ⊕ Asset-revaluation effect.
- Compression of net interest spread.

Main result: There is a tipping-point rate.

- Below tipping point, financial crisis.
- It is function of observable bank characteristics.

Methodological contribution: Recursive Diamond-Dybvig model.

- Clear role of bank's net interest spread for financial stability.
- Endogenous objects stable over time.

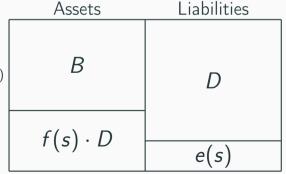
Toy version of the model

Framework:

- Infinite horizon with $t = 0, 1, \ldots$
- At time 0, the **bank** has B assets and D deposits outstanding.
 - Interest rate on assets is $\rho > 0$. Deposits earn deposit rate d.
 - Liquidity creation: D > B.
- At each date, the **depositor** withdraws all deposits with probability $\phi \in (0,1)$.

Bank balance sheet

 \circ 1 + s = $\frac{1+\rho}{1+d}$, net interest spread (NIS).


The risk-neutral valuation of bank equity e is

$$e = \phi \cdot (B - D) + \phi \cdot (1 - \phi) \cdot \frac{(1 + \rho) \cdot B - (1 + d) \cdot D}{1 + \rho} + \phi \cdot (1 - \phi)^2 \cdot \frac{(1 + \rho)^2 \cdot B - (1 + d)^2 \cdot D}{(1 + \rho)^2} + \dots = 0$$

$$= B - [1 - f(s)] \cdot D.$$
(1)

with franchise value of deposits (FVD)

$$f(s) = \underbrace{\frac{1-\phi}{\phi+s}}_{\text{Expected time to withdrawal}} \times \underbrace{s}_{\text{NIS}}. \tag{2}$$

Bank behaviour & tipping point ρ

Bank chooses the NIS s

- to set bank equity e = 0,
- subject to ZLB $d \ge 0 \implies s \le \rho$.
- → Micro-foundation:
 - Exclusive bank-depositor relationship with perfect competition ex-ante.
 - Cash as outside option for depositor.
- \rightarrow Easy to generalise bank behaviour to have e > 0.

Target NIS s^* :

$$0 = B - [1 - f(s^*)] \cdot D$$

 \rightarrow Liquidity creation $\implies s^* > 0$.

Equilibrium NIS:

$$s = \min\left\{s^*,
ho\right\}$$
 .

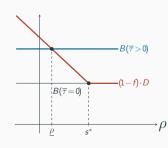
(3)

Proposition 1: Bank is insolvent with
$$e < 0$$
 iff $\rho < \rho$ where $\rho = s^*$.

Tipping point with long-term assets 1/2

• Bank-asset duration $\tau > 0$.

$$e = B(\rho) - [1 - f(s)] \cdot D. \tag{5}$$


Mechanism:

$$\rho \downarrow \implies$$
1. Erosion of FVD: $\rho < s^* \implies f \downarrow$.
2. Asset-revaluation effect: $B \uparrow$.

Approximation for τ small enough.

$$\frac{\Delta B}{B} \cong \tau \cdot \ln(1 + d^*). \tag{6}$$

$$\frac{\Delta f}{1-f} \cong -\frac{\partial f/\partial s}{1-f} \cdot (\rho - s^*) \cdot \mathbb{1}_{\rho < s^*}. \tag{7}$$

Tipping point with long-term assets, 2/2

Proposition 2

Consider $\tau > 0$ small enough.

The bank is insolvent with e < 0 iff $\rho < \rho$ where

$$\underline{\rho} = s^* - \underbrace{\frac{\tau}{\frac{\partial f/\partial s}{1-f}}}_{\text{Effective duration gap at ZLB}} \cdot \ln(1+d^*). \tag{8}$$

 $\frac{\partial f/\partial s}{1-f}$ = interest-rate elasticity of the value of deposits once d=0.

 \rightarrow Interpret it as the effective duration of deposits at ZLB.

Quantitative analysis, 1/2

Problem: Find empirical counterpart for effective duration of deposits at ZLB.

Naïve solution: Use statutory duration of bank liabilities of 0.41 years (English, Van den Heuvel, and Zakrajšek 2018).

Complete solution:

Step 1: Find effective duration of deposits in normal times (data 1997-2007).

$$\frac{\mathrm{d}f/\mathrm{d}\rho}{1-f} = \frac{1}{1-e/B} \cdot \underbrace{\left(\tau + \frac{e}{B} \cdot \frac{\mathrm{d}e/\mathrm{d}\rho}{e}\right)}_{4Y + 9\% \cdot (-10Y)} = 3 \text{ years.}$$
 (9)

Quantitative analysis, 2/2

Step 2: Adjust for zero interest-rate pass-through at ZLB.

$$\frac{\partial f/\partial s}{1-f} = \underbrace{\frac{\mathrm{d}f/\mathrm{d}\rho}{1-f}}_{3V} \cdot \frac{1+d^*}{1-(1+s^*)\cdot \,\mathrm{d}d/\mathrm{d}\rho} = 5 \text{ years}$$
 (10)

- $\mathrm{d}d/\mathrm{d}
 ho=$ 0.354 (Drechsler, Savov, and Schnabl 2018).
- $d^* = 2.54\%$ in September 2007 (M2 own rate).
- $s^* = 2.64\%$ in September 2007.

How low could Ben go?

• What was the tipping-point rate in September 2007, as Federal Reserve started its rate cuts?

$$\underline{\rho} = s^* - \underbrace{\frac{\tau}{\frac{\partial f/\partial s}{1-f}}}_{2.64\%} \cdot \ln(1+d^*) = 0.3\%. \tag{11}$$

Caveats: (1) Permanent unanticipated interest-rate change, (2) No capital buffer.

11/17

Microfoundation: recursive banking model

Ingredients:

- 1. Idiosyncratic liquidity shocks as in Diamond and Dybvig (1983) but over infinite horizon.
- 2. Long-term assets and storage.
- 3. Fundamental runs (Allen and Gale 1998).

Results:

- Two steady states.
 - 1. Good SS:
 - Liquidity creation: D > B.
 - Solvent banks: e = 0 with $s = s^*$.
 - 2. Bad SS:
 - No intermediation: B = 0.
 - − Bankrupt banks: e < 0.
- Financial crisis: transition from good SS to bad SS.
 - Iff e < 0, economy converges to bad SS.

Conclusion

What is the effect of low interest rates on financial stability?

Theoretical results.

- 1. Two constrasting effects:
 - ⊕ Asset-revaluation effect.
 - ⊖ Erosion of FVD.
- 2. Relative strength determines the *tipping-point rate*.
 - It depends on bank's effective duration gap at the ZLB.

Quantitative result:

- ullet Effective duration of deposits at ZLB \cong 5 years.
- Asset-revaluation effect much weaker than naïve calculation suggests.

Methodological contribution:

- Diamond-Dybvig model features endogenous FVD.
- Recursive version suitable for quantitative analysis.

References i

- Allen, Franklin and Douglas Gale (1998). "Optimal Financial Crises". In: <u>The Journal of Finance</u> 53.4, pp. 1245–1284.
- Altavilla, Carlo, Miguel Boucinha, and José-Luis Peydró (Oct. 2018). "Monetary policy and bank profitability in a low interest rate environment". In: <u>Economic Policy</u> 33.96, pp. 531–586.
- Ampudia, Miguel and Skander J. van den Heuvel (Aug. 2019).
 - Monetary Policy and Bank Equity Values in a Time of Low and Negative Interest Rates. Finance and Economics Discussion Series 2019-064. Board of Governors of the Federal Reserve System (U.S.)
- Borio, Claudio, Leonardo Gambacorta, and Boris Hofmann (Apr. 2017). "The influence of monetary policy on bank profitability". In: International Finance 20, pp. 48–63.
- Brunnermeier, Markus K. and Yann Koby (Dec. 2018). <u>The Reversal Interest Rate</u>. NBER Working Papers 25406. National Bureau of Economic Research.

References ii

- Claessens, Stijn, Nicholas Coleman, and Michael Donnelly (2018). ""Low-For-Long" interest rates and banks' interest margins and profitability: Cross-country evidence". In:

 Journal of Financial Intermediation 35.PA, pp. 1–16.
- Di Maggio, Marco and Marcin Kacperczyk (2017). "The unintended consequences of the zero lower bound policy". In: Journal of Financial Economics 123.1, pp. 59–80.
- Di Tella, Sebastian and Pablo Kurlat (2017). Why are Banks Exposed to Monetary Policy? NBER Working Papers 24076. National Bureau of Economic Research.
- Diamond, Douglas and Philip Dybvig (June 1983). "Bank Runs, Deposit Insurance, and Liquidity". In: Journal of Political Economy 91.3, pp. 401–419.
- Drechsler, Itamar, Alexi Savov, and Philipp Schnabl (May 2018).
 - Banking on Deposits: Maturity Transformation without Interest Rate Risk. NBER Working Papers 24582. National Bureau of Economic Research.

References iii

- Eggertsson, Gauti B. et al. (Jan. 2019).
 - Negative Nominal Interest Rates and the Bank Lending Channel. NBER Working Papers 25416.

 National Bureau of Economic Research.
- English, William B., Skander J. Van den Heuvel, and Egon Zakrajšek (2018). "Interest rate risk and bank equity valuations". In: Journal of Monetary Economics 98, pp. 80–97. ISSN: 0304-3932.
- Fernández-Villaverde, Jesús et al. (Feb. 2020).
 - <u>Central Bank Digital Currency: Central Banking For All?</u> NBER Working Papers 26753. National Bureau of Economic Research.
- Gertler, Mark and Nobuhiro Kiyotaki (July 2015). "Banking, Liquidity, and Bank Runs in an Infinite Horizon Economy". In: American Economic Review 105.7, pp. 2011–2043.
 - Heider, Florian, Farzad Saidi, and Glenn Schepens (2019). "Life Below Zero: Bank Lending Under Negative Policy Rates". In: Review of Financial Studies 32.10, pp. 3728–3761.

References iv

- Jiménez, Gabriel et al. (2014). "Hazardous Times for Monetary Policy: What Do Twenty-Three Million Bank Loans Say About the Effects of Monetary Policy on Credit Risk-Taking?" In: Econometrica 82.2, pp. 463–505.
- Maddaloni, Angela and José-Luis Peydró (2011). "Bank Risk-taking, Securitization, Supervision, and Low Interest Rates: Evidence from the Euro-area and the U.S. Lending Standards". In: The Review of Financial Studies 24.6, pp. 2121–2165.
- Martinez-Miera, David and Rafael Repullo (Mar. 2017). "Search for Yield". In: Econometrica 85, pp. 351–378.
- Quadrini, Vincenzo (2017). "Bank liabilities channel". In: <u>Journal of Monetary Economics</u> 89, pp. 25–44.
 - Segura, Anatoli and Javier Suárez (2017). "How Excessive Is Banks' Maturity Transformation?" In: Review of Financial Studies 30.10, pp. 3538–3580.