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Abstract 
 
The paper lays out a methodology based upon data and dimensionality reduction for 
mapping the state of financial stability, and visualizing the sources of systemic risks. 
The Self-Organizing Financial Stability Map (SOFSM) can be used to monitor macro-
financial vulnerabilities by locating a country in the financial stability cycle. Besides 
of its visualization capabilities, the SOFSM can be used as an Early Warning System 
that can be calibrated according to policymakers’ preferences between Type I and II 
errors. The SOFSM performs on par with a statistical benchmark model and correctly 
calls the crises that started in 2007 in the euro area and the United States. 
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1. Introduction 
 
The recent global financial crisis has demonstrated the importance of understanding 
sources of domestic and global vulnerabilities that may lead to a systemic financial 
crisis.4 Early identification of financial stress would allow policymakers to introduce 
policy actions to decrease or prevent further build up of vulnerabilities or otherwise 
enhance the shock absorption capacity of the financial system. Finding the individual 
sources of vulnerability and risk is of central importance since that allows targeted 
actions for repairing specific cracks in the financial system.  
 
Much of the empirical literature deals with Early Warning Systems (EWSs) that rely 
on conventional statistical modelling methods, such as the univariate signals approach 
or multivariate logit/probit models.5 However, financial crises are complex events 
driven by non-linearly related and non-normally distributed economic and financial 
factors.6 These non-linearities derive, for example, from the fact that crises become 
more likely as the number of fragilities increase. Potentially due to restrictive 
assumptions, e.g. on linearity or error distributions, conventional statistical techniques 
may fail in modelling these events. Novel EWSs attempt to model these complex 
relationships by applying non-linear techniques (Demyanyk and Hasan, 2010). For 
example, Peltonen (2006) and Fioramanti (2008) show that a neural network 
outperforms a probit model in predicting currency and debt crises. However, while the 
utilization of non-linear techniques may increase a posteriori prediction accuracies to 
a minor extent, Peltonen (2006) and Berg et al. (2005) demonstrate that the results of 
a priori predictions of financial crises remain disappointing. Given the changing 
nature of the occurrences of these extreme events, stand-alone numerical analyzes are 
unlikely to comprehensively describe them. As a complement, this motivates the 
development of tools with clear visual capabilities and intuitive interpretability, 
enabling real human perception. 
 
One reason why the interpretability of the monitoring systems has not been 
adequately addressed is related to the complexity of the problem. A large number of 
indicators are often required to accurately assess the sources of financial instability. 
As with statistical tables, standard two- and three-dimensional visualizations have, of 
course, their limitations for high dimensions, not to mention the challenge of 
including a temporal or cross-sectional dimension or assessing multiple countries over 
time. Although composite indices of leading indicators and predicted probabilities of 
EWSs enable comparison across countries and over time, these indices fall short in 
disentangling the sources of vulnerability.7 The recent work by IMF staff on the 
Global Financial Stability Map (GFSM) (Dattels et al., 2010) has sought to overcome 

                                                 
4 Cardarelli et al. (2011) show that out of 113 financial stress episodes for 17 key advanced economies, 
29 were followed by an economic slowdown and an equal number by recessions. 
5 Logit and probit models have frequently been applied  to predicting financial crises. For example, 
Berg and Pattillo (1999) apply a discrete choice model to predicting currency crises; Schmidt (1984) 
and Fuertes and Kalotychou (2006) to predicting debt crises; Barrel et al. (2010) to predicting banking 
crises; and Lo Duca and Peltonen (2011) to predicting systemic crises. An alternative method is the 
univariate non-parametric indicator proposed by Kaminsky et al. (1998), and its subsequent versions. 
See Berg et al. (2005) for a comprehensive review. 
6 Fioramanti (2008), Arciniegas and Arciniegas Rueda (2009) and Lo Duca and Peltonen (2011) show 
that indicators of debt, currency, and systemic crises are non-linearly related. 
7 There exist several composite indices for measuring financial tensions, e.g. Illing and Liu (2006), 
Cardarelli et al. (2011) and Lo Duca and Peltonen (2011). These will be further discussed in Section 2. 
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this challenge by a mapping of six composite indices.8 Even here, however, the 
GFSM spider chart visualization of six indices falls short in disentangling individual 
sources. Familiar limitations of spider charts are, for example, the facts that area does 
not scale one-to-one with increases in variables and that the area itself depends on the 
order of dimensions. In addition, the use of adjustment based on market and domain 
intelligence, especially during crisis episodes, and the absence of a systematic 
evaluation gives neither a transparent data-driven measure of financial stress nor an 
objective anticipation of the GFSM’s future precision. Indeed, the GFSM comes with 
the following caveat: “given the degree of ambiguity and arbitrariness of this exercise 
the results should be viewed merely illustrative”.9 
 
Methods for exploratory data analysis such as data and dimensionality reduction 
techniques may help in overcoming these shortcomings by illustrating data structures 
in easily understandable forms. The Self-Organizing Map (SOM) (Kohonen, 1982; 
2001) is a method that combines the aims of data and dimension reduction. It is 
capable of providing an easily interpretable non-linear description of the 
multidimensional data distribution on a two-dimensional plane without losing sight of 
individual indicators. The two-dimensional output of the SOM makes it particularly 
useful for visualizations, or summarizations, of large amounts of information. 
 
By 2005, over 7700 works had featured the SOM (Pöllä et al., 2009). While 
extensively applied to topics in engineering and medicine, the literature is short of 
thorough testing of the SOM for financial stability monitoring. In the emerging 
market context, Arciniegas and Arciniegas Rueda (2009), Sarlin and Marghescu 
(2011), Sarlin (2011) and Resta (2009) have applied the SOM to indicators of 
currency crises, debt crises and general economic and financial performance, 
respectively. The SOM has not, to our knowledge, been earlier applied to monitoring 
systemic risk or assessing the global dimensions of financial stability, including 
global macro-financial proxies as well as individual advanced and emerging market 
economies.  
 
The main contribution of this paper is to lay out a methodology for mapping the state 
of financial stability on a two-dimensional plane. The methodology uses five elements 
for constructing a Self-Organizing Financial Stability Map (SOFSM): (1) data and 
dimensionality reduction based upon the SOM, (2) identification of systemic financial 
crises (3) macro-financial indicators of vulnerabilities and risks, (4) an evaluation 
framework for assessing model performance, and (5) a model training framework. As 
an enhancement to the GFSM proposed by the IMF, the SOFSM not only allows 
disentangling the individual sources of vulnerability, but also performs well as an 
EWS in predicting out-of-sample systemic financial crises. Robustness of the SOFSM 
is tested by varying the SOM parameters, thresholds of the models, policymaker 
preferences, and the forecast horizons. In addition, when assessing a topologically 

                                                 
8 The GFSM has appeared quarterly in the Global Financial Stability Report (GFSR) since April 2007. 
9 The authors state that the definitions of starting and ending dates of the assessed crisis episodes are 
arbitrary. Similarly, the assessed crisis episodes are arbitrary, as some episodes in between the assessed 
ones are disregarded, such as Russia’s default in 1999 and the collapse of Long-Term Capital 
Management. Introduction of judgment based on market intelligence and technical adjustments are 
motivated when the GFSM is “unable to fully account for extreme events surpassing historical 
experience”, which is indeed an obstacle for empirical models, but also a factor of uncertainty in terms 
of future performance since nothing assures manual detection of vulnerabilities, risks and triggers. 
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ordered SOFSM, we use the concept of a financial stability neighborhood for 
assessing contagion through similarities in macro-financial conditions. That is, a crisis 
in one position on the map indicates propagation of financial distress to adjacent 
locations. This type of representation may help in identifying the changing nature of 
crises. Further, inspired by Minsky’s (1982) and Kindleberger’s (1996) vindicated 
financial fragility view of a credit or asset cycle, we introduce the notion of the 
financial stability cycle. We show how the SOFSM can be used to monitor macro-
financial vulnerabilities by locating a country in the financial stability cycle: being it 
either in the pre-crisis, crisis, post-crisis or tranquil state. We visualize samples of the 
panel dataset, cross-sectional and temporal country-level data, as well as different 
levels of aggregation, such as world, emerging market and advanced economies. The 
SOFSM enables disentangling the specific threats, risks and triggers, and should be 
treated as a starting point rather than an ending point for financial stability 
surveillance. The paper has also some more technical contributions compared to the 
earlier SOM literature. Of the above applications, only Sarlin and Marghescu (2011) 
perform as thorough and systematic evaluation of the model’s predictive capabilities 
as the one in this paper. In addition, we account for policymakers' preferences 
regarding type 1 and 2 errors when evaluating. This paper also implements a semi-
supervised SOM rather than the standard unsupervised SOM in Sarlin and Marghescu 
(2011). 
 
The paper is structured as follows. Section 2 introduces the five elements necessary 
for creating the SOFSM, while Section 3 presents its training and evaluation as well 
as robustness checks. Section 4 illustrates how the SOFSM can be used for detecting 
signs of vulnerabilities and potential for contagion and for mapping the state of 
financial stability over time and across countries as well as for different levels of 
aggregation. Section 5 concludes. 
 
 
2. Methodology 
This section describes the five elements that are necessary for constructing the Self-
Organizing Financial Stability Map (SOFSM): (1) data and dimensionality reduction 
based upon the Self-Organizing Map (SOM), (2) identification of systemic financial 
crises (3) macro-financial indicators of vulnerabilities and risks, (4) a model 
evaluation framework for assessing performance, and (5) a model training framework.  
 
Self-Organizing Maps (SOMs) 
 
Exploratory data analysis concerns illustrating data structures in easily understandable 
forms. Two main groups of methods for multivariate exploratory data analysis are 
those attempting data and dimensionality reduction. While data reduction through 
clustering is common for enabling analysis of fewer mean profiles, dimensionality 
reduction through non-linear projection, e.g. multidimensional scaling and its variants 
(Cox and Cox, 2001), is common for representing high-dimensional data in a lower 
dimension. Dimensionality reduction is, however, particularly problematic as all 
information in a high dimensional space cannot be preserved in a lower dimension. 
Thus, methods often differ in the properties of data they attempt to preserve, such as 
global interpoint distances, local interpoint distances and local neighborhood 
relations. 
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The SOM is a unique method in that it performs a simultaneous data and 
dimensionality reduction (Kohonen, 1982; 2001). It differs from non-linear projection 
techniques like multidimensional scaling by attempting to preserve the neighbourhood 
relations in the data space Ω on a k-dimensional array of units (represented by 
reference vectors) instead of attempting to preserve absolute distances in a continuous 
space. Due to the fact that all information cannot be preserved in dimensionality 
reductions, the neighborhood preservation of the SOM has been shown to be more 
trustworthy than that of alternative methods (Venna and Kaski, 2001). This is 
particularly important in this study as we mainly attempt to visualize individual data 
points in the reduced space. When interpreting a two-dimensional SOM grid, it is 
important to note that the numbers on the x- and y-axes do not carry a numeric 
meaning in a parametric sense; they represent positions in the data space of the map, 
where each of these positions (x,y) is a mean profile. The vector quantization 
capability of the SOM performs this data reduction into mean profiles (i.e. reference 
vectors or units). It models from the continuous space Ω, with a probability density 
function f(x), to the grid of units, whose location depend on the neighbourhood 
structure of the data Ω. A second-level clustering can be applied on the reference 
vectors of the SOM, i.e. separation of data into units and units into clusters. Vesanto 
and Alhoniemi (2000) show that, compared to other clustering methods, the two-level 
SOM enhances the clustering through greater robustness on non-normally distributed 
data and the dual advantage of efficiency and speed. In Marghescu (2007), the data 
visualization features of the two-level SOM have been reviewed as better than those 
of other techniques. Information products of two-level SOMs have also been 
evaluated as superior than currently used methods by end-users within the domain of 
financial analysis (Eklund et al., 2008).  
 
The intuition of the basic SOM algorithm is presented here. See the Annex for further 
details on the SOM implementation used in this paper and Kohonen (2001) for a 
broad overview of the SOM. We use the standard batch SOM algorithm with a 
Euclidean metric. The SOM grid consists of a user specified number of units im  

(where i=1,2,…,M), which are reference vectors representing the same dimensions 
(number of variables) as the actual dataset Ω. Generally, the SOM algorithm operates 
according to the following steps:10 
 

1. Initialize the reference vector values using the two principal components 
2. Compare all data vectors jx  with all reference vectors im  to find for each data 

the nearest reference vector bm  (i.e., best-matching unit, BMU) 

3. Update each reference vector im  to averages of the attracted data, including 

with diminishing weight data located in a specified neighborhood 
4. Repeat steps 2 and 3 a specified number of times 
5. Group reference vectors into a reduced number of clusters using Ward’s 

(1963) hierarchical clustering. 
 
The SOM parameters are radius of the neighbourhood  , number of units M, map 
format (ratio of x and y dimensions), and number of training iterations t. Large radii 
result in stiff maps that stress topology preservation at the cost of quantization 

                                                 
10 See the Annex for details of the steps and Ben Omrane and de Bodt (2007) for a simple example of 
the functioning of the SOM. 
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accuracy, while updates based upon solely attracted data ( =0) leads to a standard k-
means clustering with no topology preserving mapping. 
 
For the purpose of this analysis, the output of the SOM algorithm is visualized on a 
two-dimensional plane. The rationale for not using a one-dimensional map is 
differences within clusters. A three-dimensional map, while adding a further 
dimension, impairs the interpretability of data visualizations. Here, the 
multidimensional space of the grid is visualized through layers, or “feature planes”.  
 
For each individual element of jx , a feature plane represents the distribution of its 

values on the two-dimensional map. As the feature planes are different views of the 
same map, one unique point represents the same unit on all planes. We produce the 
feature planes in colour. Cold to warm colours represent low to high values of the 
indicator according to a colour scale below each feature plane. Shading on the two-
dimensional map indicates the distance between each reference vector and its 
corresponding second-level cluster centre, i.e. those close to the centre have a lighter 
shade and those farther away have a darker shade. 
 
The quality of the map is usually measured in terms of quantization error, distortion 
measure and topographic error (see e.g. Kohonen, 2001). As we have class 
information, we mainly use classification performance measures for evaluating the 
quality of the map. 
 
Identifying systemic financial crises 
 
The dataset used in this paper is an updated version of that in Lo Duca and Peltonen 
(2011). It consists of a database of systemic events and a set of vulnerability and risk 
indicators. The quarterly dataset consists of 28 countries (10 advanced and 18 
emerging economies) for the period 1990:1–2011:2.11 Hence, data vector 18jx is 

formed of the class variables 4clax  and the indicator vector 14indx  for each 

quarter and country in the sample. The data are retrieved from Haver Analytics, 
Bloomberg and Datastream. This section explains how the systemic financial crises 
are identified and how the class variables are defined for enabling assessment of the 
financial stability cycle. 
 
Following Lo Duca and Peltonen (2011), the identification of systemic financial crises 
is done using a Financial Stress Index (FSI). This approach provides an objective 
criterion for the definition of the starting date of a systemic financial crisis.12 The 
rationale behind the FSI is that the larger and broader the shock is (i.e. the more 
systemic the shock), the higher the co-movement among variables reflecting tensions 
in different market segments. By aggregating variables to an index that measures 

                                                 
11 The advanced economies are Australia, Denmark, euro area, Japan, New Zealand, Norway, Sweden, 
Switzerland, the United Kingdom, and the United States. The emerging market economies are 
Argentina, Brazil, China, Czech Republic, Hong Kong, Hungary, India, Indonesia, Malaysia, Mexico, 
the Philippines, Poland, Russia, Singapore, South Africa, Taiwan, Thailand and Turkey. 
12 There are several composite indices for measuring financial tensions. For example, Illing and Liu 
(2006) and Hakkio and Keeton (2009). Cardarelli et al. (2011) and Balakrishnan et al. (2009) 
constructed financial stability indices for a broad set of advanced and emerging economies. The focus 
of the FSI is, however, on systemic events. 
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stresses across market segments, the FSI captures the starting and ending points of a 
systemic financial crisis. The FSI is a country-specific composite index that covers the 
main segments (money market, equity market and foreign exchange market) of the 
domestic financial market: (1) the spread of the 3-month interbank rate over the 3-
month government bill rate (Ind1); (2) negative quarterly equity returns (Ind2); (3) the 
realized volatility of the main equity index (as average daily absolute changes over a 
quarter) (Ind3); (4) the realized volatility of the nominal effective exchange rate 
(Ind4); and (5) the realized volatility of the yield on the 3-month government bill 
(Ind5).

13 Each indicator j (Indj) of the FSI for country i at quarter t is transformed into 
an integer from 0 to 3 according to the quartile of the country-specific distribution, 
while the transformed variable is denoted as )( ,,,, tijtij Indq . For example, a value for 

indicator j falling into the third quartile of the distribution would be transformed to a 
“2”. The FSI is computed for country i at time t as a simple average of the 
transformed variables as follows: 
 

5

)(
5

1
,,,,

,


 j

tijtij

ti

Indq

FSI         (1) 

 
To define systemic financial crises, the FSI is first transformed into a binary variable. 
In order to capture the systemic nature of the financial stress episodes, we focus on 
episodes of extreme financial stress that have led in the past (on average) to negative 
consequences for the real economy. In practice, we create a binary “crisis” variable, 
denoted as C0 that takes a value 1 in the quarter when the FSI moves above the 
predefined threshold of the 90th percentile of its country-specific distribution and 0 
otherwise. This approach identifies a set of 94 systemic events over 1990–2011.  
 
To describe the financial stability cycle, we create a set of other class variables 
besides to the crisis variable. First, a “pre-crisis” class variable C18 is created by 
setting the binary variable to 1 in the 18 months preceding the systemic financial 
crisis, and to 0 in all other periods. The pre-crisis variable mimics an ideal leading 
indicator that perfectly signals a systemic financial crisis in the 18 months before the 
event. In order to evaluate robustness for different horizons, we also create other pre-
crisis class variables, by setting the binary variables C24, C12 and C6 to 1 in the 24, 
12 and 6 months before the systemic event and zero otherwise. Similarly, we create 
“post-crisis” class variables P6, P12, P18 and P24 that are set to 1 in the 6, 12, 18 and 
24 months after the systemic event. Finally, all other time periods are “tranquil” 
periods denoted as T0. The class vector 4clax  consists of the benchmark horizons 

C18, C0, P18 and T0. 
 
Macro-financial indicators of vulnerabilities and risks 
 
To analyze the sources of systemic risk and vulnerability, we use the same indicators 
as in Lo Duca and Peltonen (2011). The set of indicators consists of commonly used 
metrics in the macroprudential literature for capturing the build up of vulnerabilities 
                                                 
13 When the 3-month government bill rate is not available, the spread between interbank and T-bill 
rates of the closest maturity is used. The equity returns are multiplied by minus one, so that negative 
returns increase stress, while positive returns are set to 0. When computing realized volatilities for 
components Ind3-5, average daily absolute changes over a quarter are used. 
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and imbalances in the domestic and global economy (e.g. Borio and Lowe, 2002; 
2004; Alessi and Detken, 2011). Our key variables are asset price developments and 
valuations, and variables proxying for credit developments and leverage. In addition, 
traditional variables (e.g. government budget deficit and current account deficit) are 
used to control for vulnerabilities stemming from macroeconomic imbalances.14 
 
Following the literature, we construct several transformations (e.g. annual changes 
and deviations from moving averages or trends) of the indicators (in total more than 
200 transformations) to proxy for misalignments and a build up of vulnerabilities. To 
proxy for global macro-financial imbalances and vulnerabilities, we calculate a set of 
global indicators by averaging the transformed variables for the United States, the 
euro area, Japan and the United Kingdom.15 The indicator vector 14indx  consists 

of the best-performing transformation per indicator in terms of their univariate 
performance in predicting systemic events. The indicators and their summary statistics 
are shown in Table 1. 
 
Statistical properties of the chosen indicators (Table 1) reveal that the data are 
significantly skewed and non-mesokurtic, and thus do not exhibit normal 
distributions. To take into account cross-country differences and country-specific 
fixed effects, we follow Kaminsky et al. (1998) by measuring indicators in terms of 
country-specific percentiles. While such outlier trimming is unnecessary for the 
clustering of the SOM, an even distribution is highly desirable for visualization. 
 
Finally, the analysis is conducted in a real-time fashion to the extent possible. Thus, 
we take into account publication lags by using lagged variables. For GDP, money and 
credit related indicators, the lag ranges from 1 to 2 quarters depending on the country. 
We also de-trend variables and measure indicators in terms of country-specific 
percentiles using the latest available information. To test the predictability of the 
2008–2009 financial crisis, we split the sample into two sub-samples: the training set 
spans 1990:4–2005:1, while the test set spans 2005:2–2009:2. 
 

(INSERT TABLE 1 HERE) 
 
Model evaluation framework 
 
For comparing the performance of models, we need an evaluation framework that 
computes the usefulness of models in terms of predicting systemic financial crises. As 
we have class information, we mainly use classification performance measures for 
finding the optimal model rather than the traditional SOM quality measures. We 
classify the outcomes into combinations of predicted and actual classes using a 
contingency matrix. 
 
 
 
 

                                                 
14 Even though Peltonen and Lo Duca (2011) include interaction terms of both domestic and global 
vulnerability indicators, we do not replicate them since they are included in the SOM processing per se. 
15 Qualitatively similar results are obtained when global variables are constructed as simple averages of 
variables of all countries in the sample.  
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Actual class  
1 -1 

1 True positive (TP) False positive (FP) 
Predicted class 

-1 False negative (FN) True negative (TN) 

 
Based on the elements of the matrix, we compute ratios for measuring performance: 
recall, precision, False Positive (FP), True Positive (TP), False Negative (FN) and 
True Negative (TN) rates, and overall accuracy.16 Due to unbalanced class sizes and 
differences in class importance, the above measures are sometime unsuited to 
summarize evaluations of crisis predictions. By assigning every object to the tranquil 
class, we would achieve a useless classifier for policy action, but still a high 
proportion of correct predictions (80%). This motivates using a common measure in 
information retrieval for evaluating performance on unbalanced class sizes. Matthews 
Correlation Coefficient (MCC) (Matthews, 1975) measures the correlation between 
the actual and predicted classes. It is defined in the range [-1,1], where -1 represents 
an inverse prediction and 1 a perfect prediction.17 The costs of FPs and FNs (type 1 
and 2 errors) might, however, be asymmetric, where the weight depends on the 
policymakers’ preferences between giving false signals of crisis and tranquil periods. 
To calibrate an optimal model and threshold for policy action, we adapt the approach 
pioneered in Demirgüç-Kunt and Detragiache (2000) with the technical 
implementation suggested by Alessi and Detken (2011) that also accounts for 
differences in class size. The loss function of the policymaker is thus defined as: 
 

))/()(1())/(()( TNFPFPTPFNFNL   ,    (2) 
 
where the parameter   represents the relative preference of the policymaker between 
FPs and FNs (type 1 and 2 errors), and the errors are related to their class size. When 

5.0 , the policymaker weights equally the FN and FP ratios. She is less concerned 
about issuing false alarms when 5.0  and more concerned when 5.0 . To find 
out the usefulness of our predictions, we subtract the loss from the best-guess of the 
policy maker. This is given by   1,Min , i.e., the expected value of a guess with 
the given preferences. From this, we obtain the usefulness of the model: 
 

  )(1,  LMinU  .        (3) 
 
When using the above framework with a predefined preference parameter value, we 
classify crisis and tranquil events by setting the threshold on the probability of a crisis 
as to maximize the usefulness of the model for policy action. We do not explicitly 
assess the extent to which policymakers might be more or less concerned about failing 
to identify an impending crisis than issuing a false alarm. Missing a crisis may often, 
however, be more expensive than an internal alarm for further in-depth investigation 
                                                 
16 Recall positives = TP/(TP+FN), Recall negatives = TN/(TN+FP), Precision positives = TP/(TP+FP), 
Precision negatives = TN/(TN+FN), Accuracy = (TP+TN)/(TP+TN+FP+FN), TP rate = TP / 
(TP + FN), FP rate = FP/(FP+TN), FN rate = FN/(FN+TP) and TN rate = TN/(FP+TN). 

17 The MCC is computed as follows: 
    FNTNFPTNFNTPFPTP

FNFPTNTP
MCC






**
. 
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of the vulnerabilities and risks. In contrast, given the risks associated with self-
fulfilling prophecies, a publicly reported false alarm can have costs on par with failure 
to not identify a crisis. We use as a benchmark model with 5.0 , but test model 
robustness by varying the preference parameter. The preference parameter of 0.5 
belongs to a policymaker who weights equally the FN and FP ratios. 
 
Using receiver operating characteristics (ROC) curves and the area under the ROC 
curve (AUC), we measure the global performance of the models. The ROC curve 
shows the trade-off between the benefits and costs of choosing a certain threshold. 
When two models are compared, the better model has a higher benefit (expressed in 
terms of TP rate on the vertical axis) at the same cost (expressed in terms of FP rate 
on the horizontal axis).18 In this sense, as each FP rate can be associated with a 
threshold for classifying crisis and tranquil events, the measure shows performance 
over all thresholds. The size of the AUC is estimated using trapezoidal 
approximations. It measures the probability that a randomly chosen crisis observation 
is ranked higher than a tranquil one. A random ranking has an expected AUC of 0.5, 
while a perfect ranking has an AUC equal to 1. 
 
Model training framework 
 
In the analysis, we employ a semi-supervised SOM by using data vector 18jx , 

including class variables (C18, C0, P18 and T0), in training. In contrast to Sarlin and 
Marghescu (2011), where only the indicator vector 14indx  is used in determining 

the best-matching units (BMUs), we also let the class vector 4clax  have an impact 

when determining the BMUs. By including the class variables in the topology 
preservation the projection better separates the classes, which yields the benefit of 
easier interpretation of the stages of the financial stability cycle. 
 
We obtain the predictive feature of the model by assigning to each data point 

14indx  the C18 (as well as C6, C12 and C24 when testing robustness) value of its 

BMU.19 The performance of a model is evaluated using the framework introduced 
earlier based on the usefulness criterion for a policymaker. The performance is 
computed using static and pooled models, i.e. the coefficients or maps are not re-
estimated recursively over time and across countries. Following Fuertes and 
Kalotychou (2006), it can be assumed that by not varying the specification over time 
or across countries, the parsimonious models better generalize in-sample data and 
predict out-of-sample data. Although static models have the drawback of ignoring the 
latest available information, they allow for more thorough in-sample evaluation for 
setting the SOM parameters as well as better generalization for out-of-sample 
                                                 
18 In general, the ROC curve plots, for the whole range of measures, the conditional probability of 

positives to the conditional probability of negatives: 
 
 negativexP

positivexP
ROC  . 

19 As discussed in the Annex in detail, the BMU is the node that has the shortest Euclidean distance to a 
data point. When evaluating an already trained SOM model, we project all data onto the map using 

only the indicator vector 14indx . For each data point, probabilities of a crisis in 6, 12, 18 and 24 

months are obtained by retrieving the values of C6, C12, C18 and C24 of its BMU. 
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prediction. We account for a possible adjustment process that economic variables go 
through in between crisis and tranquil periods, i.e. a post-crisis bias (Bussière and 
Fratzscher, 2006), as the post-crisis class variable (P18) is included in SOM training. 
 
The training framework and choice of the SOM is implemented with respect to three 
aspects: (1) the model does not overfit the in-sample data (parsimonious); (2) the 
framework does not include out-of-sample performance (objective); and (3) 
visualization is taken into account (interpretability). For a parsimonious model that 
avoids overfitting, we estimate a benchmark logit model similar to the one in Lo Duca 
and Peltonen (2011). Aiming at a parsimonious, objective and interpretable model, we 
employ the following training framework. 
 
1. Train and evaluate in terms of in-sample usefulness models for 

 0.2,5.1,0.1,75.0,5.0,3.0,0001.0  and  1000,600,500,400,300,250,200,150,100,50M .20 For each 

model, set the threshold on the probability of a crisis such that the usefulness is 
maximized.  For each M-value, order the models in a descending order. 

2. Find for each M-value the first model with in-sample usefulness equal to or better 
than that of the benchmark logit model. Choose none of the models if for an M-
value all or none of the models’ usefulness exceed that of the logit model. 

3. Evaluate the interpretability of the models chosen in Step 2. Choose the one that 
is easiest to interpret and has the best topological ordering.21 

 
The above evaluation framework results in a performance matrix with positions for 
each M-σ combination, highlights first models per M to outperform the logit model 
and uses information on topological ordering and interpretability for choosing the 
final model. 
 
To partition the map into a reduced number of clusters, the units are grouped using 
Ward’s clustering. By performing the clustering on the class variables (C18, C0,  
P18 and T0), the map is partitioned according to the four stages in the financial 
stability cycle. This creates four crisp so-called class clusters. However, the clustering 
given by lines on a map should only be interpreted as an aid in finding the four stages 
of the financial stability cycle rather than four distinct clusters. 
 

                                                 
20 We keep constant the map format (75:100) and the training length. As is recommended by Kohonen 
(2001) for a stable orientation, this particular map format is close to the ratio of the two largest 
eigenvalues. To have a comparable training length for different parameters, we use an implementation 
in SOMine with an increasing function of map size and decreasing of data points, among other things. 
The varied parameters, M and tension σ, have the following effect on performance: an increase in the M 
value increases the in-sample usefulness, where 5.0U  when M , but decreases out-of-
sample usefulness. In fact, if M equals the cardinality of x, then perfect in-sample performance may be 
obtained by each mi attracting one data. This would, however, be an overfitted model for out-of-sample 
prediction. Increases in tension decrease quantization accuracy, and thus in-sample usefulness, but do 
not have a direct effect on out-of-sample performance. 
21 Due to no consensus on a single topology-preservation metric of the SOM projection, it is evaluated 

following Kaski et al. (2000). The nodes im  are projected into two- and three-dimensional spaces 

using Sammon’s (1969) mapping, a non-linear mapping from a high-dimensional input space to a 
lower dimension. Topology preservation is defined to be adequate if the map is not twisted at any point 
and has only adjacent nodes as neighbours in Euclidean space.  Interpretability is a subjective measure 
of the SOM visualization defined by the user. 
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3. Self-Organizing Financial Stability Map (SOFSM) 
 
This section presents the creation of the Self-Organizing Financial Stability Map 
(SOFSM). We first use the training and evaluation frameworks for constructing the 
SOFSM and then perform thorough robustness checks. 
 
Training and evaluating the Self-Organizing Financial Stability Map 
 
The model training phase starts by estimating a pooled logit model as a benchmark. 
The logit model is estimated using the quarterly in-sample panel data for 28 countries 
from 1990:4–2005:1. The estimates are reported in Table 2 and are later used for 
predicting out-of-sample data from 2005:2–2009:2. On the in-sample data, the 
usefulness of the pooled logit model is 0.25. The training of the SOFSM is performed 
on the same panel data set and the evaluation results are shown in Table 3. For 

 1000,600,500,400,50M  no model is chosen for analysis, as they never or always 
exceed the usefulness of the logit model (U=0.25). Finally, of the five highlighted 
models, we select the one with M=150 and 5.0  (shown in bold) for its 
interpretability and topological ordering. 
 

(INSERT TABLE 2–3 HERE) 
 
The chosen model has 137 units on an 11x13 grid and is trained with a tension of 0.5. 
Henceforth, this model is referred to as the Self-Organizing Financial Stability Map 
(SOFSM). Figures 1–3 present the two-dimensional grid of the SOFSM, the feature 
planes for the 14 indicators, and the feature planes for the class variables. The feature 
planes in Figure 3 show the real distribution of the classes on the SOFSM. 22 When 
maximizing the usefulness for policymakers with different preferences, Figure 4 
shows how the map is classified into two parts, where the shaded area represents early 
warning units and the rest tranquil units. 
 
By performing Ward’s clustering on the class variables, four class clusters are created 
according to the stages of the financial stability cycle. The upper left cluster 
represents the pre-crisis cluster (Pre crisis), the lower left represents the crisis cluster 
(Crisis), the centre and lower-right cluster represents the post-crisis cluster (Post 
crisis) and the upper right represents the tranquil cluster (Tranquil). It is important to 
note that the crisp clustering given by the lines that separate the map into four class 
clusters should only be interpreted as an aid in finding the four stages of the financial 
stability cycle, not as completely distinct clusters. 
 
To compare the performance of the semi-supervised SOFSM with a standard 
unsupervised SOM (as the one in Sarlin and Marghescu (2011)), we train an 
unsupervised SOM model with the same specifications as the SOFSM. For the semi-
supervised SOFSM, unsupervised SOM and the logit model, the in-sample and out-
of-sample performance with the benchmark specifications ( 5.0  and C18) are 
shown in Table 4. As anticipated, the unsupervised SOM performs to some extent 
better than the SOFSM along all measures, but it still lacks the separation of classes, 

                                                 
22 The feature plane PPC0, with a high frequency on the border between the post- and pre-crisis cluster, 
represents the co-occurrence of pre- and post-crisis periods. In this case, the cycle need not include the 
tranquil stage if a new pre-crisis period is entered directly after the previous event. 
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which is necessary for interpreting the stages of the financial stability cycle. Hence, 
below we only focus on comparing the SOFSM and the logit model. For the 
benchmark models, the overall performance is similar between the SOFSM and the 
logit model. On the train set, the SOFSM performs slightly better than the logit model 
in terms of usefulness, recall positives, precision negatives and the AUC measure, 
while the logit model outperforms on the other measures. The classification of the 
models are of opposite nature, as the SOM issues more false alarms (FP rate=31%) 
than it misses crises (FN rate=19%), whereas the logit model misses more crises 
(31%) than it issues false alarms (19%). That explains also the difference in the 
overall accuracy, since the class sizes are unbalanced (around 20% crisis and 80% 
tranquil periods). The performance of the models on the test set differs, in general, 
similarly as the performance on the train set, except for the SOM having slightly 
higher overall accuracy. This is, in general, due to the higher share of crisis episodes 
in the out-of-sample dataset. 
 

 (INSERT FIGURES 1–4 HERE) 
(INSERT TABLE 4 HERE) 

 
Robustness checks 
 
We test the robustness of the SOFSM with respect to policymakers’ preferences 
( 4.0  and 6.0 ), forecast horizon (6, 12 and 24 months before a crisis) and 
thresholds (with the AUC measure). The results of the robustness tests are shown in 
Tables 5–6 and Figure 5. Table 5 shows the performance over different policymakers’ 
preferences, Table 6 over different forecast horizons and Figure 5 and the second last 
column of Tables 5–6 over all possible thresholds.  
 
For a policymaker, who is less concerned about issuing false alarms ( 6.0 ), the 
performance of the models are similar, except for higher usefulness of the SOFSM 
compared to the logit model. This confirms that the SOM better detects the rare crisis 
occurrences. For a policymaker, who is less concerned about missing crises ( 4.0 ), 
the usefulness of the models is similar, but the nature of the prediction is reversed; the 
SOM issues less false alarms than it misses crises, whereas the logit model issues 
more false alarms than misses crises.  
 
Over different forecast horizons, the in-sample performance is generally similar. 
However, the out-of-sample usefulness, with the exception of forecast horizon of 12 
months (C12), is better for the SOFSM than for the logit model. Interestingly, the 
logit model fails to yield any usefulness (U=0.02) at a forecast horizon of 6 months. 
Finally, the AUC measure, which summarizes the performance of a model over all 
thresholds, can be computed for all models by calculating the areas under the ROC 
curves, such as those shown in Figure 5 for the benchmark models ( 5.0  and C18). 
It is the only measure to consistently show superior performance for the SOFSM. A 
caution regarding the AUC measure is, however, that parts of the ROC curve that are 
not policy relevant are included in the computed area. When comparing usefulness for 
each pair of models, the SOFSM shows consistently equal or superior performance 
except for a single out-of-sample evaluation with a forecast horizon of 12 months. To 
sum up, the SOM performs, in general, as well as or better than a logit model in both 
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classifying the in-sample data and in predicting out-of-sample the global financial 
crisis that started in 2007. 
 

(INSERT TABLES 5–6 HERE) 
(INSERT FIGURE 5 HERE) 

 

4. Mapping the State of Financial Stability 

 
In this section, we use the SOFSM for detecting signs of vulnerabilities and potential 
for contagion, and for mapping state of financial stability using macro-financial 
conditions. We map samples of the panel dataset by showing cross-sectional and 
temporal data on the two-dimensional SOFSM. We also compute aggregates for 
groups of countries for exploring states of financial stability globally, in advanced 
economies and in emerging economies. Data points are mapped onto the grid by 
projecting them to their best-matching units (BMUs) using only the indicator vector 

14indx . Consecutive time-series data are linked with lines. While the mappings are 

here performed on the evaluated SOFSM that was estimated with the in-sample data, 
recursive re-estimations in real-time fashion would computation-wise be feasible. 
 
Detecting signs of vulnerabilities and potential for contagion on the SOFSM 
 
In contrast to EWSs using binary classification methods, such as discrete choice 
techniques, the SOFSM enables simultaneous assessment of the correlations with all 
four stages of the financial stability cycle, i.e. class clusters. Thus, new models need 
not be derived for different forecast horizons or definitions of the dependent variable. 
By assessing the feature planes in Figures 2 and 3 of the SOFSM in Figure 1, the 
following strong correlations are found, for example. First, we can differentiate 
between “early” and “late” signs of a crisis by assessing differences within the pre-
crisis cluster. The strongest early signs of a crisis (upper right part of the cluster) are 
high domestic and global real equity growth and equity valuation, while most 
important late signs of a crisis (lower left part of the cluster) are domestic and global 
real GDP growth, and domestic real credit growth, leverage, budget surplus, and CA 
deficit. Second, the highest values of global leverage and real credit growth in the 
crisis cluster exemplify the fact that increases in some indicators may reflect a rise in 
financial stress only up to a specific threshold. Increases beyond that level are, in 
these cases, more concurrent than preceding signals of a crisis. Similarly, budget 
deficits characterize the late post-crisis and early tranquil periods. The characteristics 
of the financial stability states are summarized in Table 7. 
 

(INSERT TABLE 7 HERE) 
 
The topological ordering of the SOFSM enables assessing, in terms of macro-
financial conditions, neighbouring financial states of a particular position on the map. 
Transmission of financial contagion is often defined by other types of neighbourhood 
measures such as financial or trade linkages, proxies of financial shock propagation, 
equity market co-movement or geographical relations (see for example Dornbusch et 
al. (2000) and Pericoli and Sbracia (2003)). When assessing the SOFSM, the concept 
of neighborhood of a country represents the similarity of the current macro-financial 
conditions. Thus, a crisis in one position on the map indicates propagation of financial 
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instabilities to adjacent locations. This type of representation may help in identifying 
events surpassing historical experience and the changing nature of crises. 
 
Cross-sectional and temporal analysis on the SOFSM 
 
For a simultaneous temporal and comparative analysis, we map the state of financial 
stability based on the evolution of macro-financial conditions for the United States 
and the euro area in Figure 6. The data for both economies represent the first quarters 
of 2002 to 2011 and the final point of the sample, 2011Q2. Without a precise 
empirical treatment for accuracy, the map well recognizes for both countries the pre-
crisis, crisis and post-crisis stages of the financial stability cycle by circulating around 
the map during the analyzed period. The early warning units in Figure 4 confirm that 
even a policymaker with 6.0  would have correctly predicted crises in both 
economies. Interestingly, the euro area is located in the tranquil cluster in 2010Q1. 
This indicates that the aggregated macroprudential metrics for the euro area as a 
whole did not reflect the elevated risks in the euro area periphery at that point in time. 
However, it also coincides with a relatively low FSI for the aggregate euro area. This 
can be explained by the weaknesses and financial stress in smaller economies being 
averaged out by improved macro-financial conditions in larger euro area economies, 
highlighting the importance of country-level analysis. As the SOFSM is flexible with 
respect to input data, it is of central importance that the included set of vulnerability 
indicators capture the particular events of interest. The macro-financial vulnerabilities 
currently used are best suited for capturing the build-up of vulnerabilities in the form 
of boom-bust cycles. However, they are less useful in identifying situations, where, 
for example, bank funding constraints or counterparty risks in a post-crisis recovery 
phase cause elevated financial stress that feeds back to the real economy, increasing 
the probability of a financial crisis. Furthermore, by using the traditional macro-
financial vulnerabilities, it is rather difficult to capture situations where, as in the 
ongoing debt crisis, self-fulfilling expectations drive the equilibrium outcomes. 
Nevertheless, the euro area has moved to the border of the pre-crisis cluster in 
2010Q4, and to an adjacent unit in 2011Q1 and Q2. This reflects the ongoing 
sovereign and banking crises as with 4.0  this particular location is an early 
warning unit (see Figure 4). The United States is located in the post-crisis cluster in 
2010Q1 and in the tranquil cluster in 2011Q2. 
 
Figure 7 represents a cross-section mapping of the state of financial stability for all 
countries in 2010Q3 and in 2011Q2, which is the latest data point in the analysis. In 
2010Q3, the countries are divided into three groups of financial stability states. The 
map indicates elevated risks in several emerging market economies (Mexico, Turkey, 
Argentina, Brazil, Taiwan, Malaysia and the Philippines), while most of the advanced 
economies are in the lower right corner of the map (post-crisis and tranquil cluster). 
Three countries (Singapore, South Africa and India) are located on the border of the 
tranquil and pre-crisis clusters, which is an indication of a possible future transition to 
the pre-crisis cluster. Interestingly, in 2011Q2, most economies are located in the 
tranquil cluster, while the euro area has the highest financial stress by being located 
close to the pre-crisis cluster. 
 
For this type of cross-sectional data, the topological ordering of the SOFSM enables 
assessing potential propagation of financial instabilities and contagion to adjacent 
macro-financial locations. When the SOFSM does not account for events surpassing 
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historical data, as empirical models of non-stationary processes may do, this type of 
representation may help in identifying the changing nature of crises. For the cross 
section in 2010Q3 (Figure 7), a crisis in, say, Argentina and Brazil would as well 
indicate possible financial distress in neighbouring countries (e.g. Taiwan, Mexico 
and Turkey). 
 

(INSERT FIGURE 6–7 HERE) 
 
Exploring aggregate financial stability states on the SOFSM 
 
In this section, we map the financial stability states for three aggregates: the world, 
emerging market economies and advanced economies. We compute the state of 
financial stability for the aggregates by weighting the indicators for the countries in 
our sample using stock market capitalization to proxy their financial importance. 
Hence, an aggregated data vector is computed as follows: 

  I

i jagg tixtWtiwtix
1

),())(),((),( , where ),( tix j is a data vector for country i at 

time t, w(i,t) is stock market capitalization, W is aggregated stock market 
capitalization and I represents all countries. These aggregates can, like any data point, 
be projected onto the map to their BMUs. 
 
Figure 8 shows the evolution of global macro-financial conditions in the first quarters 
of 2002 to 2011. The global state of financial stability enters the pre-crisis cluster in 
2006Q1 and the crisis cluster in 2007Q1. It moves via the post-crisis and tranquil 
cluster back to the post-crisis cluster in 2011Q1. This coincides with the global 
evolution of the financial stress index (FSI). More interestingly, the model signals out 
of sample a global financial crisis as early as in 2006Q1. The separation of the global 
aggregate into emerging market and advanced economies is shown in Figure 9. The 
mapping of the advanced economy aggregate is very similar to the one of the world 
aggregate, which is mainly a result of the high share of stock market capitalization of 
the advanced economies. Notably, the movements of the financial stability states of 
the emerging markets are also similar to those in the advanced economies, illustrating 
the global dimension of the current crisis. While the emerging market cycle moves 
around that of the advanced economies, it does not indicate significant differences in 
the timeline or strength of financial stress. 
 

(INSERT FIGURE 8–9 HERE) 
 
5. Conclusions 
 
This paper creates a Self-Organizing Financial Stability Map (SOFSM) based upon 
data and dimensionality reduction methods for mapping the state of financial stability 
and visualising the sources of systemic risks. The SOFSM is a two-dimensional 
representation of a multidimensional financial stability space that allows disentangling 
the individual sources of vulnerabilities impacting on systemic risks. The model can 
be used to monitor macro-financial vulnerabilities by locating a country in the 
financial stability cycle: being it either in the pre-crisis, crisis, post-crisis or tranquil 
state. Moreover, the SOFSM can be used as an early warning system, and to analyse 
contagion on the basis of similarities in macro-financial vulnerabilities across 
countries. Our results indicate the SOFSM performs as well or better than a logit 
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model in classifying in-sample data and predicting out of sample the global financial 
crisis that started in 2007. The SOFSM makes an out-of-sample prediction identifying 
the onset of the global financial crisis as early as the first quarter of 2006. The 
robustness of the SOFSM is tested by varying the SOM parameters, thresholds of the 
models, the policymakers’ preferences, and the forecast horizon. 
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Annex: The SOM Algorithm 
 
This description of the SOM algorithm follows that in Sarlin (2011). This study uses 
the Viscovery SOMine 5.1 package.23 In addition to an easily interpretable visual 
representation and interaction features, it attempts to reduce computational cost by 
some extensions to the basic SOM. It employs the batch training algorithm, and thus 
processes data in batches instead of sequences. Important advantages of the batch 
algorithm are the reduction of computational cost and reproducible results (given the 
same initialization). The training process starts with initialization of the reference 
vectors set to the direction of the two principal components of the input data. The 
principal component initialization not only further reduces computational cost and 
enables reproducible results, but is also shown to be important for convergence when 
using the batch SOM (Forte et al., 2002). Following Kohonen (2001), this is done in 
three steps: 
 

1. Determine two eigenvectors, v1 and v2, with the largest eigenvalues from the 
covariance matrix of all data Ω. 

2. Let v1 and v2 span a two-dimensional linear subspace and fit a rectangular 
array along it, where the two dimensions are the eigenvectors and the center 
coincides with the mean of Ω. Hence, the direction of the long side is parallel 
to the longest eigenvector v1 with a length of 80% of the length of v1. The short 
side is parallel to v2 with a length of 80% of the length of v2. 

3. Identify the initial value of the reference vectors mi(0) with the array points, 
where the corners of the rectangle are 21 4.04.0 vv  . 

 
Following the initialization, the batch training algorithm operates a specified number 
of iterations 1,2,…,t in two steps. In the first step, each input data vector x is assigned 
to the best-matching unit (BMU) mc: 
 

)(min)( tmxtmx i
i

c  .  (A.1) 

 
We employ a semi-supervised version of the SOM by also including class information 
when determining the BMU. In the second step, each reference vector im  (where 

i=1,2,…,M) is adjusted using the batch update formula: 
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23 There are several other implementations of the SOM. The seminal packages – SOM_PAK, SOM 
Toolbox for Matlab, Nenet, etc – are not regularly updated or adapted to their environment. Out of the 
newer implementations, Viscovery SOMine provides the needed techniques for interactive exploratory 
analysis (Moehrmann et al., 2011). For a thorough discussion of SOM software and the implementation 
in Viscovery SOMine, see Deboeck (1998a; 1998b). 
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where index j indicates the input data vectors that belong to unit c, and N is the 
number of the data vectors. The neighbourhood function  1,0)( jich

 
is defined as the 

following Gaussian function: 
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where 
2

ic rr   is the squared Euclidean distance between the coordinates of the 

reference vectors mc and mi on the two-dimensional grid, and the radius of the 
neighbourhood )(t is a monotonically decreasing function of time t. The radius of 

the neighbourhood begins as half the diagonal of the grid size ( 2/)( 222 YX  ), 

and goes monotonically towards the specified tension value  2,0)( t .  
 
Second-level clustering is done using an agglomerative hierarchical clustering. The 
following modified Ward’s (1963) criterion is used as a basis for measuring the 
distance between two candidate clusters: 
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where k and l represent two clusters, kn  and ln  the number of data points in the 

clusters k and l, and 
2

lk cc   the squared Euclidean distance between the cluster 

centres of clusters k and l. The Ward clustering is modified only to merge clusters 
with other topologically neighbouring clusters by defining the distance between non-
adjacent clusters as infinitely large. The algorithm starts with each unit as its own 
cluster and merges units for all possible numbers of clusters using the minimum Ward 
distance (1,2,…,M). 



 20

References 
  
Alessi, L., Detken, C., 2011. Quasi real time early warning indicators for costly asset 

price boom/bust cycles: A role for global liquidity. European Journal of 
Political Economy 27(3), 520–533. 

 
Arciniegas Rueda, I.E., Arciniegas, F., 2009. SOM-based data analysis of speculative 

attacks’ real effects. Intelligent Data Analysis 13(2), 261–300. 
 
Balakrishnan, R., Danninger, S., Elekdag, S., Tytell, I., 2009. The Transmission of 

Financial Stress from Advanced to Emerging Economies. IMF Working Paper, 
WP/09/133. 

 
Barrell, R., Davis, P.E., Karim, D., Liadze, I., 2010. Bank regulation, property prices 

and early warning systems for banking crises in OECD countries. Journal of 
Banking & Finance 34(9), 2255–2264. 

 
Ben Omrane, W., de Bodt, E., 2009. Using self-organizing maps to adjust for intra-

day seasonality. Journal of Banking & Finance 31(6), 1817–1838 
 
Berg, A., Borensztein, E., Pattillo, C., 2005. Assessing early warning systems: How 

have they worked in practice?. IMF Staff Papers 52, 462–502. 
 
Berg, A., Pattillo, C., 1999. Predicting currency crises – the indicators approach and 

an alternative. Journal of International Money and Finance 18, 561–586. 
 
Borio, C., Lowe, P., 2002. Asset Prices, Financial and Monetary Stability: Exploring 

the Nexus. BIS Working Papers, No. 114. 
 
Borio, C., Lowe, P., 2004. Securing Sustainable Price Stability: Should Credit Come 

Back from the Wilderness?. BIS Working Papers, No. 157. 
 
Bussière, M., Fratzscher, M., 2006. Towards a new early warning system of financial 

crises. Journal of International Money and Finance 25(6), 953–973. 
 
Cardarelli, R., Elekdag, S., Lall, S., 2011. Financial stress and economic contractions. 

Journal of Financial Stability 7(2), 78–97. 
 
Cox, T.F., Cox, M.A.A., 2001. Multidimensional Scaling. Chapman & Hall/CRC, 

Florida. 
 
Dattels, P., McCaughrin, R., Miyajim, K., Puig, J., 2010. Can you Map Global 

Financial Stability?. IMF Working Paper, WP/10/145. 
 
Deboeck, G., 1998a. Software Tools for Self-Organizing Map, in: Deboeck, G., 

Kohonen, T., (Eds.), Visual Explorations in Finance with Self-Organizing Maps, 
Springer-Verlag, Berlin, pp. 179–194. 

 



 21

Deboeck, G., 1998b. “Best practices in data mining using self-organizing maps, in: 
Deboeck, G., Kohonen, T., (Eds.), Visual Explorations in Finance with Self-
Organizing Maps, Springer-Verlag, Berlin, pp. 201–229. 

 
Demirgüç-Kunt, A., Detragiache, E., 2000. Monitoring Banking Sector Fragility. A 

Multivariate Logit. World Bank Economic Review 14(2), 287–307. 
 
Demyanyk, Y.S., Hasan, I., 2010. Financial crises and bank failures: a review of 

prediction methods. Omega 38(5), 315–324. 
 
Dornbusch, R., Park, Y.C., Claessens, S., 2000. Contagion: How it Spreads and How 

it can be Stopped. World Bank Research Observer 15, 177–197. 
 
Eklund, T., Back, B., Vanharanta, H., Visa, A., 2000. Evaluating a SOM-based 

financial benchmarking tool. Journal of Emerging Technologies in Accounting 
5(1), 109–127. 

 
Illing, M., Liu, Y., 2006. Measuring financial stress in a developed country: An 

application to Canada. Journal of Financial Stability 2(3), 243–65. 
 
Fioramanti, M., 2008. Predicting sovereign debt crises using artificial neural 

networks: a comparative approach. Journal of Financial Stability 4(2), 149–164. 
 
Forte, J.C., Letrémy, P., Cottrell, M., 2002. Advantages and drawbacks of the Batch 

Kohonen algorithm, in: Verleysen, M., (Ed.), Proceedings of the 10th European 
Symposium on Neural Networks, Springer-Verlag, Berlin, pp. 223–230. 

 
Fuertes, A.M., Kalotychou, E., 2006. Early Warning System for Sovereign Debt 

Crisis: the role of heterogeneity. Computational Statistics and Data Analysis 5, 
1420–1441. 

 
Hakkio, C.S., Keeton, W.R., 2009. Financial Stress: What is it, How can it be 

measured and Why does it matter?. Federal Reserve Bank of Kansas City 
Economic Review, Second Quarter 2009, 5–50. 

 
Kaminsky, G., Lizondo, S., Reinhart, C., 1998. Leading Indicators of Currency 

Crises. IMF Staff Papers 45(1), 1–48. 
 
Venna, J., Kaski, S., 2001. Neighborhood preservation in nonlinear projection 

methods: An experimental study, in Dorffner G., Bischof, H., Hornik, K., (Eds.), 

Proceedings of the International Conference on Artificial Neural Networks, 
Springer Verlag, Vienna, Austria, pp. 485–491. 

 
Kaski, S., Venna, J., Kohonen, T., 2000. Coloring that reveals cluster structures in 

multivariate data. Australian Journal of Intelligent Information Processing 
Systems 6, 82–88. 



 22

 
Kindleberger, C., 1996. Maniacs, Panics, and Crashes. Cambridge University Press, 

Cambridge. 
 
Kohonen, T., 1982. Self-organized formation of topologically correct feature maps. 

Biological Cybernetics 66, 59–69. 
 
Kohonen, T., 2001. Self-Organizing Maps, 3rd edition. Springer-Verlag, Berlin. 
 
Lo Duca, M., Peltonen, T.A., 2011. Macro-Financial Vulnerabilities and Future 

Financial Stress – Assessing Systemic Risks and Predicting Systemic Events. 
ECB Working Paper, No. 1311. 

 
Marghescu, D., 2007. Multidimensional Data Visualization Techniques for Exploring 

Financial Performance Data, in:  Proceedings of 13th Americas Conference on 
Information Systems, Keystone, Colorado, USA. 

 
Matthews, B.W., 1975. Comparison of the predicted and observed secondary structure 

of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA) – Protein 
Structure 405(2), 442–45. 

 
Minsky, H., 1982. Can “it” Happen Again?: Essays on Instability and Finance. M.E. 

Sharpe, Armonk, N.Y. 
 
Moehrmann, J., Burkovski, A., Baranovskiy, E., Heinze, G.A., Rapoport, A., 

Heideman, G., 2011. A Discussion on Visual Interactive Data Exploration Using 
Self-Organizing Maps, in: Laaksonen, J., Honkela, T., (Eds.), Proceedings of the 
8th International Workshop on Self-Organizing Maps, Springer-Verlag, Berlin, 
pp. 178–187. 

 
Peltonen, T.A., 2006. Are emerging market currency crises predictable? A test. ECB 

Working Paper, No. 571. 
 
Pericoli, M., Sbracia, M., 2003. A Primer on Financial Contagion. Journal of 

Economic Surveys 17, 571–608. 
 
Pöllä, M., Honkela, T., Kohonen, T., 2009. Bibliography of Self-Organizing Map 

(SOM) Papers: 2002-2005 Addendum. TKK Reports in Information and 
Computer Science, Helsinki University of Technology, Report TKK-ICS-R24. 

 
Resta, M., 2009. Early Warning Systems: an approach via Self Organizing Maps with 

applications to emergent markets, in: Apolloni, B., Bassis, S., Marinaro, M. 
(Eds.), Proceedings of the 18th Italian Workshop on Neural Networks, IOS 
Press, Amsterdam, pp. 176–184. 

 
Sammon Jr., J.W., 1969. A Non-Linear Mapping for Data Structure Analysis. IEEE 

Transactions on Computers 18(5), 401–409. 
 



 23

Sarlin, P., 2011. Sovereign Debt Monitor: A Visual Self-Organizing Maps Approach, 
in: Proceedings of the IEEE Symposium on Computational Intelligence for 
Financial Engineering & Economics, IEEE Press, Paris, pp. 357–364. 

 
Sarlin, P., Marghescu, D., 2011. Visual Predictions of Currency Crises using Self-

Organizing Maps. Intelligent Systems in Accounting, Finance and Management 
18(1), 15–38. 

 
Schmidt, R., 1984. Early warning of debt rescheduling. Journal of Banking & Finance 

8(2), 357–370. 
 
Ward Jr., J.H., 1963. Hierarchical grouping to optimize an objective function. Journal 

of the American Statistical Association 58, 236–244. 
 
Vesanto, J., Alhoniemi, E., 2000. Clustering of the self-organizing map. IEEE 

Transactions on Neural Networks 11(3), 586–600. 



Table 1: Statistical properties of the dataset 
Type Variable Abbreviation Mean SD Min. Max. Skew. Kurt. KSL AD

Domestic Inflation
a

Inflation 0.89 5.17 -10.15 42.53 4.80 26.72 0.29* 263.90*
Domestic Real GDP

b
Real GDP growth 3.73 3.76 -17.54 14.13 -0.86 3.16 0.06* 11.34*

Domestic Real credit to private sector to GDP
b

Real credit growth 234.07 4724.00 -69.42 101870.34 20.76 429.59 0.51* Inf*
Domestic Real equity prices

b
Real equity growth 5.93 33.01 -84.40 257.04 0.99 4.31 0.05* 7.28*

Domestic Credit to private sector to GDP
a

Leverage 3.48 51.64 -62.78 1673.04 22.76 673.35 0.29* Inf*
Domestic Stock market capitalisation to GDP

a
Equity valuation 3.90 28.32 -62.79 201.55 0.77 2.41 0.03* 3.86*

Domestic Current account deficit to GDP
c

CA deficit -0.02 0.07 -0.27 0.10 -0.98 0.73 0.09* 33.12*
Domestic Government deficit to GDP

c
Government deficit 0.01 0.05 -0.19 0.22 -1.09 3.46 0.09* 35.90*

Global Inflation
a

Global inflation 0.03 0.64 -1.33 2.29 0.71 1.28 0.08* 12.12*
Global Real GDP

b
Global real GDP growth 1.84 1.59 -6.34 4.09 -3.02 11.74 0.20* 122.16*

Global Real credit to private sector to GDP
b

Global real credit growth 3.87 1.68 -0.23 7.20 -0.21 -0.31 0.07* 8.82*
Global Real equity prices

b
Global real equity growth 2.31 19.08 -40.62 37.77 -0.57 -0.68 0.15* 41.90*

Global Credit to private sector to GDP
a

Global leverage 1.15 2.79 -2.79 11.21 1.84 3.40 0.22* 105.26*
Global Stock market capitalisation to GDP

a
Global equity valuation 0.89 17.41 -40.54 27.46 -0.50 -0.43 0.09* 19.11*  

 
Notes: Transformations: a, deviation from trend; b, annual change; c, level. KSL: Lilliefors' adaption of the Kolmogorov-Smirnov normality test. AD: the standard Anderson-Darling normality 
test. Significance levels: 1%, *. 

 
 
 
 
 
 
 
 
 
 
 



Table 2: The evaluation of the SOFSM over M and σ values (μ=0.5 and forecast 
horizon 18 months) 

σ ( tensio n)

M  (# units )

5 0  (5 2 ) 0.24 0.23 0.22 0.21 0.21 0.20 0.20

10 0  (8 5 ) 0.27 0.25 0.23 0.22 0.21 0.21 0.21

15 0  (13 7 ) 0.29 0.24 0 .2 5 0.23 0.21 0.23 0.21

2 0 0  (18 8 ) 0.29 0.29 0.29 0.24 0.23 0.22 0.21

2 5 0  (2 4 7 ) 0.30 0.29 0.29 0.24 0.25 0.21 0.22

3 0 0  (3 3 1) 0.32 0.33 0.30 0.28 0.25 0.23 0.22

4 0 0  (4 0 8 ) 0.40 0.40 0.38 0.33 0.30 0.27 0.27

5 0 0  (4 9 3 ) 0.42 0.40 0.40 0.36 0.33 0.28 0.27

6 0 0  (6 0 9 ) 0.43 0.43 0.41 0.36 0.33 0.28 0.27

10 0 0  (9 4 2 ) 0.46 0.46 0.44 0.41 0.36 0.31 0.30

20 .0 0 1 0 .3 0 .5 0 .7 5 1 1.5

 
 

Notes: Over the neighborhood radii σ, first models to outperform the logit model (U=0.25) per M value are 
highlighted in gray and the chosen map is shown in bold. The real number of units is shown in parenthesis since 
fulfilling the map ratio (75:100) affects the number of units. 

 
Table 3: The estimates of the logit model (μ=0.5 and forecast horizon 18 months) 

Variable Estimate Error Z

Intercept -6.744 0.612 -11.024 0.000 ***
Inflation -0.100 0.300 -0.334 0.738
Real GDP growth 0.076 0.334 0.229 0.819
Real credit growth -0.001 0.001 -0.613 0.540
Real equity growth 1.791 0.382 4.685 0.000 ***
Leverage 0.003 0.001 3.204 0.001 ***
Equity valuation 0.002 0.001 2.689 0.007 ***
CA deficit 1.151 0.308 3.741 0.000 ***
Government deficit 0.076 0.342 0.223 0.823

Global inflation 0.207 0.341 0.608 0.543
Global real GDP growth 1.156 0.419 2.761 0.006 ***
Global real credit  growth 0.685 0.381 1.799 0.072 *
Global real equity growth 0.832 0.419 1.985 0.047 **
Global leverage 0.712 0.427 1.668 0.095 *
Global equity valuation 0.959 0.472 2.029 0.042 **

Sig.

 
 
Notes: Significance levels: 1%, ***; 5 %, **; 10 %, *.



Table 4: Performance of the benchmark models on in-sample and out-of-sample data (μ=0.5 and forecast horizon 18 months). 

Model Data set Threshold Precision Recall Precision Recall AUC MCC
Logit T rain 0.72 162 190 830 73 0.46 0.69 0.92 0.81 0.79 0.25 0.81 0.44

SOFSM Train 0.60 190 314 706 45 0.38 0.81 0.94 0.69 0.71 0.25 0.83 0.40
SOM Train 0.58 215 319 701 20 0.40 0.91 0.97 0.69 0.73 0.30 0.88 0.48

Logit Test 0.72 77 57 249 93 0.57 0.45 0.73 0.81 0.68 0.13 0.72 0.28
SOFSM Test 0.60 112 89 217 58 0.56 0.66 0.79 0.71 0.69 0.18 0.75 0.36

SOM Test 0.58 139 95 211 31 0.59 0.82 0.87 0.69 0.74 0.25 0.76 0.49

Negatives

Accuracy UTP FP TN FN

Positives

 
 
Notes: The table reports results for the logit, semi-supervised SOFSM and unsupervised SOM on the train and test datasets and the optimal threshold. The thresholds are chosen to maximize 
usefulness with μ=0.5 and forecast horizon 6 quarters. To assess the performance of the models, the table also reports in columns the following measures: TP = True positives, FP = False 
positives, TN= True negatives, FN = False negatives, Precision positives = TP/(TP+FP), Recall positives = TP/(TP+FN), Precision negatives = TN/(TN+FN), Recall negatives = TN/(TN+FP), 
Accuracy = (TP+TN)/(TP+TN+FP+FN), U = Usefulness (see formulae 2 and 3), AUC = area under the ROC curve (TP rate to FP rate, see Section 2 and Figure 5) and MCC = (TP*TN-
FP*FN)/√((TP+FP)(TP+FN)(TN+FP)(TN+FN)). The best accuracy measure, as per data set and evaluation measure, is shown in bold. 

 
Table 5: Robustness tests on in-sample and out-of-sample data for different µ values (forecast horizon 18 months) 

Model Data set μ Threshold Precision Recall Precision Recall AUC MCC

Logit Train 0.4 0.72 162 190 830 73 0.46 0.69 0.92 0.81 0.79 0.16 0.81 0.44
SOFSM Train 0.4 0.75 153 166 854 82 0.48 0.65 0.91 0.84 0.80 0.16 0.83 0.44
Logit Train 0.5 0.72 162 190 830 73 0.46 0.69 0.92 0.81 0.79 0.25 0.81 0.44

SOFSM Train 0.5 0.60 190 314 706 45 0.38 0.81 0.94 0.69 0.71 0.25 0.83 0.40
Logit Train 0.6 0.54 197 381 639 38 0.34 0.84 0.94 0.63 0.67 0.15 0.81 0.36

SOFSM Train 0.6 0.50 214 419 601 21 0.34 0.91 0.97 0.59 0.65 0.18 0.83 0.39

Logit Test 0.4 0.72 77 57 249 93 0.57 0.45 0.73 0.81 0.68 0.07 0.72 0.28
SOFSM Test 0.4 0.75 76 56 250 94 0.58 0.45 0.73 0.82 0.68 0.07 0.75 0.28
Logit Test 0.5 0.72 77 57 249 93 0.57 0.45 0.73 0.81 0.68 0.13 0.72 0.28

SOFSM Test 0.5 0.60 112 89 217 58 0.56 0.66 0.79 0.71 0.69 0.18 0.75 0.36
Logit Test 0.6 0.54 110 109 197 60 0.50 0.65 0.77 0.64 0.64 0.05 0.72 0.28

SOFSM Test 0.6 0.50 134 109 197 36 0.55 0.79 0.85 0.64 0.70 0.13 0.75 0.41

Negatives

Accuracy UTP FP TN FN

Positives

 
 
Notes: See the notes for Table 4.



Table 6: Robustness tests on in-sample and out-of-sample data for different horizons (μ=0.5) 

Model Data set Horizon Threshold Precision Recall Precision Recall AUC MCC

Logit Train C6 0.72 70 282 882 21 0.20 0.77 0.98 0.76 0.76 0.26 0.81 0.30
SOFSM Train C6 0.51 88 530 634 3 0.14 0.97 1.00 0.54 0.58 0.26 0.83 0.27
Logit Train C12 0.72 117 235 855 48 0.33 0.71 0.95 0.78 0.77 0.25 0.80 0.37

SOFSM Train C12 0.69 123 267 823 42 0.32 0.75 0.95 0.76 0.75 0.25 0.84 0.37
Logit Train C18 0.72 162 190 830 73 0.46 0.69 0.92 0.81 0.79 0.25 0.81 0.44

SOFSM Train C18 0.60 190 314 706 45 0.38 0.81 0.94 0.69 0.71 0.25 0.83 0.40
Logit Train C24 0.58 242 286 673 54 0.46 0.82 0.93 0.70 0.73 0.26 0.81 0.45

SOFSM Train C24 0.63 233 241 718 63 0.49 0.79 0.92 0.75 0.76 0.27 0.85 0.47

Logit Test C6 0.72 18 116 302 40 0.13 0.31 0.88 0.72 0.67 0.02 0.57 0.02
SOFSM Test C6 0.51 47 205 213 11 0.19 0.81 0.95 0.51 0.55 0.16 0.65 0.21
Logit Test C12 0.72 49 85 275 67 0.37 0.42 0.80 0.76 0.68 0.09 0.64 0.18

SOFSM Test C12 0.69 51 102 258 65 0.33 0.44 0.80 0.72 0.65 0.08 0.68 0.14
Logit Test C18 0.72 77 57 249 93 0.57 0.45 0.73 0.81 0.68 0.13 0.72 0.28

SOFSM Test C18 0.60 112 89 217 58 0.56 0.66 0.79 0.71 0.69 0.18 0.75 0.36
Logit Test C24 0.58 132 68 185 91 0.66 0.59 0.67 0.73 0.67 0.16 0.76 0.33

SOFSM Test C24 0.63 150 51 202 73 0.75 0.67 0.73 0.80 0.74 0.24 0.80 0.48

Negatives

Accuracy UTP FP TN FN

Positives

 
 
Notes: See the notes for Table 4. 
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Table 7: Characteristics of the financial stability states 
 

Variable

Centre    Range Centre    Range Centre    Range Centre    Range

Inflation 0.49 [0.22,0.66] 0.55 [0.30,0.69] 0.59 [0.26,0.76] 0.37 [0.17,0.68]

Real GDP growth 0.67 [0.40,0.80] 0.48 [0.14,0.83] 0.34 [0.25,0.50] 0.53 [0.30,0.72]

Real credit growth 0.66 [0.28,0.85] 0.55 [0.35,0.82] 0.39 [0.18,0.68] 0.43 [0.21,0.75]

Real equity growth 0.68 [0.41,0.85] 0.28 [0.16,0.58] 0.39 [0.23,0.80] 0.61 [0.40,0.74]

Leverage 0.63 [0.31,0.80] 0.59 [0.37,0.81] 0.52 [0.23,0.83] 0.29 [0.18,0.51]

Equity valuation 0.73 [0.62,0.80] 0.55 [0.27,0.81] 0.33 [0.17,0.66] 0.45 [0.30,0.63]

CA deficit 0.58 [0.30,0.78] 0.54 [0.26,0.80] 0.48 [0.25,0.77] 0.41 [0.19,0.66]

Government deficit 0.38 [0.19,0.74] 0.45 [0.22,0.62] 0.53 [0.32,0.85] 0.61 [0.26,0.85]

Global inflation 0.33 [0.08,0.61] 0.61 [0.34,0.76] 0.46 [0.20,0.79] 0.63 [0.11,0.90]

Global real GDP growth 0.67 [0.54,0.74] 0.67 [0.30,0.86] 0.29 [0.13,0.69] 0.45 [0.13,0.71]

Global real credit growth 0.55 [0.28,0.77] 0.86 [0.61,0.92] 0.37 [0.16,0.67] 0.33 [0.15,0.52]

Global real equity growth 0.72 [0.47,0.80] 0.4 [0.23,0.63] 0.34 [0.11,0.79] 0.54 [0.20,0.73]

Global leverage 0.35 [0.18,0.60] 0.79 [0.57,0.91] 0.58 [0.17,0.77] 0.33 [0.16,0.73]

Global equity valuation 0.67 [0.48,0.82] 0.81 [0.54,0.91] 0.36 [0.14,0.76] 0.27 [0.19,0.55]

Pre crisis Crisis Post crisis Tranquil

 
 
Notes: Columns represent characteristics (cluster centre and range) of the financial stability states on the SOFSM and rows represent indicators. Since data are transformed to country-specific 

percentiles, the summary statistics are comparable across indicators and clusters.



Figure 1: The two-dimensional grid of the SOFSM 

Crisis

Tranquil
Pre crisis

Post crisis

 
Notes: The figure displays the two-dimensional SOFSM that represents a high-dimensional financial stability 
space. The four clusters representing financial stability states, shown by lines and colours, are derived using the 
values of the class variables (C18, C0, P18, T0). Hence, the location on the SOFSM represents the state of 
financial stability, where the shades show distances of each unit to the centers of the financial stability states 
within a cluster. Distributions of the individual indicators and class variables are shown in Figures 2–3. 
 

 



Figure 2: The feature planes for the 14 indicators and the main class variables 
Inflation

Pre crisis

Crisis

Post crisis

Tranquil

0.17 0.29 0.41 0.52 0.64 0.76

Real GDP growth

Pre crisis

Crisis

Post crisis

Tranquil

0.14 0.27 0.41 0.55 0.69 0.83

Real credit growth

Pre crisis

Crisis

Post crisis

Tranquil

0.18 0.32 0.45 0.58 0.71 0.85

CA deficit

Pre crisis

Crisis

Post crisis

Tranquil

0.19 0.31 0.43 0.55 0.68 0.80

Government deficit

Pre crisis

Crisis

Post crisis

Tranquil

0.19 0.32 0.46 0.59 0.72 0.86

Global inflation

Pre crisis

Crisis

Post crisis

Tranquil

0.08 0.25 0.41 0.57 0.73 0.90

Global leverage

Pre crisis

Crisis

Post crisis

Tranquil

0.16 0.31 0.46 0.61 0.76 0.91

Global equity valuation

Pre crisis

Crisis

Post crisis

Tranquil

0.14 0.30 0.45 0.60 0.75 0.91

Pre-crisis periods

Pre crisis

Crisis

Post crisis

Tranquil

0.01 0.14 0.27 0.39 0.52 0.65

Real equity growth

Pre crisis

Crisis

Post crisis

Tranquil

0.16 0.30 0.43 0.57 0.71 0.85

Leverage

Pre crisis

Crisis

Post crisis

Tranquil

0.18 0.31 0.44 0.57 0.70 0.83

Equity valuation

Pre crisis

Crisis

Post crisis

Tranquil

0.17 0.30 0.43 0.55 0.68 0.81

Global real GDP growth

Pre crisis

Crisis

Post crisis

Tranquil

0.13 0.28 0.42 0.57 0.71 0.86

Global real credit growth

Pre crisis

Crisis

Post crisis

Tranquil

0.15 0.31 0.46 0.61 0.76 0.92

Global real equity growth

Pre crisis

Crisis

Post crisis

Tranquil

0.11 0.25 0.39 0.52 0.66 0.80

Crisis periods

Pre crisis

Crisis

Post crisis

Tranquil

0.00 0.14 0.28 0.42 0.56 0.70

Post-crisis periods

Pre crisis

Crisis

Post crisis

Tranquil

0.06 0.18 0.29 0.40 0.52 0.63

Tranquil periods

Pre crisis

Crisis

Post crisis

Tranquil

0.02 0.18 0.34 0.50 0.66 0.82  
Notes: The feature planes are layers of the SOFSM in Figure 1. While the indicators are defined in Table 1, the four main class variables are Pre crisis (C18), Crisis (C0), Post crisis (P18) and 
Tranquil periods (T0). As each data vector consists of 14 indicators and 4 main class variables, these feature planes show the distribution of each data column on the SOFSM grid. In the case of 
binary class variables that take values 1 and 0, high values represent a high proportion of data in different periods (pre-crisis, crisis, post-crisis or tranquil periods). These views highlight the fact 
that location on the SOFSM represents the state of financial stability, where each location can be associated with variable values. 



Figure 3: Feature planes for all classes 
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Notes: The figure shows the distributions of different pre- and post-crisis horizons. As in Figure 2, these are layers 
of the SOFSM in Figure 1. The feature planes C24, C18, C12, C6, P24, P18, P12 and P6 show the map distribution 
of class variables that represent 24, 18, 12 and 6 months before and after a crisis, respectively. While C0 and T0 
show the distribution of crisis and tranquil periods, PPC0 represents the co-occurrence of pre- and post-crisis 
periods. 

 
Figure 4: Early warning units for different policymakers’ preferences 
           μ=0.4          μ=0.5               μ=0.6 

 
Notes: In the figure, the shaded area on the SOFSM (same map as in Figure 1) represents the part of the map that 
is classified as early warning units when maximizing the policymakers’ preferences with three different parameter 
values (µ=0.4, µ=0.5 and µ=0.6)  and a horizon of 18 months according to the evaluation framework. 
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Figure 5: In-sample and out-of-sample Receiver Operating Characteristics 

(ROC) curves for SOFSM and logit models (with μ=0.5 and horizon 18 
months) 
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Notes: The vertical and horizontal axes represent True Positives (TP) rate (TP / (TP + FN)) and False Positives 
(FP) rate (FP/(FP+TN)). The area under the ROC curve (AUC), given in Tables 5–7, measures the area below 
these curves. 



Figure 6: A mapping of the financial stability states of the United States and the 
euro area in 2002–2011 
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Notes: The figure displays the two-dimensional SOFSM that represents a high-dimensional financial stability 
space (same as in Figure 1). The lines that separate the map into four parts are based on the distribution of the four 
underlying financial stability states. The shades on the SOFSM show within a cluster the distance of each unit to 
the centers of the financial stability states. Data points are mapped onto the grid by projecting them to their best-
matching units (BMUs) using only macro-financial indicators. Consecutive time-series data are linked with lines. 
The data for both United States and the euro area represent the first quarters of 2002–2011 as well as the second 
quarter of 2011. 
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Figure 7: A cross-sectional mapping of financial stability states for countries in 
the sample in 2010Q3 and 2011Q2 
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Notes: The figure displays the two-dimensional SOFSM that represents a high-dimensional financial stability 
space (same as in Figure 1). The lines that separate the map into four parts are based on the distribution of the four 
underlying financial stability states. The shades on the SOFSM show within a cluster the distance of each unit to 
the centers of the financial stability states. Data points are mapped onto the grid by projecting them to their best-
matching units (BMUs) using only macro-financial indicators. The data for all economies represent the third 
quarter of 2010 and the second quarter of 2011. 
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Figure 8: A mapping of financial stability states for the aggregated world 
economy in 2002–2011 
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Notes: The figure displays the two-dimensional SOFSM that represents a high-dimensional financial stability 
space (same as in Figure 1). The lines that separate the map into four parts are based on the distribution of the four 
underlying financial stability states. The shades on the SOFSM show within a cluster the distance of each unit to 
the centers of the financial stability states. Data points are mapped onto the grid by projecting them to their best-
matching units (BMUs) using only macro-financial indicators. Consecutive time-series data are linked with lines. 
The data for the aggregated world economy represents the first quarters of 2002–2011. 
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Figure 9: A mapping of financial stability states for the advanced and emerging 
market economies in 2002–2011 
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Notes: The figure displays the two-dimensional SOFSM that represents a high-dimensional financial stability 
space (same as in Figure 1). The lines that separate the map into four parts are based on the distribution of the four 
underlying financial stability states. The shades on the SOFSM show within a cluster the distance of each unit to 
the centers of the financial stability states. Data points are mapped onto the grid by projecting them to their best-
matching units (BMUs) using only macro-financial indicators. Consecutive time-series data are linked with lines. 
The data for both advanced and emerging market economies (AEs and EMEs) represent the first quarters of 2002–
2011. 

 


