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Abstract

This paper presents DFROG, the “nowcasting” model employed by De Nederland-
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rate of Gross Domestic Product (GDP). The core concept of DFROG is that the co-
movement of a potentially large set of monthly economic indicators can be sum-
marized into a few factors, which can then be used to forecast GDP growth. We
compare the forecast accuracy of DFROG with several benchmark models and pro-
fessional analysts, and conduct a thorough review of the model’s optimal specifica-
tion.
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1 Introduction
Economists face considerable challenges in accurately assessing the economy because

the key indicator, Gross Domestic Product (GDP), is released with a significant delay.

In the Netherlands, for instance, Statistics Netherlands publishes an initial growth rate

estimate 45 days after the end of a quarter. This initial figure is often subject to revi-

sions, adding to the complexity. Additionally, GDP data is only available on a quarterly

basis. Unlike weather forecasters who predict tomorrow’s weather based on today’s

data, economists must forecast the future, the present, and even the recent past simulta-

neously. Fortunately, there is a stream of economic indicator releases, financial market

information and survey data releases that can be used to form a view of the current eco-

nomic stance. De Nederlandsche Bank (DNB) –like many central banks– has been using

a so so-called “nowcasting” model, to translate this incoming stream of information

into a forecast of the upcoming GDP release. This model is called The Dutch forecast-

ing model for real-time output growth (DFROG). Like all nowcasting models, DFROG

is a mechanical model while DNB’s official view on the economy is also influenced by

expert judgment. The DFROG forecasts are routinely used within DNB, but especially

round new GDP releases and at the start of DNB’s Spring and Autumn projections (see

e.g. here for DNB Spring projections June 2024).

We recently revised DFROG. This report describes how we use the current model

and our decisions on the precise model-specification. Furthermore, we show how accu-

rate the forecasts of our nowcasting model are in comparison to other often used models.

The core idea of DFROG is that the co-movement of a set of carefully selected monthly

indicators can be summarized in one or more factors that can be used to forecast GDP

growth. This type of model has been shown to produce relatively accurate forecasts of

Dutch GDP growth in the recent past (see e.g Jansen et al., 2016, Jansen and de Win-

ter, 2018, Hindrayanto et al., 2016), also compared to recently popularized off-the-shelf

machine learning models (see Kant et al., 2022).

Apart from revising our nowcasting model, we also rebuild our indicator database.

We searched numerous publicly available databases for relevant indicators of the Dutch

economy. We combine these with proprietary indicators from data suppliers and senti-
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ment indicators derived from the leading financial newspaper in the Netherlands, Het

Financieele Dagblad. The sentiment indicators were developed in co-operation with

Het Financieele Dagblad, the technical background and findings are detailed in Dijk,

van and de Winter (2023).

The remainder of the paper is organized as follows. Section 2 provides a detailed

description of the DFROG model currently in use. Section 3 describes the dataset used

in our analysis. Section 4 describes the setup and the outcome of the model specification

horse race. Section 5 compares the forecast accuracy of DFROG to a couple of well

known benchmarks and forecasts of professional analysts. Section 6 describes how we

use DFROG in practice.

2 Description DFROG

2.1 The nowcasting model

Let yt = [y1,t, . . . , yn,t]
′, t = 1, . . . , T , denote the n-dimensional vector of monthly vari-

ables, standardized to mean 0 and unit variance. We assume that yt is driven by a few

unobserved factors, that can be described using the following factor model representa-

tion:

yt = Λft + ϵt for i = 1, . . . , n. (1)

Here, ft is a r × 1 vector of unobserved common factors, Λ is an n × r matrix of time-

invariant factor loadings and ϵt = [ϵ1,t, ϵ2,t, . . . , ϵn,t]
′ is a vector of idiosyncratic compo-

nents. The idiosyncratic errors ϵi,t capture the movements that are specific to the individ-

ual series. Regarding their dynamics, we assume the idiosyncratic components follow

an autoregressive (AR) process of order 1:

ϵi,t = ρiϵi,t−1 + εi,t, εi,t
i.i.d.∼ N (0, σ2

εi
) for i = 1, . . . , n (2)
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where ρi is the autoregressive coefficient for indicator i. The common factors ft are

modeled as a vector autoregressive (VAR) process of order p

ft = A1ft−1 + · · ·+ Apft−p + ut, ut
i.i.d.∼ N (0, Q) (3)

where A1, . . . , Ap are r × r matrices of autoregressive coefficients for the factors, and Q

is a diagonal covariance matrix.

Equations 1–3 can be cast into a state-space representation where the common factors

and the idiosyncratic components are the unobserved states. Equation 1 is known as the

measurement equation and links the data to the unobserved states. Equations 2 and 3 are

known as the transition equations. The outcomes of the model are illustrated in Section 6.

We extensively test for the optimal specification in terms of forecast accuracy, described

in Section 4. Bańbura and Modugno (2014), Bok et al. (2018) and Doz et al. (2012) es-

tablish the viability of this approach. They show that, if the factor structure is strong,

maximum likelihood estimators are consistent when the sample size T and the cross-

sectional dimension n are large. The estimator is also robust to cross-sectional misspec-

ification, time-series correlation of the idiosyncratic components, and non-Gaussianity.

In practice, the estimates can be conveniently computed iteratively using the Kalman

smoother and the Expectation Maximization (EM) algorithm.

The results in Doz et al. (2012) also imply that estimating the AR(1) process in Equa-

tion 3 is not strictly necessary. However, the choice for an autoregressive process for the

error terms can be justified on several grounds. First, most macroeconomic variables are

serially correlated. Therefore, it would be inappropriate to assume uncorrelated errors

here (Shapiro et al., 2002). In that case, imposing an assumption of no serial correlation

is quite restrictive because it is only valid asymptotically. Secondly, the AR process can

improve the forecasting performance of the model as it enables to forecast the idiosyn-

cratic component (Bańbura and Modugno, 2014). Finally, it may lead to more efficient

estimates of common factors in the case of missing values at the end of our sample (so

called ragged edges).
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2.2 State space representation

In what follows, we cast the nowcasting model specified in the preceding Section into a

state space representation. In the quasi-maximum likelihood approach, the state space

system is used in combination with the Kalman framework to evaluate the likelihood

and estimate the parameters.

We follow Bańbura and Modugno (2014) and add the idiosyncratic component to the

state vector. More precisely, we assume that ϵi,t in Equation 1 can be decomposed as:

ϵi,t = ϵ̃i,t + ξi,t, ξi,t
i.i.d.∼ N (0, κ)

ϵ̃i,t = ρiϵ̃i,t−1 + ei,t, ei,t
i.i.d.∼ N (0, σ2

i )
(4)

where both ξt = [ξ1,t, . . . , ξn,t]
′ and ϵ̃t = [ϵ̃1,t, . . . , ϵ̃n,t]

′ are cross-sectionally uncorrelated

and κ is a very small number. Combining Equations 1, 2 and 4 results in the following

state space representation:

yt = Λ̃f̃t + ξt, ξt∼N (0, R̃)

f̃t = Ãf̃t−1 + ũt, ũt∼N (0, Q̃)
(5)

where

f̃t =

[
ft
ϵ̃t

]
, ũt =

[
ut

ϵt

]
, Λ̃ =

[
Λ I

]
, Ã =

[
A 0

0 diag(ρ1, . . . , ρn)

]
, Q̃ =

[
Q 0

0 diag(σ2
1, . . . , σ

2
n)

]
,

et = [e1,t, . . . , en,t]
′ and R̃ is a fixed diagonal matrix with κ on the diagonal.

A notable challenge for nowcasting models is the discrepancy between quarterly

GDP growth figures and the monthly frequency of macroeconomic time series. Re-

stricting our dataset to quarterly variables would render the model inadequate for real-

time forecasting. Real-time forecasting requires regularly updated information, much of

which is received monthly. Fortunately, mixed frequency datasets can be integrated into

the factor model by treating lower frequency series as high-frequency indicators with

missing data. As a result, information from indicators collected at a lower frequency

(mainly GDP) can still be used to estimate the factors. The model can also be employed

to forecast the lower frequency series or enhance their interpolation. To achieve this, we
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represent the quarterly variables in our model as partially observed monthly variables.

Initially, we use the quarterly GDP in volume terms to define its monthly counterparts

as follows:

GDPQ
t = GDPM

t +GDPM
t−1 +GDPM

t−2 for t = 3, 6, 9, . . . (6)

Additionally, we specify the transformations:

Y Q
t = 100× log (GDPQ

t ) (7)

Y M
t = 100× log (GDPM

t ) (8)

Using Equation 6 and 8, we can define the monthly and quarterly GDP growth rates as

follows:

yQt = Y Q
t − Y Q

t−3 (9)

yMt = Y M
t − Y Q

t−1 (10)

Next, we define the monthly representation of the quarterly growth rate (ȳQt ) as:

ȳQt =

Y Q
t − Y Q

t−3 if t = 3, 6, 9, . . .

NA otherwise
(11)

In ȳQt the quarterly growth rates are in fact are ‘assigned‘ to the third month of each

quarter, following the usual convention in the nowcasting literature. To bridge ȳQt to yQt

we follow the approximation developed by Mariano and Murasawa (2003), i.e.:

ȳQt = Y Q
t − Y Q

t−3 = (Y M
t + Y M

t−1 + Y M
t−2)− (Y M

t−3 + Y M
t−4 + Y M

t−5) (12)

= yMt + 2yMt−1 + 3yMt−2 + 2yMt−3 + yMt−4 (13)

where yMt and ȳQt denote the nM × 1 and nQ × 1 vectors of monthly and quarterly data,

respectively. Further, let ΛM and ΛQ denote the corresponding factor loadings for the

monthly yMt , and for the unobserved monthly growth rates of the quarterly yQt , respec-
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tively. We can then cast the model in the following state space representation. The

measurement equation is defined as:

[
yMt
ȳQt

]
=

[
ΛM 0 0 0 0 In 0 0 0 0 0

ΛQ 2ΛQ 3ΛQ 2ΛQ ΛQ 0 InQ
2InQ

3InQ
2InQ

InQ

]



ft

ft−1

ft−2

ft−3

ft−4

εMt
εQt
εQt−1

εQt−2

εQt−3

εQt−4



+

[
ξMt
ξQt

]

(14)

and the transition equation:



ft

ft−1

ft−2

ft−3

ft−4

ϵ̃Mt
ϵ̃Qt
ϵ̃Qt−1

ϵ̃Qt−2

ϵ̃Qt−3

ϵ̃Qt−4



=



A1 0 0 0 0 0 0 0 0 0 0

Ir 0 0 0 0 0 0 0 0 0 0

0 Ir 0 0 0 0 0 0 0 0 0

0 0 Ir 0 0 0 0 0 0 0 0

0 0 0 Ir 0 0 0 0 0 0 0

0 0 0 0 0 ρM 0 0 0 0 0

0 0 0 0 0 0 ρQ 0 0 0 0

0 0 0 0 0 0 InQ
0 0 0 0

0 0 0 0 0 0 0 InQ
0 0 0

0 0 0 0 0 0 0 0 InQ
0 0

0 0 0 0 0 0 0 0 0 InQ
0





ft−1

ft−2

ft−3

ft−4

ft−5

ϵ̃Mt−1

ϵ̃Qt−1

ϵ̃Qt−2

ϵ̃Qt−3

ϵ̃Qt−4

ϵ̃Qt−5



+



ut

0

0

0

0

eMt
eQt
0

0

0

0


Here, ρM = diag(ρM,1, . . . , ρM,nM

) and ρQ = diag(ρQ,1, . . . , ρQ,nQ
) collect the AR(1) co-

efficients of the idiosyncratic component of monthly and quarterly data. As described

above ξMt and ξQt have fixed and small variances.1

The state-space form allows inference using the Kalman filter and smoother. The

state space framework also provides a convenient framework for handling the irregu-

larities of the data in real time (i.e., mixed frequencies and non-synchronicity of the data

1 Notice that the size of the state-vector quickly expands when the VAR order increases. Notice that
this expansion comes at exponentially increasing computational time.
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releases) and updating the predictions. The Kalman filter processes incoming data in a

clear and intuitive manner. It updates model predictions recursively by weighting the

innovation components of new data based on their timeliness and quality. Additionally,

because the model generates forecasts for all variables simultaneously, analyzing the

data flow doesn’t require combining multiple unrelated models.

2.3 Model estimation

We estimate the dynamic factor model by quasi-maximum likelihood proposed by Bańbura

and Modugno (2014). To summarize, the algorithm starts by computing principal com-

ponents, and the model parameters are estimated using ordinary least squares (OLS)

regression, treating these principal components as the true common factors. This ap-

proach is particularly effective for large datasets, as principal components can act as

suitable initialization of common factors. This initialization method requires a balanced

panel, which we create as follows.

Firstly, we treat quarterly variables as partially observed monthly variables, as de-

scribed in Equation 11. Next, we remove the last three months of data, based on the

time-series with the longest history. We then fill in any remaining missing monthly

values using cubic-spline interpolation. For monthly variables with missing values at

the beginning or end of the sample, we first fill in the median values and then apply a

moving average filter. The filtered series are used to fill in the unobserved gaps. The

initial values of the factors are extracted from this balanced panel using principal com-

ponents.2 As such, this initialization can greatly reduce computation time, making the

method feasible for large panels.

Secondly, the Kalman filter and smoother are used to obtain an updated estimate of

the common factors, based on the principal components and OLS estimates from the

first step. Stopping at this point provides the two-step estimate of the common factors,

as used by Giannone et al. (2008) and studied by Doz et al. (2012). Maximum likeli-

hood estimation is achieved by iterating these two steps until convergence, using the

Expectation Maximization (EM) algorithm. The EM algorithm accounts for uncertainty

in the factor estimates at each step. The algorithm is described in Bańbura and Mod-
2 It has been shown that the principal components can provide consistent estimates of factors as both

n and T grow large (Shapiro et al., 2002).
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ugno (2014). As explained further in Section 4.1, the nowcasting model is re-estimated

monthly. Regarding our convergence criterion, we stop the algorithm either after a max-

imum number of iterations or when the increase in the likelihood between consecutive

runs becomes minimal. Specifically, we use the following metric as stopping criterion:

cm =
l(Ωw, θ(m))− l(Ωw, θ(m− 1))

1
2
(|l(Ωw, θ(m))|+ |l(Ωw, θ(m− 1))|)

(15)

Here, l(Ω, θ(m)) denotes the log-likelihood iteration j of the EM-algorithm, θ(m) is the

estimated coefficients after iteration m and Ωw is the information set of monthly and

quarterly indicators in week w. The algorithm is stopped at M when cM < 10−5 or

M = 500, whichever condition is met first.

2.4 Forecast contributions of individual variables

The contribution of each variable to the GDP forecast can be derived using the algo-

rithm described in Koopman and Harvey (2003) and applied to dynamic factor models

in Bańbura and Rünstler (2011). This Section briefly recapitulates the idea of assigning

implicit weights to individual variables in making GDP forecasts.

The vector yt defined in Equation 1 contains GDP and all other variables from which

factors are extracted. In the most generalised state space form, yt can be expressed as:

yt = W (θ)αt + ξt, ξt∼N (0,Σξ(θ))

αt = T (θ)αt−1 + ũt, ũt∼N (0,Σũ(θ))
(16)

where θ = (ΛM ,ΛQ, A1, ..., Ap, ρM , ρQ, R̃, Q̃) denotes the set of model parameters and

errors ξt and ũt are defined in Equation 5. The Kalman smoother provides the smoothed

estimate of the state vector at|T = E[αt|yT ] conditional on the data. Each individual

element of the smoothed state vector at|T can be decomposed into a weighted sum of all

observations through time. The weighted sum is given by:

at|T =
T∑

j=1

wj(at|T )yj (17)

where the weight matrices wj(at|T ) are computed using the algorithm from Koopman

and Harvey (2003). Note that the sum in Equation 17 has subscript j, which indicates
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that the weights are computed after the Kalman smoother has been applied for t =

1, ..., T to get at|T . Hence, for each point in time t we sum all observations in yj given

weight wj for j = 1, ..., T . Naturally, when j gets closer to t, the weight of observations

yj tend to get larger.

Now that we have split up each element of smoothed state vector at|T into a weighted

sum of observables, we can link the weighted sum to the GDP forecast ȳGDP
t ∈ ȳQt de-

fined in Equation 14. To do so, we plug in the smoothed state vector in Equation 14 and

define the forecast contributions as:

ȳGDP
t = λat|T = λ

T∑
j=1

wj(at|T )yj (18)

where λ is the loading vector associated to GDP and is part of the loading matrix ΛQ

from Equation 14. Since ȳGDP
t is a normalised value, we multiply the terms in Equation

18 by the standard deviation of GDP and add the mean to revert the GDP forecast to the

original units.

Note that the state vector αt contains both the factors and the idiosyncratic compo-

nent, as denoted in Equation 14. Hence, the estimated smoothed state vector at|T (and

its equivalent of weighted observables
∑T

j=1 wj(at|T )yj) includes both the factors and the

idiosyncratic component. The contribution of a variable to the GDP forecast is the sum

of the individual elements in the state vector, scaled by the loading vector for GDP.

2.5 News in forecast revisions

Following Bańbura et al. (2011), we update our GDP forecast on a regular basis and

assess the impact of new data releases on the forecast. The state space framework also

provides forecasts for all other variables than GDP. Hence, we can extract the unex-

pected component from the data release and its effect on the GDP forecast. This, we

define as news. This framework is used to understand the changes in GDP forecasts

when new data come in.

We consider two data vintages Ωv and Ωv+1 of the same set of variables retrieved at

dates v and v + 1. The data vintage Ωv+1 contains a set of new observations that are not

available in Ωv. The new observations are denoted by {yij ,tj , j = 1, ..., Jv+1} and tend to
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contain at least some new information.3 We assume that data are not revised and that

the incoming new part of the information set is orthogonal to the current information

set. Hence, we can write:

E[ȳGDP
t |Ωv+1] = E[ȳGDP

t |Ωv] + E[ȳGDP
t |Iv+1] (19)

where

Iv+1 = [Iv+1,1, ..., Iv+1,Jv+1 ]
′, Iv+1,j = yij ,tj − E[yij ,tj |Ωv], j = 1, ..., Jv+1.

The vector Iv+1 represents the part of the release in each variable yij ,tj that is unexpected

based on the information in Ωv. This unexpected part is referred to as the surprise in the

data release. Note that if a new observation in Ωv+1 is exactly equal to what is expected

based on Ωv, there is no surprise and the GDP forecast will not change.

The aim is to compute the second term of Equation 19, which is the forecast revision

caused by the incoming data. We define a vector Bv+1 = [bv+1,1, ..., bv+1,Jv+1 ] that links

the surprise in the data release of each variable to the new GDP forecast. The forecast

revision can be written as:

E[ȳGDP
t |Ωv+1]− E[ȳGDP

t |Ωv]︸ ︷︷ ︸
forecast revision

= Bv+1Iv+1 =

Jv+1∑
j=1

bv+1,j(yij ,tj − E[yij ,tj |Ωv]︸ ︷︷ ︸
surprise

). (20)

As showed by Bańbura et al. (2011), both matrices Bv+1 and Iv+1 can be computed using

the Kalman filter and smoother.

Note that the forecast of ȳGDP
t not only depends on a given data vintage Ωv or Ωv+1,

but also on a parameter vector θ that depends on one of the two data vintages. To iden-

tify the news impact of each variable, we should keep the parameter vector θ constant.

We estimate the parameter vector θ using Ωv+1 and apply those parameter estimates to

compute E[ȳGDP
t |Ωv].

In conclusion, the revision of the GDP forecast is decomposed as a weighted sum

of surprises in the most recent data vintage. The news in the GDP forecast depends on

the size of the surprises captured in Iv+1, as well as on the relevance of the variables in

3 Note that we use subscript j to indicate that variables might have a different publication days within
a month, but can apply to the same month t.
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forecasting GDP indicated by Bv+1.

3 Data

3.1 Data selection

We construct a small, medium-sized and large dataset for our analysis by meticulously

examining all monthly indicators from the publicly available data sources: Statistics

Netherlands, Eurostat, the ECB Data portal and the European Commission. In addi-

tion to publicly available data, the database also includes information from proprietary

sources, i.e: Refinitiv (e.g. PMI manufacturing), Betaalvereniging Nederland for debit

card payments, and Het Financieele Dagblad for tone-adjusted news topics based on

previous research (see Dijk, van and de Winter, 2023). The small, medium-sized, and

large datasets contain 24, 67 and 129 monthly series, respectively. The small, medium-

sized, and large datasets contain 4, 9 and 9 quarterly series, respectively.

Following the philosophy of the frequently used FRED-MD macroeconomic database

for the USA (McCracken and Ng, 2016), we categorize our data series into seven groups:

(1) output & income, (2) labor market, (3) housing, (4) consumption, orders & inven-

tories, (5) money & credit, (6) interest & exchange rates, and (7) stock market. The

selection process is guided by two criteria: a direct relationship with macroeconomic

developments and a start date no later than March 2000. The model selection Section

shows whether the size of the database matters for the forecast accuracy of the model.

Following, amongst others, Bańbura and Modugno (2014), we include the headline or

market moving indicators in the small dataset. The indicators in the medium-sized

and large datasets are in large part guided by the medium-sized and large datasets in

Bańbura and Modugno (2014), Alvarez and Perez-Quiros (2016) and Barigozzi and Lu-

ciani (2021). The medium-sized dataset adds more disaggregated and sectoral series,

and the large dataset includes even more detailed series. We take a practical approach

and base our choice of small, medium-sized, and large datasets in line with our in-house

expertise and the datasets used in previous research. An alternative to this approach is

a data-driven approach that selects the most relevant indicators (see e.g., Bai and Ng,

2008 and Rünstler, 2016). That could be investigated in future work. In our experience,
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a challenge posed by these data-driven selection methods lies in determining how to

handle outcomes that suggest the inclusion of obscure data series while excluding ma-

jor “market moving” indicators. Our different database sizes in more detail:

• Small, comprises the main market-moving indicators of real activity for the en-

tire economy. These include industrial production, the stock of new orders, retail

sales, the unemployment rate, the economic sentiment indicator, the purchasing

manager index, and confidence levels reported in newspapers. Additionally, it in-

cludes financial series such as stock price indices or raw material prices as well as

the headline FD-sentiment index. This dataset encompasses a total of 24 monthly

series and 4 quarterly series;

• Medium-sized, in addition to the series covered in the small specification, pro-

vides more disaggregated information on industrial production, survey data, and

national accounts. It nearly encompasses all the essential real economic indicators

for the Netherlands as reported by Statistics Netherlands and Eurostat. Further-

more, it includes four financial newspaper sentiment indices, each representing

the sentiment of one of the four main topics that make up the headline index and

the European stock market index. This dataset consists of 67 monthly series and 9

quarterly series;

• Large, apart from the indicators in the medium-sized dataset, incorporates series

from the large euro area factor model described in works like Bańbura et al. (2011).

It offers greater sectoral granularity for industrial production, the services sector,

and retail trade. Additionally, it includes sub-indices from sentiment surveys, six-

teen more granular newspaper sentiment indices, and PMIs. The large dataset

comprises 129 monthly series and 9 quarterly series.

Table A.1 shows the series name, group, frequency, transformation, source, start-year

and publication lags (in days) of all series in the small dataset. Table A.1 in the appendix

shows the mnemonics for all series in the small, medium-sized and large datasets.

4 Model specification horse race
This Section disentangles the influence of modeling choices on the forecast accuracy of

DFROG. With this aim, we design an experiment that consists of a pseudo real-time
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Table 1: Overview of variables in small dataset
 | DNB RESTRICTED |#

Freq. Ln. Diff.

1 Consumption households: domestic Cons., orders & inv. M X X CBS jan-'95 38

2 Consumer confidence: headline Cons., orders & inv. M O X CBS apr-'86 -8

3 PMI manufacturing: new orders Cons., orders & inv. M O X Refinitiv mrt-'00 1

4 House price index Housing M X X CBS jan-'95 22

5 Houses sold Housing M X X CBS jan-'95 22

6 10-year government bond yield Interest & exch. rates M O X Eurostat apr-'86 10

7 Nominal effective exchange rate Interest & exch. rates M X X Eurostat jan-'99 30

8 Unemployment rate: 15-75 years Labor market M O X CBS jan-'83 17

9 Hours worked Labor market Q X X CBS mrt-'95 45

10 Loans: households Money & credit M X X ECB sep-'97 26

11 M3 Money & credit M X X ECB jan-'70 26

12 Industrial production: manufacturing Output & income M X X CBS jan-'95 39

13 Import of goods Output & income M X X CBS jan-'95 42

14 Export of goods Output & income M X X CBS jan-'95 42

15 Industrial confidence: headline Output & income M O X Eurostat jan-'80 0

16 Economic sentiment: headline Output & income M O X Eurostat jan-'80 0

17 Services confidence: headline Output & income M O X Eurostat jan-'96 0

18 Retail sales: total Output & income M X X Eurostat jan-'00 39

19 PMI manufacturing: headline Output & income M O X Refinitiv mrt-'00 1

20 PMI composite: world (headline) Output & income M O X Refinitiv jul-'98 5

21 FD: headline Output & income M O O FD jan-'85 0

22 Capacity utilization Output & income Q O X Eurostat mrt-'80 -3

23 Gross domestic product: eurozone Output & income Q X X Eurostat mrt-'95 45

24 Gross domestic product Output & income Q X X CBS mrt-'96 45

25 Harmonised index of consumer prices: total Prices & wages M X X CBS jan-'96 1

26 Producer prices: manufacturing Prices & wages M X X CBS jan-'81 30

27 Commodity Price index: non-energy comm. Prices & wages M X X ECB jan-'96 5

28 AEX Stock market M X X Refinitiv jan-'83 1

Freq.: frequency of series (M=monthly, Q= Quarterly), Trans.: transformation of series, Ln:  take logarithm (X= year, O= no), Diff.: take first 

difference of series (X= 0, O= yes), Source: source of series (CBS: Statistics Netherlands, ECB: European Central Bank, Eurostat: Eurostat, FD: 

Financieele Dagblad, Refinitiv: Refinitiv), Start: start mont/quarter of series, Publ. Lag: publication lag of series in days; negative publ. lag implies 

serie is released n  days before the end of the month.

Publ.lag 

(days)
Nr. Series Group Source Start

Trans.

out-of-sample forecasting horse-race between two types of dynamic factor models with

different treatments. To create variation around those treatments and generate forecast

errors from different models associated to each feature, we follow Coulombe et al. (2022)

and Carriero et al. (2019) amongst others.

4.1 Forecasting design

All experiments are conducted in a pseudo real-time setting. The first forecasts are

produced based on model estimations with data used up until April 2013, and we re-

estimate the model in each consecutive month to produce new forecasts up until the last

model estimation in November 2023. We estimate the parameters of all models recur-

sively, using only the information that was available at the time of the forecast. More

specifically, starting from April 2013, we reconstruct pseudo-real-time vintages by repli-

cating the data availability pattern as implied by a stylized release schedule. This is

done by recursively removing observations from the full dataset according to a fixed
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schedule. Consequently, a series of forecasts, nowcasts, and backcasts of GDP growth

rate is obtained from the Kalman smoother each month, using parameters estimated

based solely on the information set available at that time.

Given the unavailability of real-time historic data vintages, only final revised data

downloaded on January 26, 2024 is used in the nowcasting exercise. As a result, the role

of historic data revisions is ignored and we can only perform a pseudo real-time out-

of-sample exercise. However, factor models are known to be robust to data revisions

since revision errors are idiosyncratic by nature and may cancel out; see for example

Bernanke and Boivin (2003) for the United States and Schumacher and Breitung (2008)

for Germany. For similar approaches, see Giannone et al. (2008), Jansen and de Winter

(2018) and Kant et al. (2022), among others. Another limitation is that we assume the

publication calendar to stay the same throughout the entire sample period. In reality,

the release delays might shift a little bit between months, and for some releases the

publication delay might have diminished over time due to more efficient data collection.

Table 2: Timing of forecast exercise for third quarter

no. forecast type month forecast on the 1st of
1 one-quarter-ahead 1 April
2 2 May
3 3 June
4 nowcast 1 July
5 2 August
6 3 September
7 backcast 1 October
8 2 November

We construct a sequence of eight forecasts for GDP growth in each quarter, obtained

in consecutive months. Table 2 explains the timing of the forecasting exercise in more

detail, taking the forecast for the third quarter of 2013 (2013Q3) as an example. We

make the first forecast on April 1, 2013, which is called a one-quarter-ahead forecast

in month one. Subsequently, we produce monthly forecasts for the next seven months

through November. The last forecast is made just two weeks before the first release

of GDP in mid-November. Following the conventional terminology, forecasts refer to

one or more quarter-ahead forecasts, nowcasts refer to current quarter forecasts, and

backcasts refer to forecasts for the preceding quarter, before official GDP figures become

available. In the case of our example 2013Q3, we make one-quarter-ahead from April to

15



DFROG: the nowcasting model of DNB

June, nowcasts from July to September, and backcasts in October and November.

4.2 Horse race design

The empirical analysis is structured as follows. First, we stack the forecast errors from all

treatments in one (potentially very long) vector and tease out the impact of the different

model features on the forecast accuracy by defining separate dummy variables for each

model specification.4

Second, we estimate a series of stacked OLS regressions to tease out the above treat-

ments. More precisely, we estimate each treatment for the two model types, and within

these model types for each model specification and dataset size used for estimating the

models. In total we estimate and produce forecasts based on 30,060 models, and analyze

167,076 forecast errors.

In each regression, the null hypothesis is that there is no predictive accuracy gain

with respect to the base specification, unless otherwise indicated. The base version of

DFROG is estimated for each of the dataset sizes small, medium-sized and large, and

has the following model features: estimation with data available on the 1st day of the

month, mild outlier correction, model coefficients estimated in 10-year rolling windows,

3 static factors and 4 lags in the autoregressive part of the model.

In the main text, we present the outcome over the ten-year period running from

2013Q3 up until 2023Q3. This period holds three sub-periods of economic upswing

and just as many downturns, giving a view on the forecast accuracy of the models over

the business cycle. Moreover, the evaluation period is long enough to determine the

statistical significance reliably.5

The analyzed period is also special as it includes the aftermath of the European debt

crisis, the COVID-19 pandemic, and a surge in energy prices due to the Russian invasion

of Ukraine. The swings in GDP during the COVID crisis have no precedence in terms

4 More precisely, we include the natural logarithm of the squared forecast errors as dependent variable,
and dummies for the model features. In this log-level specification the percentage impact of the model
features on the squared forecast error can be calculated as (exp(coefficient) −1) × 100), where exp is the
exponent and coefficient is the coefficient of the feature. The squared forecast error puts a higher weight
on large forecast errors, in line with the loss function of a central bank, i.e., making large forecast errors is
much more costly than small forecast errors.

5 Periods of economic upswing and downturn defined on the basis of the DNB business cycle indicator,
see here.
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of size. To assess the robustness of our regression results for the COVID crisis, we also

estimate regression models over the period 2013Q3-2023Q3, excluding the COVID crisis.

The latter is defined as the period 2020Q1-2020Q3. We also run separate regressions

for all models during the period leading up to the COVID crisis (2013Q3-2019Q4) to

assess the forecasting performance of the different model specifications in more tranquil

times. The statistical outcomes for the sub-periods are somewhat less reliable compared

to those over the full sample period, because the number of observations is smaller. We

will analyze the impact of modeling choices on the forecasting performance along four

dimensions, i.e.:

• Model specification: We evaluate if it matters how we summarize the information

in the DNB indicator dataset: are more factors better or worse for forecasting per-

formance? We also investigate to what extent the dynamics in the model matter:

is it better to have models with short memory or long memory, depending on the

number of lags in the autoregressive part of DFROG?;

• Data choice: Does size matter? We investigate if it matters how many data series

we use, by estimating the models with the small, medium-sized, and large datasets

extracted from the DNB indicator database. Besides the size of the dataset, we also

investigate the merits of including survey data and quarterly data. We also deter-

mine the added value of data that are only available with a subscription (Refinitiv)

or that are confidential (payments data or the FD sentiment indicator);

• Estimation & transformation: Does it matter for forecast accuracy how we treat

outliers, and does the estimation period matter? We show the impact on forecast

accuracy by comparing the performance when we do not treat the data for out-

liers, do a mild outlier correction, or a more stringent correction. Besides, we test

to what extent the forecast accuracy of the model depends on the length of the

estimation period. We evaluate three versions: an expanding window and two

rolling windows of respectively 10 and 15 years. We also assess how to transform

survey data. There is an ongoing debate on this issue in the literature on whether

to include surveys in levels or differences. The rolling window estimations have

the advantage over the expanding window estimation that they better allow for

17



DFROG: the nowcasting model of DNB

changes in the relationship between the monthly indicators and GDP over time.6;

• Timing: Does forecast accuracy increase when more monthly data are available for

the quarter to be forecasted? Intuitively it should, but we test for this empirically

in three different variants: the distance to the forecasted quarter in terms of quar-

ters (backcast, nowcast, one quarter ahead forecast), the month within the quarter

(month 1, month 2 and month 3), and the day within each month (first day of the

month, middle of the month or end of the month).

4.3 Outcome horse race

This Section presents the impact of the modeling choices described in the previous para-

graph. The main text presents the figures based on the whole sample period, but we will

discuss the impact of the modeling choice separately for the pre-COVID period and the

period as of COVID if the outcomes deviate strongly from the whole sample outcomes.

The figures for the latter two periods are collected in the Appendix.

Including one lag is sufficient, but adding more factors is advisable

Recently, Miranda et al. (2022) conducted an in-depth review of the optimal model spec-

ification of dynamic factor models in the context of the euro area. They concluded that

the out-of-sample forecast accuracy is minimized when forecasts are based on models

with one factor and parsimonious dynamics in the factors.

Our regression results only partly corroborate this finding for the Netherlands, as

shown in Figure 1. The figure presents the gain achieved by adding more factors or

more lags in the VAR-part of the dynamic factor model. The footnote in Figure 1 pro-

vides additional details on the estimation period and the regression diagnostics. All ef-

fects are rounded to whole percentages and presented relative to the base specification.

6 An alternative way to deal with changes in the relationship between the monthly indicators and
quarterly GDP is to incorporate, non-linearities, stochastic volatility and/or time-varying parameters (see
e.g. Eraslan and Schröder, 2023). We abstained from these possibilities for now, because to estimate these
concepts with a reasonable reliability we need either a (very) long history of the indicators or impose
strong priors on these relationships. Moreover, the time needed to re-estimate these models is quite
long given our computing power which complicates using these models for frequent and fast updates.
Moreover, for some series we lack (very) long history which is necessary to estimate these models. Our
current approach tries to hedge against time-variation and non-linearities by re-estimating the model
each month. However, it could be fruitful for future research to explore non-linearities, time-variation
and stochastic volatility in dynamic factor models in more detail, using recent advances in speeding up
EM estimation techniques (e.g. Opschoor and van Dijk, 2023).
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For clarity, we express the outcomes visually using figures, focusing solely on the full

period in the main text to maintain conciseness. Our evaluation of model specifications

involves two approaches:

• Economically meaningful: If a bar falls within the shaded region, the squared er-

rors deviate by more than 5% from the base DFROG model specification.7 This

±5% threshold serves as a rough, informal gauge of the economic significance of

forecast accuracy gains resulting from this model feature, as previously employed

by Jansen and de Winter (2018);

• Statistical significance: Coefficient significance is formally tested at the 5%-level,

following methodologies by Coulombe et al. (2022) and Carriero et al. (2019). Col-

ored bars indicate statistically significant coefficients:

– Green bars: Represent an improvement in forecast accuracy;
– Red bars: Represent a deterioration in forecast accuracy.

One of the messages conveyed by Figure 1 is that one lag in the VAR-part of the model

appears to be sufficient. However, to better capture the variance in the monthly dataset,

the model requires additional factors. The number of factors included in the regression

significantly impacts the outcome. It could potentially increase the forecast accuracy of

the competitor to DFROG up to 17% for backcasting. The gains in forecast accuracy are

largest for backcasts, followed by the nowcasts.

Overall, the best-performing specifications have three factors.8 This outcome is strongly

driven by the period post-COVID. Pre-COVID, the only statistically and economically

significant impact on the forecast accuracy stems from the third factor, when backcasting

(see Figure A.1 in the Appendix). This indicates that more model features are required

to capture the more complicated dynamics since the COVID-crisis.

7 The base DFROG model specification includes 1 factor and 2 lags, and all coefficients are estimated
using a 10 year rolling window. The model is estimated using a small dataset including both public &
non-public data, excluding series with a quarterly frequency. All series are corrected for extreme outliers
and all survey data are included in first difference. The ragged edges in the data are constructed as if the
data where downloaded on the first day of the month.

8 This outcome might raise the question if there is any increment from going from three to four factors.
This increment is (very) small and is in line with the statistical tests conducted to determine the number
of factors, following Bai and Ng (2002), and scree plot tests Catell (1966). Moreover, including too many
factors can yield non-negligible estimation errors, or overfitting of the model (see e.g., Miranda et al.
(2022) and Barigozzi and Cho (2020).
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Figure 1: Impact of model-specification on forecast accuracy, full sample
Impact of features on out-of sample mean squared forecast, compared to base model, in percent
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Notes: Squared forecast error regressed on all model features via stacked regression. A colored bar indicates the coefficient is
statistically significant at the 5% level. If a bar is inside the shaded the absolute errors differs by more than ±5%. All effects against
a model with the following specifications: small dataset, 1 factor, 2 lags, estimation with a rolling window of 10 years, using both public
& non−public data, no quarterly variables included, only extreme outliers deleted, surveys in first difference, vintages downloaded on the
first of the month. 

 Estimation period: 2013Q3−2023Q3. Regression diagnostics: Panel a: number of observations = 123,192, adjusted R−squared = 0.349, p−value
= 0.000. Panel b: number of observations = 28,584, adjusted R−squared =0.303, p−value =0.000. Panel c: number of observations = 47,304,
adjusted R−squared = 0.335, p−value = 0.000. Panel d: number of observations = 47,304, adjusted R−squared = 0.423, p−value = 0.000.

Impact features on out−of−sample mean squared forecast, in percent

Source: Own calculations.

For simplicity, we could opt for a specification with only 1 lag. However, to safeguard

against occasional forecast inaccuracies, we decide the opt for averaging across specifi-

cations with 1 to 3 lags. For the same reason, we decide to average over 1 to 3 factors.

Size does not matter, but including surveys increases accuracy

The main conclusion from analyzing the impact of dataset size in the dynamic factor

model reads as follows: while the sectoral information in the medium-sized dataset

may be useful for interpretation, it is not necessarily essential for accurate GDP forecasts.

This is depicted in Figure 2. Interestingly, the small-sized dataset specification, which in-
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cludes series measuring only total economy concepts, performs comparably.9 This may

be attributed to the challenges of extracting a relevant signal when dealing with indi-

cators of varying quality, as highlighted by researchers such as Boivin and Ng (2006)

and Bańbura and Modugno (2014). Interestingly, our findings align with the existing

academic literature (e.g., Caggiano et al., 2011 and Havrlant et al., 2016) which suggests

that medium-sized datasets (typically containing 10-30 variables) perform just as well

as models with larger datasets (containing over 100 variables). The results remain con-

sistent across different time periods, including the tranquil pre-COVID period and the

period without the COVID crisis.

When considering the type of data to include, Figure 2 strongly indicates that incor-

porating surveys strongly and significantly improves forecast accuracy. This results is

apparent in both the pre-COVID period as well as the period without COVID. Adding

quarterly data to the forecasting model does not increase the forecast accuracy in a

meaningful way. Furthermore, adding quarterly data –such as production capacity and

sub-components of GDP– does not lead to improved forecast accuracy in our sample.

Measured over the total sample period, adding series from restricted data series (Re-

finitiv, FD) does not impact the forecast accuracy, and this results is quite persistent.10

There is one exception: Adding the restricted series lowers the average RMSFE of the

backcasts during the no-COVID period by 14%. This implies that including restricted

series increases the forecasts accuracy of backcast after the COVID-crisis.

Based on these findings, we conclude that expanding the dataset size and incorporat-

ing quarterly data do not necessarily enhance forecast accuracy. However, policymakers

might still prefer a medium-sized or large dataset over a small one, for the purpose of

interpreting the information conveyed by their releases. Notably, the inclusion of survey

indicators significantly improves forecast accuracy and should be considered. Although

adding restricted data to the dataset does not increase the forecast accuracy, it also does

not hurt. Some indicators, such as the PMI and financial market data are strongly fa-

vored by policy makers and we therefore include them in our model. We decide to opt

9 The gains from using a large dataset are comparatively small. Measured over the total sample the
deterioration is statistically significant, but economically, the deterioration is not sizable (3%).

10 The FD-indicators significantly improves the forecast accuracy in a nowcasting model over a longer
sample. This is also one of the reasons why we opt to include FD-indicators, see Dijk, van and de Winter
(2023).
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Figure 2: Impact of choice of data on forecast accuracy
Impact of features on out-of-sample mean squared forecast, compared to base model, in percent
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Notes: Squared forecast error regressed on all model features via stacked regression. A colored bar indicates the coefficient is
statistically significant at the 5% level. If a bar is inside the shaded the absolute errors differs by more than ±5%. All effects against
a model with the following specifications: small dataset, 1 factor, 2 lags, estimation with a rolling window of 10 years, using both public
& non−public data, no quarterly variables included, only extreme outliers deleted, surveys in first difference, vintages downloaded on the
first of the month. 

 Estimation period: 2013Q3−2023Q3. Regression diagnostics: Panel a: number of observations = 123,192, adjusted R−squared = 0.349, p−value
= 0.000. Panel b: number of observations = 28,584, adjusted R−squared =0.303, p−value =0.000. Panel c: number of observations = 47,304,
adjusted R−squared = 0.335, p−value = 0.000. Panel d: number of observations = 47,304, adjusted R−squared = 0.423, p−value = 0.000.

Impact features on out−of−sample mean squared forecast, in percent

Source: Own calculations.

for a medium-sized dataset including survey indicators and series from restricted data

sources. We do not include quarterly data.

15-year window and mild outlier correction increase forecast accuracy

Figure 3 illustrates the impact of estimation and transformation options in the model,

revealing some interesting insights. Over the entire period, the 15-year moving estima-

tion window is the preferred option for estimation. Using a 15-year estimation window

results in a 10% increase in forecast accuracy, averaged over all forecasting horizons.

This result is strongly driven by the COVID period and afterwards, as we do not find
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any significant effect of the size of the estimation window on the forecast accuracy pre-

COVID.

Figure 3: Impact of estimation & transformation on forecast accuracy
Impact of features on out-of sample mean squared forecast, compared to base model, in percent
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Notes: Squared forecast error regressed on all model features via stacked regression. A colored bar indicates the coefficient is
statistically significant at the 5% level. If a bar is inside the shaded the absolute errors differs by more than ±5%. All effects against
a model with the following specifications: small dataset, 1 factor, 2 lags, estimation with a rolling window of 10 years, using both public
& non−public data, no quarterly variables included, only extreme outliers deleted, surveys in first difference, vintages downloaded on the
first of the month. 

 Estimation period: 2013Q3−2023Q3. Regression diagnostics: Panel a: number of observations = 123,192, adjusted R−squared = 0.349, p−value
= 0.000. Panel b: number of observations = 28,584, adjusted R−squared =0.303, p−value =0.000. Panel c: number of observations = 47,304,
adjusted R−squared = 0.335, p−value = 0.000. Panel d: number of observations = 47,304, adjusted R−squared = 0.423, p−value = 0.000.

Impact features on out−of−sample mean squared forecast, in percent

Source: Own calculations.

Second, a mild correction for outliers in the dependent variable appears sufficient. The

forecast accuracy is not adversely affected by using a more stringent outlier correction.

Using no outlier correction strongly worsens accuracy, especially when forecasting. It

can lead to a 37% lower accuracy for forecasts in the period excluding the COVID crisis

and 27% lower forecast accuracy in the pre-COVID period.11

11 Outlier correction is performed for each indicator, based on the observed statistical distribution of
that indicator. For strong outlier correction, all indicator values that fall outside the interval defined by
the median of the indicator ±3 times the interquartile range of the indicator distribution are removed. For
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Based on these results, we choose a 15-year moving estimation window. Apart from

the increase in forecast accuracy, this choice also helps to safeguard against changes

in statistical relationships among the variables. Additionally, a mild outlier correction

should be sufficient.

Forecast accuracy increases with more recent information

Figure 4 presents an intuitive result. When there is more information available for the

quarter being forecasted, the forecast accuracy is (much) higher.

Figure 4: Impact of timing on forecast accuracy
Impact of features on out-of sample mean squared forecast, compared to base model, in percent
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Notes: Squared forecast error regressed on all model features via stacked regression. A colored bar indicates the coefficient is
statistically significant at the 5% level. If a bar is inside the shaded the absolute errors differs by more than ±5%. All effects against
a model with the following specifications: small dataset, 1 factor, 2 lags, estimation with a rolling window of 10 years, using both public
& non−public data, no quarterly variables included, only extreme outliers deleted, surveys in first difference, vintages downloaded on the
first of the month. 

 Estimation period: 2013Q3−2023Q3. Regression diagnostics: Panel a: number of observations = 123,192, adjusted R−squared = 0.349, p−value
= 0.000. Panel b: number of observations = 28,584, adjusted R−squared =0.303, p−value =0.000. Panel c: number of observations = 47,304,
adjusted R−squared = 0.335, p−value = 0.000. Panel d: number of observations = 47,304, adjusted R−squared = 0.423, p−value = 0.000.

Impact features on out−of−sample mean squared forecast, in percent

Source: Own calculations.

Backcasts have the significant advantage of being able to access all the monthly data for

strong outlier correction, the interval is defined by the median of the indicator ±2 times the interquar-
tile range of the indicator distribution. Note that the outlier-correction is conducted over the estimation
window. We calculate the forecast accuracy using the true (non-outlier corrected) GDP growth.
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the quarter being forecasted, which enhances its accuracy. Measured over the full pe-

riod, the nowcasts and backcasts are 25% and 49% more accurate than the one-quarter-

ahead forecasts, respectively. The same logic applies when forecasting later in the month:

forecasting in the third month of a quarter improves the forecast accuracy by 9% com-

pared to the first month. Measured over the complete sample, this effect is much more

pronounced for the nowcasts than the one quarter ahead forecast. In the pre-COVID

period, the impact of the increase in forecast accuracy of forecasting in the second and

third month of a quarter is only economically meaningful and statistically significant

when forecasting. The forecast accuracy for backcasting in the first or second month is

almost the same and does not significantly differ. This indicates that most of the impor-

tant information for backcasting a quarter is available by the end of the first month.

The differences in forecasting at the beginning, middle, or end of the month are nei-

ther economically meaningful nor statistically significant. This intuitive result implies

that it is much more important whether you are backcasting, nowcasting, or forecasting

a quarter, and which specific month you are in within a quarter, rather than the specific

day of the month.

Summing up: DFROG forecast is average of 18 specifications

Based on our empirical results our DFROG model is the average of the forecasts over 18

different specifications of the model. These 18 vary in the number of lags, the number

of factors and the transformation of the survey data. We included all combinations of 1

to 3 lags in the VAR, 1 to 3 factors. In total this results in 9 forecasts. We estimate these

9 models for two variants: one where all the survey indicators are in levels, and one

where all survey indicators are in first difference, resulting in a total of 18 models. All

18 models are estimated using a 15-year rolling window, mild outlier-correction, and a

medium-sized dataset which includes surveys and restricted data.

5 Comparison to benchmark models
This Section compares the forecast accuracy of DFROG with an alternative dynamic

factor model specification with three benchmark models: a random walk with drift,

an autoregressive model and a popular alternative dynamic factor model specification
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(Bańbura et al., 2011). Additionally, we report the relative forecast accuracy of DFROG

against the forecasts of professional analysts. For the latter, we use the quarterly fore-

casts for Dutch GDP growth, supplied by Consensus Forecasts. The new Consensus

forecasts are released each last month of a quarter and constitute the average quarterly

forecast of the surveyed professional forecasters. The panelists supply GDP forecasts for

six consecutive forecasts, starting from the first unpublished quarter. The well-known

annual Consensus forecasts have been analyzed in several papers. However, to the best

of our knowledge, the quarterly GDP forecasts have not been used before, except in a

recent case study for the Netherlands (Jansen and de Winter, 2018).

5.1 Comparing forecast accuracy

Table 3 presents the main outcomes of our analysis. Panel (a) shows the out-of-sample

relative Root Mean Squared Forecast Error (rRMSFE) of the benchmark models and the

Consensus Forecasts over the total evaluation period, i.e. the period 2013Q3–2023Q3.

All RMSFEs are in relative terms (rRMSFE) against DFROG, i.e.: rRMSFEALT = RMSFEALT
RMSFEDFROG

.

Here, ALT denotes the forecast of the alternative, i.e. one of the benchmark models or the

Consensus forecasts. A value higher/lower than 1 indicates that the RMSFE of the alter-

native forecast is higher/lower than the RMSFE of DFROG. Bold cells indicate the cases

where the alternative model RMSFE is at least 5% higher than the RMSFE of DFROG.

Starred entries (∗, ∗∗, ∗∗∗) indicate that the one-sided Diebold and Mariano (1995) test

indicate the difference is statistically significant at the 10%, 5%, and 1% levels, respec-

tively.12 Panel (b) shows the outcomes for the same key figures for the Pre-COVID pe-

riod, whilst Panel (c) shows the outcomes for the entire period excluding COVID. The

outcomes in Table 3 point to several interesting results.

First, DFROG backcasts and nowcasts are economically and statistically more accu-

rate than the random walk and autoregressive models, further the “naive benchmark

models”. This conclusion holds both for the entire period, the pre-COVID period as

well as the entire period without the very volatile COVID quarters. When forecasting

one-quarter ahead DFROG does not always beat the naive benchmark models. This is

a well-known phenomenon in the literature: DFMs perform well when information on
12 The RMSFEs are based on the most recent realization of GDP growth, the outcomes are robust to

using the “first estimate” of GDP growth of CBS at the time of release.
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Table 3: Relative RMSFE of benchmark models and Consensus forecasts versus DFROG

Backcast Nowcast 1Q Ahead forecast
M2 M1 M3 M2 M1 M3 M2 M1

(a) Total evaluation period: 2013Q3 - 2023Q3 (N= 41)
Random walk 1.19∗ 1.20∗ 1.19∗∗ 1.22∗∗ 1.14∗∗∗ 1.08∗∗ 0.95 1.02
Autoregressive model 1.19∗∗ 1.19∗∗ 1.18∗∗ 1.12∗ 1.05∗∗ 0.98 0.93 0.99∗∗

Dynamic factor model B&R 0.98 1.02∗ 1.05∗ 1.03 1.06 1.02 0.95 0.98
Consensus forecast 0.67 0.68 0.67 0.90 0.84 0.79 0.90 0.97

(b) Pre-COVID: 2013Q3 - 2019Q4 (N= 26)
Random walk 1.30∗∗ 1.28∗ 1.24∗ 1.22∗ 1.26∗∗ 1.11 1.34∗∗ 1.36
Autoregressive model 1.12∗ 1.09∗ 1.07 1.03 1.07∗ 0.94 1.01 1.04
Dynamic factor model B&R 1.07 1.07 1.07 1.11∗ 1.16∗∗ 1.03 1.04 1.06
Consensus forecast 1.35∗∗ 1.33∗∗ 1.25∗∗ 1.03 1.07 0.95 0.87 0.87

(c) No COVID: 2013Q3 - 2023Q3, excluding 2020Q1 -2020Q3 (N = 38)
Random walk 1.38∗ 1.20∗ 1.19∗ 1.22∗∗∗ 1.14∗∗ 1.07∗∗ 0.94 1.01
Autoregressive model 1.25∗ 1.25∗ 1.20∗ 1.21∗ 1.15∗ 1.04* 1.01 1.00
Dynamic factor model B&R 1.03 1.03 1.00 0.99 1.00 0.91 0.91 0.93
Consensus forecast 1.46∗∗ 1.46∗∗ 1.41∗∗ 0.95 0.91 0.82 0.84 0.82

Note: Bold cells indicate the RMSFE is at least 5% worse than DFROG. Starred entries (∗, ∗∗, ∗∗∗) indicate that the one-
sided Diebold-Mariano test (alternative is worse than the baseline) is significant at the 10%, 5%, and 1% levels, respec-
tively.
Source: Own calculations.

the quarter to forecast is partly known, but does not necessarily have the competitive

edge when the forecast horizon is longer and no information on the quarters is avail-

able, see e.g. Giannone et al. (2008) and Jansen and de Winter (2018). The added value

of DFROG increases when more data for the forecasted quarter arrive and can increase

up to 38% for the period excluding the COVID period.

Second, comparing the outcomes in panel (a) of Table 3 with the outcomes in panel

(b) and (c) of Table 3 it is evident that the competitive edge of DFROG over the naive

benchmark models diminished during the COVID crisis. This is not surprising, as the

onset and severity of the crisis were largely unapparent in the monthly data releases,

partly because all series were adjusted for extreme outliers.”

Third, DFROG outperforms the popular dynamic factor model of Bańbura and Rün-

stler (2011) in the Pre-COVID period, but only by a small margin. When backcasting and

nowcasting the advantage is no more than 7% on average. The nowcasts of the Bańbura

and Rünstler (2011) for the first and second month where 11% and 16% worse, respec-

tively. However, measured over the whole sample as well as excluding the COVID
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crisis, DFROG does not systemically beat the Bańbura and Rünstler (2011) model. In

these periods the RMSFE of DFROG is never both economically and statistically differ-

ent from the model of Bańbura et al. (2011).

Fourth, DFROG outperforms the Consensus forecasts when nowcasting and back-

casting in normal times, but the latter are more accurate in times of large distress. This

result has been documented before Jansen and de Winter (2018) and Lundquist and Stek-

ler (2012). It reflects the inability of mechanical statistical model to incorporate expert

knowledge. Professional forecasters are very responsive to the latest information about

the state of the economy that is not captures in the monthly indicators and adjust their

predictions quickly. Strikingly, professional analysts fail to produce accurate back- and

nowcasts during tranquil times, and the forecasting performance is the mirror image of

the good forecasting performance during the COVID crisis. Over the whole evaluation

period excluding the three COVID quarters the professional analysts are beaten by a

46% margin by DFROG when backcasting.

Fifth, the RMSFE of the one quarter ahead forecasts of professional forecasters is

smaller than the RMSFE of DFROG, regardless of the period considered. However, the

differences are not statistically significant indicating that professional forecasters are not

structurally beating DFROG on this forecasting horizon.

5.2 Comparing the evolution of forecast accuracy in time

Figure 5 casts the outcomes in Table 3 into the time dimension, showing the cumula-

tive mean squared forecast error difference (CSSED) moving forward in time, calculated

as the cumulative sum of squared errors of the alternative model minus the cumulative

squared error of DFROG. A CSSED below zero indicates that the alternative model’s fore-

casts have a lower CSSE up until that that point in time, and are therefore more accurate

than DFROG. If the CSSED is above zero this indicates the reverse and the alternative

model has a a lower forecast accuracy at that point in time. Furthermore, an increase in

the CSSED indicates that the model performance of the alternative model is decreasing

vis-a-vis DFROG. A decline indicates the opposite.

The left-hand graphs in panel a, b and c of Figure 5 describe the evolution of the

CSSED’s over the entire evaluation period for the backcasts, nowcasts and one quarter
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Figure 5: Cumulative sum of squared error difference (CSSED)
CSSE alternative model - CSSE DFROG

(a) Backcast

Pre-COVID: 2013Q3 - 2019Q4 (N = 26)

Note: Cumulative Sum of Squared Errors Difference (CSSED) calculated for the average errors in the backcast (M1 and M2), nowcast (M1, M2 and M3) and 1 quarter 
ahead forecast (M1, M2 and M3). Calculated as CSSE alternative model - CSSE DFROG.

(c) 1Q Ahead forecast
Pre-COVID: 2013Q3 - 2019Q4 (N = 26)

(b) Nowcast

Total evaluation period: 2013Q3 - 2023Q3 (N =41)

Total evaluation period: 2013Q3 - 2023Q3 (N =41) Pre-COVID: 2013Q3 - 2019Q4 (N = 26)

Total evaluation period: 2013Q3 - 2023Q3 (N =41)
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ahead forecasts, respectively. The left-hand graphs of Figure 5 obscure the development

prior to the COVID crisis due to significant shifts in the relative forecast accuracy of the

models in COVID. To gain a clearer understanding of the pre-COVID CSSED evolution,

the right-hand graphs display the CSSED up to the COVID period for the backcast,

nowcast, and one-quarter-ahead forecast, respectively.

Panel a of Figure 5 shows that when backcasting, the forecasting advantage of the

Consensus forecast solely stems from the COVID period. There is a huge and sudden

decline in the CSSE of the Consensus forecast vis-a-vis DFROG. After COVID, there is

an upward trend in the red line, indicating that DFROG regained some of its forecast-

ing advantage. The COVID period caused a significant decline in the forecast accuracy

of the autoregressive model, as evidenced by the large increase in the green line. The

alternative dynamic factor model (Bańbura and Rünstler, 2011) showed no noticeable

change, suggesting that its forecast accuracy during backcasting remained roughly the

same as DFROG.

The evolution of the CSSED for the nowcasts (Panel b of Figure 5) is similar to that

for the backcasts, though by a lesser extent. A notable difference is the significant dete-

rioration in the forecast accuracy of the dynamic factor model of Bańbura and Rünstler

(2011). When forecasting one quarter ahead (panel c of Figure 5) the models are slightly

more accurate than DFROG measured over the entire period. In line with the outcomes

in Table 3 the differences are quite small, and mainly caused by deviating forecast per-

formance during the COVID crisis.

Interestingly, the forecast accuracy of the Consensus forecasts was declining com-

pared to DFROG in the period leading up to the crisis, for both the backcasts (panel a)

and the nowcasts (panel b). Note that the scale of this decline is significantly smaller

than that shown in the left-hand graphs. Additionally, there was a noticeable deterio-

ration in the forecast accuracy of the dynamic factor model by Bańbura and Rünstler

(2011) compared to DFROG, starting in the second half of 2015 and continuing right

up to the COVID crisis. This trend is observed in backcasts, nowcasts, as well as one-

quarter-ahead forecasts.
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6 Using DFROG in practice
DFROG can be quickly updated through automated data updates and model estimation.

This Section shows how we interpret and use the main model outputs of DFROG. We

use the backcast for 2024Q3, made on October 1, 2024, as an example.

6.1 DFROG backcast for 2024Q3 GDP growth

Figure 6 shows the backcast for 2024Q3 as of October 1, 2024.13 On October 1st, the

DFROG backcast for 2024Q3 GDp growth was 0.4% quarter-on-quarter (q-o-q). It’s

important to acknowledge the significant uncertainty associated with this backcasts:

the 68%-confidence interval for 2024Q3 ranges from 0.1% q-o-q to 0.7% q-o-q. A GDP

growth figure lower than 0.1% q-o-q or higher than 0.7% q-o-q is possible, it would how-

ever be somewhat surprising given the historical uncertainty bands around the DFROG

forecast.

Figure 6: DFROG backcast for 2024Q3 on October 1, 2024
Quarter-on-quarter growth of GDP

Power BI Desktop

DFROG forecast
GDP growth q-o-q, percent

0.0

0.5

1.0

2022Q4 2023Q1 2023Q2 2023Q3 2023Q4 2024Q1 2024Q2 2024Q3

Realisation Forecast (68% confidence interval)

DFROG forecast 2024Q3 and 2024Q4

Select dates
9/3/2022  8/20/2024 

Summary
• XXXX

2024Q3
• XXXX

2024Q4
• XXXX

Source: Own calculations.

Figure 7 shows the contributions of the DFROG series to the backcast for 2024Q3. The

method to compute these contributions is described in Section 2.4. Panel (a) of Figure 7a

displays the top and bottom ten contributions to the 2024Q3 forecast. Panel (b) of of

13 The confidence interval is constructed using the smoothed uncertainty of backcasts in the past, fol-
lowing from the Kalman smoother.
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Figure 7 shows the contributions of the variables grouped into the eight categories de-

scribed in Section 3, i.e.: (1) consumption, orders & inventories, (2) housing, (3) interest

& exchange rates, (4) labor market, (5) money & credit, (6) output & income, (7) prices

& wages and (8) stock market. A positive or negative contribution indicates a value that

is higher or lower than the average over the estimation period, respectively.

Figure 7: Contributions to DFROG backcast for 2024Q3 on October 1, 2024
Quarter-on-quarter growth of GDP, in percentage points

(a) Top and bottom 10 variable contributions

Power BI Desktop
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The sum of the contributions + average GDP growth (0.434) over the estimation sample equals the DFROG forecast for 2024Q3.
Source: Own calculations.

Panel (b) of Figure 7 highlights that, as of October 1, 2024 the“output & income” group

provides the highest positive contributions to our backcast. The “housing” and "money

& credit” groups also contribute positively, albeit by a much lesser extent. The large

positive contribution of the “output & income” group can be mainly traced back to GDP

in Panel (a) of Figure 7. As can be seen from that panel GDP growth is the largest

contributor to the backast: The relatively high GDP growth in 2024Q2 (1.0% quarter-on-

quarter), has has had a substantial positive impact on the bakcast for 2024Q3. Besides

the increase in economic sentiment, as well as the production expectation in industry

have had a positive impact.

The negative contributions are more evenly spread across groups. Although he
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largest negative contributions come from the “consumption, orders & inventories" group,

the negative contributions from the “prices & wages”, “labor market” and “stock mar-

ket” are also clearly visible. This can also be seen in Panel (a) of Figure 7a. Both the

less optimistic new order in industry (“consumption, orders & inventories") and em-

ployment expectations in industry (‘labor market”) contribute negatively to the DFROG

backcast. Moreover, the consumer services index of the Dow Jones Euro Stoxx (“stock

market”) and crude oil and non-energy commodity prices (both “prices & wages”) con-

tributed negatively to the DFROG backcast.

Table 4: Change in DFROG backcast in period 15 September – 1 October
Impact of new releases, top and bottom 10, in percentage points.

Power BI Desktop

Surprise data releases and impact on GDP growth forecast
Impact forecast, percentage points, compared to previous forecast
Last month Series description Group Surprise Impact forecast

 

September 2024 Economic sentiment: headline Output & income 0.012
September 2024 Services confidence: employment > 3 months Labor market 0.006
September 2024 Dow Jones Euro Stoxx: 50 Stock market 0.004
September 2024 Industrial confidence: production > 3 mnths Output & income 0.004
September 2024 Eurozone high yield bond spread Stock market 0.003
September 2024 Construction confidence: headline Housing 0.003
September 2024 Consumer confidence: unemployment > 12 months. Labor market 0.003
August 2024 Retail sales: total Output & income 0.002
September 2024 Consumer confidence: purchase of durable goods next year Consumption, orders & inventories 0.002
September 2024 Amsterdam exchange index Stock market 0.002
August 2024 Producer prices: manufacturing Prices & wages 0.000
September 2024 Retail confidence: headline Output & income 0.000
September 2024 Services conf.: ev. of de. < 3 m.: empl. activities Output & income -0.001
September 2024 Services conf.: ev. of de. < 3 m.: conslt. & head off. Output & income -0.001
September 2024 Harmonised index of consumer prices (HICP): total Prices & wages -0.002
September 2024 Crude oil price: brent spot free on board Prices & wages -0.004
August 2024 Passenger car registration Consumption, orders & inventories -0.004
August 2024 Unemployment rate: 15-75 years Labor market -0.004
August 2024 Unemployment rate: < 25 years Labor market -0.006
August 2024 World steel production Output & income -0.006

Show all

Positive
Impact forecast

Negative

Consumption, orders & inventories
Group

Housing
Interest & exchange rates
Labor market
Money & credit
Output & income

Prices & wages
Stock market

Positive

Non-zero

Surprise

Negative
Non-zero
Top 10
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Top 10
Bottom 10

News DFROG forecast 2024Q3

Source: Own calculations.

Table 4 shows the impact on the DFROG backcast of new data releases in the two week

between September 15 and October 1. The method to compute these contributions is

described in Section 2.5. This approach helps policy makers assess unexpected changes

in the estimates of current economic activity over time and evaluate the significance of

each data release. Moreover, it formalizes the essential aspects of how policy makers

have traditionally made forecasts. This process involves monitoring numerous data

releases, forming expectations, and then revising the assessment of the current state of

the economy whenever actual data deviates from those expectations. For clarity, we only

show the 10 new releases with the largest positive and negative impact on the backcast.

The “impact forecast” column at the end of the table indicates the impact of the data
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release on our backcast (in percentage points). The “surprise”’columns indicates the

difference between the actual value and the expected value for that indicator following

from the DFROG estimation on September 15. Only the sign of the surprise is shown.

An upward pointing green triangle represents a positive data surprise, and a downward

pointing triangle indicates a negative surprise. The other columns show the release

of the last data-point of each series (“last month”), a description of the series (“series

description”) and the series group (“group”).

In the two weeks between September 15 and October 1 the data release with the

largest positive impact on the DFROG backcast was the economic sentiment indicator.

The most negative impact on the backcast came from the higher than expected incom-

ing unemployment figures, lower than expected world steel production and lower than

expected passenger car registration.
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A Additional results

A.1 Results pre-COVID period: 2013Q3 – 2019Q4

Figure A.1: Impact of model-specification on forecast accuracy: pre-COVID period
Impact of features on out-of sample mean squared forecast, in percent
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Notes: Squared forecast error regressed on all model features via stacked regression. A colored bar indicates the coefficient is
statistically significant at the 5% level. If a bar is inside the shaded the absolute errors differs by more than ±5%. All effects against
a model with the following specifications: small dataset, 1 factor, 2 lags, estimation with a rolling window of 10 years, using both public
& non−public data, no quarterly variables included, only extreme outliers deleted, surveys in first difference, vintages downloaded on the
first of the month. 

 Estimation period: 2013Q3−2019Q4. Regression diagnostics: Panel a: number of observations = 76,752, adjusted R−squared = 0.081, p−value
= 0.000. Panel b: number of observations = 17,784, adjusted R−squared =0.141, p−value =0.000. Panel c: number of observations = 29,484,
adjusted R−squared = 0.073, p−value = 0.000. Panel d: number of observations = 29,484, adjusted R−squared = 0.092, p−value = 0.000.

Impact features on out−of−sample mean squared forecast, in percent

Source: Own calculations.

38



DFROG: the nowcasting model of DNB

Figure A.2: Impact of choice of data on forecast accuracy: pre-COVID period
Impact of features on out-of-sample mean squared forecast, in percent
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Notes: Squared forecast error regressed on all model features via stacked regression. A colored bar indicates the coefficient is
statistically significant at the 5% level. If a bar is inside the shaded the absolute errors differs by more than ±5%. All effects against
a model with the following specifications: small dataset, 1 factor, 2 lags, estimation with a rolling window of 10 years, using both public
& non−public data, no quarterly variables included, only extreme outliers deleted, surveys in first difference, vintages downloaded on the
first of the month. 

 Estimation period: 2013Q3−2019Q4. Regression diagnostics: Panel a: number of observations = 76,752, adjusted R−squared = 0.081, p−value
= 0.000. Panel b: number of observations = 17,784, adjusted R−squared =0.141, p−value =0.000. Panel c: number of observations = 29,484,
adjusted R−squared = 0.073, p−value = 0.000. Panel d: number of observations = 29,484, adjusted R−squared = 0.092, p−value = 0.000.
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Source: Own calculations.

39



DFROG: the nowcasting model of DNB

Figure A.3: Impact of estimation & transformation on forecast accuracy: pre-COVID
period
Impact of features on out-of sample mean squared forecast, in percent
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Notes: Squared forecast error regressed on all model features via stacked regression. A colored bar indicates the coefficient is
statistically significant at the 5% level. If a bar is inside the shaded the absolute errors differs by more than ±5%. All effects against
a model with the following specifications: small dataset, 1 factor, 2 lags, estimation with a rolling window of 10 years, using both public
& non−public data, no quarterly variables included, only extreme outliers deleted, surveys in first difference, vintages downloaded on the
first of the month. 

 Estimation period: 2013Q3−2019Q4. Regression diagnostics: Panel a: number of observations = 76,752, adjusted R−squared = 0.081, p−value
= 0.000. Panel b: number of observations = 17,784, adjusted R−squared =0.141, p−value =0.000. Panel c: number of observations = 29,484,
adjusted R−squared = 0.073, p−value = 0.000. Panel d: number of observations = 29,484, adjusted R−squared = 0.092, p−value = 0.000.
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Source: Own calculations.
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Figure A.4: Impact of timing on forecast accuracy: pre-COVID period
Impact of features on out-of sample mean squared forecast, in percent
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Notes: Squared forecast error regressed on all model features via stacked regression. A colored bar indicates the coefficient is
statistically significant at the 5% level. If a bar is inside the shaded the absolute errors differs by more than ±5%. All effects against
a model with the following specifications: small dataset, 1 factor, 2 lags, estimation with a rolling window of 10 years, using both public
& non−public data, no quarterly variables included, only extreme outliers deleted, surveys in first difference, vintages downloaded on the
first of the month. 

 Estimation period: 2013Q3−2019Q4. Regression diagnostics: Panel a: number of observations = 76,752, adjusted R−squared = 0.081, p−value
= 0.000. Panel b: number of observations = 17,784, adjusted R−squared =0.141, p−value =0.000. Panel c: number of observations = 29,484,
adjusted R−squared = 0.073, p−value = 0.000. Panel d: number of observations = 29,484, adjusted R−squared = 0.092, p−value = 0.000.
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Source: Own calculations.
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A.2 Results no-COVID period: 2013Q3 – 2019Q4 & 2020Q4-2023Q3

Figure A.5: Impact of model-specification on forecast accuracy: no COVID period
Impact of features on out-of sample mean squared forecast, in percent

−5
−7

1
0

−1

# of Factors

# of Lags

2 factors

3 factors

2 lags

3 lags

4 lags

(a) all horizons

−14
−18

−1
0
0

# of Factors

# of Lags

2 factors

3 factors

2 lags

3 lags

4 lags

(b) backcasts

−7
−8

1
0
0

# of Factors

# of Lags

2 factors

3 factors

2 lags

3 lags

4 lags

(c) nowcasts

5
1

2
1

−3

# of Factors

# of Lags

−20 −15 −10 −5 0 5 10 15 20

2 factors

3 factors

2 lags

3 lags

4 lags

(d) one quarter ahead forecasts

Notes: Squared forecast error regressed on all model features via stacked regression. A colored bar indicates the coefficient is
statistically significant at the 5% level. If a bar is inside the shaded the absolute errors differs by more than ±5%. All effects against
a model with the following specifications: small dataset, 1 factor, 2 lags, estimation with a rolling window of 10 years, using both public
& non−public data, no quarterly variables included, only extreme outliers deleted, surveys in first difference, vintages downloaded on the
first of the month. 

 Estimation period: 2013Q3−2019Q4, 2020Q4−2023Q3. Regression diagnostics: Panel a: number of observations = 113,904, adjusted R−squared =
0.218, p−value = 0.000. Panel b: number of observations = 26,424, adjusted R−squared =0.200, p−value =0.000. Panel c: number of observations
= 43,740, adjusted R−squared = 0.198, p−value = 0.000. Panel d: number of observations = 43,740, adjusted R−squared = 0.300, p−value =
0.000.

Impact features on out−of−sample mean squared forecast, in percent

Source: Own calculations.
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Figure A.6: Impact of choice of data on forecast accuracy: no COVID period
Impact of features on out-of-sample mean squared forecast, in percent
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Notes: Squared forecast error regressed on all model features via stacked regression. A colored bar indicates the coefficient is
statistically significant at the 5% level. If a bar is inside the shaded the absolute errors differs by more than ±5%. All effects against
a model with the following specifications: small dataset, 1 factor, 2 lags, estimation with a rolling window of 10 years, using both public
& non−public data, no quarterly variables included, only extreme outliers deleted, surveys in first difference, vintages downloaded on the
first of the month. 

 Estimation period: 2013Q3−2019Q4, 2020Q4−2023Q3. Regression diagnostics: Panel a: number of observations = 113,904, adjusted R−squared =
0.218, p−value = 0.000. Panel b: number of observations = 26,424, adjusted R−squared =0.200, p−value =0.000. Panel c: number of observations
= 43,740, adjusted R−squared = 0.198, p−value = 0.000. Panel d: number of observations = 43,740, adjusted R−squared = 0.300, p−value =
0.000.
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Source: Own calculations.
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Figure A.7: Impact of estimation & transformation on forecast accuracy: no COVID
period
Impact of features on out-of sample mean squared forecast, in percent
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Notes: Squared forecast error regressed on all model features via stacked regression. A colored bar indicates the coefficient is
statistically significant at the 5% level. If a bar is inside the shaded the absolute errors differs by more than ±5%. All effects against
a model with the following specifications: small dataset, 1 factor, 2 lags, estimation with a rolling window of 10 years, using both public
& non−public data, no quarterly variables included, only extreme outliers deleted, surveys in first difference, vintages downloaded on the
first of the month. 

 Estimation period: 2013Q3−2019Q4, 2020Q4−2023Q3. Regression diagnostics: Panel a: number of observations = 113,904, adjusted R−squared =
0.218, p−value = 0.000. Panel b: number of observations = 26,424, adjusted R−squared =0.200, p−value =0.000. Panel c: number of observations
= 43,740, adjusted R−squared = 0.198, p−value = 0.000. Panel d: number of observations = 43,740, adjusted R−squared = 0.300, p−value =
0.000.
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Source: Own calculations.
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Figure A.8: Impact of timing on forecast accuracy: no COVID period
Impact of features on out-of sample mean squared forecast, in percent
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Notes: Squared forecast error regressed on all model features via stacked regression. A colored bar indicates the coefficient is
statistically significant at the 5% level. If a bar is inside the shaded the absolute errors differs by more than ±5%. All effects against
a model with the following specifications: small dataset, 1 factor, 2 lags, estimation with a rolling window of 10 years, using both public
& non−public data, no quarterly variables included, only extreme outliers deleted, surveys in first difference, vintages downloaded on the
first of the month. 

 Estimation period: 2013Q3−2019Q4, 2020Q4−2023Q3. Regression diagnostics: Panel a: number of observations = 113,904, adjusted R−squared =
0.218, p−value = 0.000. Panel b: number of observations = 26,424, adjusted R−squared =0.200, p−value =0.000. Panel c: number of observations
= 43,740, adjusted R−squared = 0.198, p−value = 0.000. Panel d: number of observations = 43,740, adjusted R−squared = 0.300, p−value =
0.000.
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Source: Own calculations.
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A.3 Dataset
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Table A.1: Overview of variables in small, medium-sized and large datasets
 | DNB RESTRICTED | #

Freq. S M L Ln. Diff.
1 Unemployment rate: 15-75 years Labor market M X X X O X CBS jan-'83 17
2 Collectively agreed wages: all sectors Prices & wages M O X X X X CBS jan-'00 7
3 Bankruptcies: total Output & income M O O X X X CBS jan-'81 12
4 Construction: value added Output & income M O X X X X CBS jan-'00 48
5 Building permits: firms Output & income M O X X X X CBS jan-'90 54
6 Building permits: hiousing Housing M O X X X X CBS jan-'95 54
7 House price index Housing M X X X X X CBS jan-'95 22
8 Houses sold Housing M X X X X X CBS jan-'95 22
9 Consumption: gas Cons., orders & inv. M O X X X X CBS jan-'82 16
10 Industrial production: manufacturing Output & income M X X X X X CBS jan-'95 39
11 Industrial production: food, bev. & tobacco Output & income M O X X X X CBS jan-'95 39
12 Industrial production: chemical (products) Output & income M O X X X X CBS jan-'95 39
13 Industrial production: machinery & equipment Output & income M O X X X X CBS jan-'95 39
14 Consumption households: domestic Cons., orders & inv. M X X X X X CBS jan-'95 38
15 Consumer confidence: headline Cons., orders & inv. M X X X O X CBS apr-'86 -8
16 Consumer confidence: economic sit. < 12 m. Cons., orders & inv. M O O X O X CBS apr-'86 -8
17 Consumer confidence: economic sit. > 12 m. Cons., orders & inv. M O O X O X CBS apr-'86 -8
18 Consumer confidence: unemployment > 12 m. Labor market M O X X O X CBS apr-'86 -8
19 Consumer conf.: purchase of dur. goods > yr. Cons., orders & inv. M O X X O X CBS apr-'86 -8
20 Cons. confidence: buying/build.a home > 2 yr. Housing M O O X O X CBS apr-'86 -8
21 Import of goods Output & income M X X X X X CBS jan-'95 42
22 Export of goods Output & income M X X X X X CBS jan-'95 42
23 Terms of trade Prices & wages M O O X X X CBS jan-'95 42
24 Consumer price index: headline excl. energy Prices & wages M O X X X X CBS jan-'96 1
25 Harmonised index of consumer prices: total Prices & wages M X X X X X CBS jan-'96 1
26 Producer prices: manufacturing Prices & wages M X X X X X CBS jan-'81 30
27 Flights: tonnes of goods Output & income M O O X X X CBS jan-'99 32
28 Industrial confidence: headline Output & income M X X X O X Eurostat jan-'80 0
29 Industrial confidence: employment > 3 m. Labor market M O X X O X Eurostat apr-'82 0
30 Industrial confidence: export order books Cons., orders & inv. M O X X O X Eurostat feb-'90 0
31 Industrial confidence: order-book Cons., orders & inv. M O O X O X Eurostat jan-'80 0
32 Industrial confidence: production > 3 m. Output & income M O X X O X Eurostat jan-'80 0
33 Industrial confidence: production < 3 m. Output & income M O O X O X Eurostat jan-'80 0
34 Industrial confidence: stocks finished products Cons., orders & inv. M O O X O X Eurostat jan-'80 0
35 Construction confidence: headline Housing M O X X O X Eurostat jan-'80 0
36 Construction confidence: employment > 3 m. Labor market M O O X O X Eurostat jan-'80 0
37 Construction confidence: evolution order books Housing M O O X O X Eurostat jan-'80 0
38 Construction confidence: building activity < 3m. Housing M O O X O X Eurostat jan-'80 0
39 Retail confidence: stock of finished products Cons., orders & inv. M O O X O X Eurostat jan-'86 0
40 Retail confidence: headline Output & income M O X X O X Eurostat jan-'86 0
41 Retail confidence: activity > 3 m. Output & income M O O X O X Eurostat jan-'86 0
42 Retail confidence: employment > 3 m. Labor market M O O X O X Eurostat jan-'86 0
43 Retail confidence: activity < 3 m. Output & income M O O X O X Eurostat jan-'86 0
44 Economic sentiment: headline Output & income M X X X O X Eurostat jan-'80 0
45 Services confidence: business situation < 3 m. Output & income M O X X O X Eurostat apr-'93 0
46 Services confidence: demand > 3 m. Output & income M O O X O X Eurostat jan-'96 0
47 Services confidence: demand < 3 m. Output & income M O O X O X Eurostat apr-'93 0
48 Services confidence: headline Output & income M X X X O X Eurostat jan-'96 0
49 Services confidence: employment > 3 m. Labor market M O X X O X Eurostat apr-'93 0
50 Services confidence: employment < 3 m. Labor market M O O X O X Eurostat apr-'93 0
51 Unemployment rate: < 25 years Labor market M O X X O X Eurostat jan-'83 31
52 10-year government bond yield Interest & exch. rates M X X X O X Eurostat apr-'86 10
53 Exchange rate eur/usd Interest & exch. rates M O X X X X Eurostat jan-'99 2
54 Nominal effective exchange rate Interest & exch. rates M X X X X X Eurostat jan-'99 30
55 Real effective exchange rate Interest & exch. rates M O O X X X Eurostat jan-'99 30
56 Retail sales: mail orders & online stores Output & income M O X X X X Eurostat jan-'00 39
57 Retail sales: total Output & income M X X X X X Eurostat jan-'00 39
58 Consumer confidence: Belgium headline Output & income M O O X O X Eurostat jan-'85 0
59 Consumer confidence: Germany headline Output & income M O O X O X Eurostat jan-'85 0
60 Consumer confidence: eurozone headline Output & income M O X X O X Eurostat jan-'85 0
61 Consumer confidence: Spain headline Output & income M O O X O X Eurostat jun-'86 0
62 Consumer confidence: France headline Output & income M O O X O X Eurostat jan-'85 0
63 Consumer confidence: Italy headline Output & income M O O X O X Eurostat jan-'85 0
64 Producer confidence: Belgium headline Output & income M O O X O X Eurostat jan-'85 0
65 Producer confidence: Germany headline Output & income M O O X O X Eurostat jan-'80 0
66 Producer confidence: eurozone headline Output & income M O O X O X Eurostat jan-'80 0
67 Producer confidence: Spain headline Output & income M O O X O X Eurostat apr-'87 0
68 Producer confidence: France headline Output & income M O O X O X Eurostat feb-'85 0
69 Producer confidence: Italy headline Output & income M O O X O X Eurostat jan-'80 0
70 Passenger car registration Cons., orders & inv. M O X X X X ECB jan-'90 48
71 Industrial production: comp. & electronics Output & income M O O X X X ECB jan-'90 41
72 Credit to the domestic private sector Money & credit M O X X X X ECB mrt-'70 26
73 Loans: households Money & credit M X X X X X ECB sep-'97 26
Freq.: frequency of series (M=monthly, Q= Quarterly), Trans.: transformation of series, Ln:  take logarithm (X= year, O= no), Diff.: take first difference of series (X= 0, 
O= yes), Source: source of series, Start: start mont/quarter of series, Publ. Lag: publication lag of series in days; negative publ. lag implies serie is released n  days 
before the end of the month.
Continued on next page …

Start
Publ.lag 
(days)

Nr. Series Group
Dataset size Trans.

Source
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Table A.1: Continued from previous page
 | DNB RESTRICTED | #

Freq. S M L Ln. Diff.
74 Loans: non-financial corporations Money & credit M O X X X X ECB sep-'97 26
75 M1 Money & credit M O O X X X ECB jan-'80 26
76 M3 Money & credit M X X X X X ECB jan-'70 26
77 Int.%  new loans nfc's: < 1 y. & <= eur 1 mil. Interest & exch. rates M O X X O X ECB jan-'80 33
78 Int. % new loans hh. house purchase: < 1 y. Interest & exch. rates M O X X O X ECB jan-'80 33
79 Interest rate new debt securityr: 10 years Interest & exch. rates M O X O O X ECB jan-'93 12
80 3-month interest rate Interest & exch. rates M O X X O X ECB okt-'72 1
81 country level index of financial stress Stock market M O O X O X ECB jan-'70 25
82 Crude oil price: brent spot free on board Prices & wages M O X X X X ECB feb-'99 1
83 1-year euribor interest rate Interest & exch. rates M O O X O X ECB jan-'94 1
84 Industrial production: eurozone Output & income M O X X X X ECB jan-'70 45
85 Retail trade: eurozone Output & income M O X X X X ECB jan-'00 39
86 Unemployment rate: eurozone Labor market M O O X O X ECB apr-'98 34
87 Gold price Stock market M O O X X X ECB jan-'70 5
88 composite indicator of systemic stress Stock market M O O X O X ECB jan-'99 1
89 Dow Jones Euro Stoxx: consumer services Stock market M O X X X X ECB dec-'91 1
90 Commodity Price index: non-energy comm. Prices & wages M X X X X X ECB jan-'96 5
91 PMI manufacturing: eurozone headline Output & income M O O X O X Refinitiv jun-'97 3
92 PMI services: eurozone headline Output & income M O O X O X Refinitiv jul-'98 5
93 PMI manufacturing: headline Output & income M X X X O X Refinitiv mrt-'00 1
94 PMI manufacturing: production Output & income M O O X O X Refinitiv mrt-'00 1
95 PMI manufacturing: new orders Cons., orders & inv. M X X X O X Refinitiv mrt-'00 1
96 PMI manufacturing: employment Labor market M O O X O X Refinitiv mrt-'00 1
97 AEX-midkap Stock market M O O X X X Refinitiv jan-'83 1
98 Dow Jones Euro Stoxx: 50 Stock market M O X X X X Refinitiv jan-'87 1
99 Dow Jones Euro Stoxx: basic materials Stock market M O O X X X Refinitiv jan-'87 1
100 Dow Jones Euro Stoxx: technology Stock market M O O X X X Refinitiv jan-'87 1
101 Dow Jones Euro Stoxx: industrials Stock market M O O X X X Refinitiv jan-'87 1
102 AEX Stock market M X X X X X Refinitiv jan-'83 1
103 PMI composite: world (headline) Output & income M X X X O X Refinitiv jul-'98 5
104 World steel production Output & income M O X X X X Refinitiv jan-'80 21
105 Baltic exchange dry index Prices & wages M O O X X X Refinitiv mei-'85 1
106 VIX Europe Stock market M O O X X X Refinitiv feb-'99 1
107 Serv. conf.: ev. of de. < 3 m.;  pc. progr. & conslt. Output & income M O X X O X EC apr-'97 0
108 Serv. conf.: ev. of de. < 3 m.: conslt. & head off. Output & income M O X X O X EC apr-'97 0
109 Serv. conf.: ev. of de. < 3 m.: empl. activities Output & income M O X X O X EC apr-'97 0
110 Global supply chain pressure index Output & income M O O X O X FED NY jan-'98 4
111 Debit card payments: total Cons., orders & inv. M O X X X X DNB jan-'95 10
112 Debit card payments: services Cons., orders & inv. M O O X X X DNB jan-'98 10
113 US high yield bond spread Stock market M O O X X X DNB jan-'97 0
114 Eurozone high yield bond spread Stock market M O X X X X DNB jan-'98 0
115 FD: headline Output & income M X O O O O FD jan-'85 0
116 FD: financial markets (FM) Stock market M O X O O O FD jan-'85 0
117 FD: companies (COM) Output & income M O X O O O FD jan-'85 0
118 FD: economics (ECO) Output & income M O X O O O FD jan-'85 0
119 FD: politics (POL) Output & income M O X O O O FD jan-'85 0
120 FD FM: financial markets Stock market M O O X O O FD jan-'85 0
121 FD FM: financials Stock market M O O X O O FD jan-'85 0
122 FD FM: news Stock market M O O X O O FD jan-'85 0
123 FD FM: financial indices Stock market M O O X O O FD jan-'85 0
124 FD COM: infrastructure Output & income M O O X O O FD jan-'85 0
125 FD COM: multinationals Output & income M O O X O O FD jan-'85 0
126 FD COM: construction & energy Output & income M O O X O O FD jan-'85 0
127 FD COM: demography Output & income M O O X O O FD jan-'85 0
128 FD ECO: elections Output & income M O O X O O FD jan-'85 0
129 FD ECO: indicators Output & income M O O X O O FD jan-'85 0
130 FD ECO: raw materials Output & income M O O X O O FD jan-'85 0
131 FD ECO: EU Output & income M O O X O O FD jan-'85 0
132 FD POL: parliament Output & income M O O X O O FD jan-'85 0
133 FD POL: national Output & income M O O X O O FD jan-'85 0
134 FD POL: lower government Output & income M O O X O O FD jan-'85 0
135 FD POL: social partners Output & income M O O X O O FD jan-'85 0
136 Consumption Cons., orders & inv. Q O X X X X CBS mrt-'96 45
137 Gross private investment Output & income Q O X X X X CBS mrt-'96 45
138 Exports Output & income Q O X X X X CBS mrt-'96 45
139 Imports Output & income Q O X X X X CBS mrt-'96 45
140 Hours worked Labor market Q X X X X X CBS mrt-'95 45
141 Labour productivity Labor market Q O X X X X Eurostat mrt-'96 45
142 Capacity utilization Output & income Q X X X O X Eurostat mrt-'80 -3
143 Gross domestic product: eurozone Output & income Q X X X X X Eurostat mrt-'95 45
144 Gross domestic product Output & income Q X X X X X CBS mrt-'96 45

N (monthly) 24 67 129
N (quarterly) 4 9 9
N (total) 28 76 138

Freq.: frequency of series (M=monthly, Q= Quarterly), Trans.: transformation of series, Ln:  take logarithm (X= year, O= no), Diff.: take first difference of series (X= 0, 
O= yes), Source: source of series, Start: start mont/quarter of series, Publ. Lag: publication lag of series in days; negative publ. lag implies serie is released n  days 
before the end of the month.

Nr. Series Group
Dataset size Trans.

Source Start
Publ.lag 
(days)
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