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Abstract

We estimate a nonlinear VAR to quantify the responses of output, consump-
tion, investment, and hours to a �nancial uncertainty shock in booms and busts
in the post-WWII U.S. data. We �nd evidence of comovements both in expan-
sions and in recessions, with stronger responses of all real activity indicators in
the latter state. We interpret this state-dependent responses with a version of
the Basu and Bundick (2017) model in which an uncertainty shock conceptually
comparable to the one used in our VAR analysis generates comovements in real
activity. A state-contingent estimation of this model conducted via Bayesian di-
rect inference points to counter-cyclical risk aversion as the crucial ingredient to
replicate the evidence produced with our nonlinear IVAR. An exercise focusing on
the great recession suggests that the nonlinear DSGE model is able to replicate
about 50% of the cumulative output loss in the 2009-2014 period, twice as much
what the same model would predict if estimated conditional on a linear VAR.
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1 Introduction

The great recession has revamped the attention on the role played by �uctuations

in uncertainty as a possible driver of the U.S. business cycle. This paper o¤ers two

contributions to the literature. First, we show that the e¤ects of uncertainty shocks

on a battery of real activity indicators are stronger in recessions by estimating an

interacted vector autoregressive (IVAR) model with post-WWII U.S. quarterly data.

A jump in uncertainty of the same size in the two phases of the business cycle is

associated to a peak response of output in recessions 50% larger than in expansions,

and to a response of investment and hours twice as large. Second, we estimate a version

of the Basu and Bundick (2017) model with the Bayesian minimum-distance direct

inference approach developed by Christiano et al. (2011) by considering as facts the

impulse responses produced with our nonlinear VAR. This strategy, which allows us

to estimate the nonlinear DSGE framework in a state-dependent fashion, is designed

to identify the crucial parameter instabilities one needs to allow to replicate the IVAR

asymmetric responses of real activity to an uncertainty shock. We �nd the estimated

DSGE model to be able to replicate the documented facts in both states of the business

cycle. While our strategy allow us to estimate a large vector of structural parameters,

counter-cyclical risk aversion arises as the necessary and su¢ cient feature the model

needs to possess to match the facts.

We then push our investigation further and scrutinize how the "risk-aversion only"

story fares when it comes to replicating an extreme event such as the great recession.

We do so by re-estimating the nonlinear DSGE framework conditional on the IVAR

responses produced when focusing on the e¤ects of an uncertainty shock in 2008Q4,

which is the quarter associated to the highest realization of such shock in our sample.

With respect to the estimates of the structural parameters one obtains when taking a

linear VAR as the relevant auxiliary model, we �nd a combination of a high degree of

risk aversion and a moderately inertial, weak policy response to in�ation to be su¢ cient

for replicating our nonlinear IVAR responses during the great recession. When using

our estimated DSGE model to compute the contribution of an uncertainty shock to the

loss of output during and after the great recession, we �nd that such a shock could have

been responsible for as much as 40% of the total output loss in 2008-2014. If instead

we calibrate the model by using the impulse responses of a linear VAR as a reference,

the model suggests that just half of that loss can be attributed to uncertainty shocks.

This result clearly speaks in favor of using correctly calibrated structural frameworks

2



for replicating the facts and, ultimately, for conducting policy analysis.

Our paper relates to di¤erent but interconnected strands of the literature. The iden-

ti�cation of uncertainty shocks is achieved by focusing on �nancial uncertainty, which

has recently been singled out as a possible driver of the US business cycle (Bloom

(2009), Ludvigson, Ma, and Ng (2019), ?). Methodologically, we use a nonlinear IVAR
model to establish novel facts regarding the di¤erent intensity of comovements along

the business cycle. IVAR model have increasingly been exploited to study the non-

linear e¤ects of macroeconomic shocks (Towbin and Weber (2013), Sá, Towbin, and

Wieladek (2014), Aastveit, Natvik, and Sola (2017)). Caggiano, Castelnuovo, and Pel-

legrino (2017) employ IVARs to investigate the link between uncertainty shocks and

the stance of systematic policy. With respect to them, we focus on the stance of the

business cycle and document the nonlinear e¤ects of uncertainty shocks in recessions

and expansions. In computing our impulse responses, we follow Pellegrino (2017a,b)

and Caggiano, Castelnuovo, and Pellegrino (2017) and allow both uncertainty and real

activity - i.e., the elements composing the interaction terms in our nonlinear VAR - to

endogenously evolve after an uncertainty shock. We do so because both real activity and

uncertainty have been found to signi�cantly respond to an uncertainty shock (Jurado,

Ludvigson, and Ng (2015), Ludvigson, Ma, and Ng (2019)). Our IVAR-related �nd-

ings, which point to more severe consequences for output, investment, consumption, and

hours when uncertainty shocks hit in recessions, complement those documented with al-

ternative nonlinear frameworks and related to unemployment (Caggiano, Castelnuovo,

and Groshenny (2014), Caggiano, Castelnuovo, and Figueres (2017)) and industrial

production and employment (Caggiano, Castelnuovo, and Nodari (2019)), or obtained

with indicators correlated with the business cycle like �nancial stress (Alessandri and

Mumtaz (2018)).

Turning to the DSGE-based part of the analysis, many nonlinear frameworks have

recently been shown to be able to generate comovements in real activity in response

to uncertainty shocks. Fernández-Villaverde, Guerrón-Quintana, Rubio-Ramírez, and

Uribe (2011) and Born and Pfeifer (2014b) investigate the real e¤ects of a second

moment shock to the world real interest rate for Argentina, Brazil, Ecuador, and

Venezuela. Turning to the U.S., Fernández-Villaverde, Guerrón-Quintana, Kuester,

and Rubio-Ramírez (2015) study the role of �scal policy uncertainty; Born and Pfeifer

(2014a) quantify the relevance of policy risk; Born and Pfeifer (2019) investigate the role

of second moment shocks to technology and �scal spending; Drautzburg, Fernández-

Villaverde, and Guerrón-Quintana (2017) investigate the role of political distribution
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risks; Basu and Bundick (2017) show that a demand uncertainty shock which can be

interpreted as a negative �nancial uncertainty shock triggers a negative response of real

activity indicators. Our decision of working with a version of the last framework is jus-

ti�ed by the presence, in such model, of a formally precise de�nition of implied �nancial

volatility which can be meaningfully matched to the one we employ in our IVAR analy-

sis. We exploit this match to estimate the third-order approximation of the DSGEmodel

via the Bayesian impulse response function matching proposed by Christiano, Trabandt,

and Walentin (2011). This novel empirical strategy enables us to estimate the nonlinear

DSGE model we work with in a state-dependent fashion, something we do in order to

unveil instabilities at a structural level which are needed to track the dynamic response

of real activity in booms and busts.1 Our approach, which is Bayesian and focuses on

a subset of shocks (in our application, one shock only) and on their dynamic e¤ects,

represents an alternative to the GMM/SMM-based methodology recently developed by

Andreasen, Fernández-Villaverde, and Rubio-Ramírez (2017), which is frequentist and

relies on moments simulated by considering all modeled shocks. The common char-

acteristic of these two approaches is that they solve the nonlinear DSGE framework

by appealing to perturbation, developed by Schmitt-Grohe and Uribe (2004) and An-

dreasen (2012). This solution method has been shown to be particularly e¢ cient against

alternatives - such as value function iteration or projection - by Caldara, Fernández-

Villaverde, Rubio-Ramírez, and Yao (2012). Methodologically, the closest approach to

ours is probably the one by Ruge-Murcia (2017), who estimates a small-scale third-

order approximated DSGE model with an impulse-response matching procedure based

on a class of nonlinear VAR models as an auxiliary model for the purpose of indirect

inference via a classical minimum distance estimator. In doing so, he imposes the per-

turbation solution of the nonlinear DSGE model on the nonlinear VAR framework to

approximate as closely as possible the DSGE-related policy functions. His approach,

which is extremely neat, becomes unfortunately di¢ cult to implement when one works

with models with several states. Our novel estimation strategy easily accommodates

large state spaces.

The paper develops as follows. Section 2 presents the non-linear VAR model em-

1Castelnuovo and Pellegrino (2018) perform a similar exercise by working with Bayesian impulse
response function matching in order to assess the performance of some medium-scale DSGE frameworks
in presence of high/low uncertainty. Crucially, they work with linearized models, while this paper
estimates a truly nonlinear DSGE framework in a state-dependent fashion. At least a third-order
approximation of the model is required to study the e¤ects of a time-varying uncertainty shock in a
structural framework.
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ployed and presents results on the business cycle-dependent consequences of uncertainty

shocks from this relatively unrestricted framework. Section 3 brie�y presents the Basu

and Bundick (2011) model, describes the econometric strategy adopted to estimate the

DSGE model and discusses the regime-dependent estimation results found with a focus

on the sources of the di¤erent transmission mechanism of uncertainty shocks between

recessions and expansions. Section 4 quanti�es the performance of our empirical frame-

work as regards the negative e¤ects of the large uncertainty shock happened at the

onset of the great recession. Section 5 concludes.

2 Uncertainty-driven comovements: Empirical evi-
dence

2.1 Nonlinear empirical methodology

The IVAR is a nonlinear framework which augments a standard linear VAR model with

interaction terms to determine how the e¤ects of a shock to a variable depend on the

level of another variable. Following Pellegrino (2017a,b) and Caggiano, Castelnuovo,

and Pellegrino (2017), we focus on a parsimonious IVAR to maximize the available

degrees of freedom while capturing the nonlinearity of interest.

Our IVAR is the following:

Yt = �+
LX
j=1

AjYt�j +

"
LX
j=1

cj lnV XOt�j �� lnGDPt�j

#
+ ut (1)

where Yt is the (n� 1) vector of the endogenous variables, � is the (n� 1) vector
of constant terms, Aj are (n� n) matrices of coe¢ cients, and ut is the (n� 1) vector
of error terms whose variance-covariance (VCV) matrix is 
. The interaction term

in brackets makes an otherwise standard VAR a non-linear IVAR model. Per each

lag, such interaction term includes a (n � 1) vector of coe¢ cients cj, a measure of
uncertainty lnV XOt, and an indicator of the business cycle� lnGDPt�j � lnGDPt�j�
lnGDPt�j�1, which is the quarter-on-quarter growth rate of real GDP. The interaction

term lnV XOt�j �� lnGDPt�j enables us to capture the potentially state-contingent
e¤ects of a shock to lnV XOt�j (i.e., an uncertainty shock) conditional on the state

of the business cycle, which is proxied by the growth rate of real GDP. Alternatives

to IVAR frameworks - such as, e.g., regime switching frameworks or smooth transition

VARs - are available to capture the nonlinear e¤ects of macroeconomic shocks (for a
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recent survey, see Teräsvirta (2018)). We prefer to employ the above formalized IVAR

framework for three reasons. First, it closely resembles the approximated nonlinear

policy functions of nonlinear DSGE frameworks we work with.2 Second, it naturally

focuses on nonlinearities related to the business cycle, which is the research question

under scrutiny. Third, it does not feature nuisance parameters, which are often di¢ cult

to estimate in nonlinear frameworks.3

We model the vector Yt = [lnV XO; lnGDP; lnC; ln I; lnH; lnP; FFR]
0
, where

V XO denotes the stock market S&P 100 implied volatility index, GDP per capita

GDP, C per capita consumption, I per capita investment, H per capita hours worked,

P the price level, and FFR the federal funds rate.4 Uncertainty shocks are identi�ed via

a Cholesky decomposition of the reduced-form VCV matrix 
, with the VXO ordered

�rst. This assumption implies that the VXO does not contemporaneously respond to

�rst moment shocks like, e.g., technology and preference shocks. Importantly, this as-

sumption is in line with the predictions of Basu and Bundick�s model. In fact, while

being technically endogenous, the VXO in their model is almost exclusively explained

by second moment preference shocks, i.e., uncertainty shocks. Non surprisingly, an ex-

ercise conducted by simulating data with the Basu and Bundick model and estimating

a VAR framework on such simulated data with shocks identi�ed as described above

returns VAR impulse responses which replicate those produced by the DSGE model.

Appendix B documents this result, which enables use to estimate the parameters of the

Basu and Bundick model with a direct inference approach (explained below). Appendix

B also documents the correlation between second moment preference shocks and the

model consistent VXO in the Basu and Bundick model, which con�rms that the latter

is clearly driven by the former.

We estimate our IVAR model with four lags over the 1962Q3-2017Q2 sample. Given

that the VXO is unavailable before 1986, we follow Bloom (2009) and splice it with the

within-month volatility of S&P500 daily returns, which has displayed an extremely high

correlation with the VXO since 1986. The sample includes the zero lower bound period

2Such nonlinear policy functions typically feature di¤erent, higher order interaction terms. We
focus on terms featuring uncertainty and the real GDP growth because of our interest in the nonlinear
e¤ects to uncertainty shocks along the business cycle. Simulations conducted with higher order terms
deliver even stronger empirical results in favor of such nonlinear e¤ects. Appendix A documents the
state-dependent impulse responses obtained with a framework involving a higher number of terms.

3Notice that IVARs featuring interactions terms resemble approximated Smooth Transition VAR
frameworks (Teräsvirta, Tjøstheim, and Granger (2010)).

4The vector closely resembles the one used by Basu and Bundick (2017) in their linear VAR analysis,
which also features the presence of money. Adding money implies no changes in our empirical results.
The de�nition and construction of the variables is exactly the same as in Basu and Bundick (2017).
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experienced by the Federal Reserve during the period 2008Q4-2015Q4. Appendix C

shows that our results are robust to the employment of the shadow rate constructed by

Wu and Xia (2016).

A standard likelihood-ratio test favors our IVAR speci�cation against the Basu and

Bundick�s (2017) linear VAR model (which is nested in our IVAR model in case of the

overall exclusion of the interaction terms from model (1)). In particular, the LR test
suggests a value for the test statistic �28 = 60:16, which allows us to reject the null

hypothesis of linearity at any conventional statistical level in favor of the alternative of

our I-VAR model (p-value << 0:01). .

The interaction term of our IVAR is treated as an endogenous object. We compute

GIRFs à la Koop et al. (1996) to account for both the endogenous response of the

growth rate of per capita GDP, i.e. our conditioning variable, to the uncertainty shock

and the feedback this reaction can imply on the dynamics of the economy. Theoretically,

the GIRF at horizon h of the vector Yt to a shock of size � computed conditional on an

initial history$t�1 = fYt�1; :::;Yt�Lg is given by the following di¤erence of conditional
expectations:

GIRFY;t(h; �t; $t�1) = E [Yt+h j �;$t�1]� E [Yt+h j $t�1] .

Along with this history-conditional GIRF, thanks to which we can recover one em-

pirical response for each quarter in our sample, one can also de�ne some states so that

to recover state-conditional GIRFs summarizing the average evidence for a given state.

We will use this latter approach with the purpose of comparing IVAR-based responses

with DSGE-based responses, something clari�ed later on. In computing our GIRFs,

we follow Auerbach and Gorodnichenko (2012), Caggiano, Castelnuovo, and Groshenny

(2014), and Caggiano, Castelnuovo, Colombo, and Nodari (2015) and focus on "extreme

events", i.e., deep recessions (strong expansions) characterized by initial conditions as-

sociated to realizations of the real GDP growth rate belonging to the �rst (tenth) decile

of the empirical distribution. We do so to minimize the risk of confounding recessions

and expansions, a risk one runs when considering initial conditions which are too close

to the sample mean of the conditioning variable (which is, the growth rate of real GDP)

(Ferrara (2003)). The GIRF conditional on a given state is computed by simulating

the system starting from the average initial condition across the histories linked to the

state, i.e., starting from the unconditional mean of each state. Conditional on being in

a regime, this method is consistent with the way responses are usually computed for a

nonlinear DSGE model, i.e. by simulating the model starting from the ergodic mean.
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Appendix D describes the algorithm used to compute the GIRFs.

2.2 Empirical results

Figure 1 plots the generalized impulse responses computed with our IVAR approach.

A few facts stand out. First, there is evidence of a negative response of all real activity

indicators to an uncertainty shock in both states. Second, the response of real activity

is larger in recessions than in expansions. To �x ideas about this point, Table 2 collects

�gures regarding the peak (i.e., maximum, in absolute value) responses produced with

our nonlinear VAR. The peak response of output in recessions is about 50% larger

than in expansions. The same holds as regards consumption, whose peak reaction is

36% larger in contractions, and even more so for investment and hours, whose peak

responses is more than twice as large. Third, the larger strength of the response in

recessions regards the entire path of the short-run response of real activity after an

uncertainty shock, and not only its peak reaction. Fourth, the synchronization of real

activity indicators in response to an uncertainty shock di¤ers between the two phases of

the business cycle, with investment and hours reacting - in relative terms with respect

to output - about 40% and 50% more in recessions than in expansions. Finally, the

response of the policy rate is negative and persistent in both states of the business

cycle, while that of the price level is not, i.e., the price level persistently decreases in

recessions but increases in expansions.

Are these responses actually di¤erent from a statistical standpoint? Figure 2 shows

the one standard deviation con�dence bands of di¤erences between the reactions in

recessions and in expansions.5 As evident from the �gure, the responses of output,

investment, and hours are signi�cantly larger in recessions, an evidence which o¤ers

statistical support to the comovement-related facts motivated above. The reaction of

consumption is only borderline signi�cant, with the mass of the distribution which

however hints to a larger response in recessions. Finally, also the response of the price

level and the nominal interest rate is found to be signi�cantly di¤erent between the two

5Per each variable, the �gure is based on the distribution stemming from 1,000 di¤erences between
responses in recessions and responses in expansions. Such responses are generated from 1,000 samples
obtained via the standard residual-based bootstrap, computing - per each sample - the corresponding
state-conditional GIRFs in recessions and expansions, and taking the di¤erence between the latter and
the former. The 16th and 84th percentiles of each density are then reported. The construction of the
test statistic takes into account the correlation between the estimated impulse responses. Given the
equal size of the shock in the two states per each given draw, the di¤erences take - by construction -
an on-impact zero value.
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states.6

Overall, these results point to an economically and signi�cantly stronger response of

real activity to an uncertainty shock. This fact calls for the use of a structural model,

something we do in the next Section.

3 Uncertainty-driven comovements: A structural
interpretation

3.1 DSGE model: Description

The Basu and Bundick (2017) model extends an otherwise standard New Keynesian

model to consider an ex-ante second moment shock in the preference shock process,

which can be interpreted as a demand-side uncertainty shock. We o¤er a brief descrip-

tion of the model here focusing on the parts that are crucial for our study, and refer

the reader to Basu and Bundick�s (2017) paper for further details.

Households work, consume, and invest in equity shares and one-period risk-free

bonds. Households are all similar and are indexed with j 2 [0; 1]. They feature Epstein-
Zin preferences over streams of consumption and leisure, formalized as follows:

Vt =

��
at ~C

�
t (1�Nt;)

(1��)
�(1��)=�V

+ �(EtV
1��
t+1 )

1=�V

��V =(1��)
where ~Ct = Ct�Ht , Ct is consumption, Ht = bCt�1 captures external habit forma-

tion in consumption related to the level of aggregate consumption lagged one period,

Nt is hours worked, � is the discount factor, � measures the degree of risk aversion,
 is the intertemporal elasticity of substitution, �V � (1 � �)=(1 �  �1)�1 captures

households�preferences for the resolution of uncertainty, � weights consumption and

labor in households�happiness function, and at is a stochastic shifter in�uencing the

relevance of today�s realizations of consumption and labor vs. those expected to occur

during the next period.7

6These results are robust to the use of a recursive-design wild bootstrap (based on a Rademacher
distribution) which is robust to possible conditional heteroskedasticity of unknown form (see Goncalves
and Kilian (2004) for the proposal, and Kilian (2009) and Mertens and Ravn (2014) as examples of
applications).

7Basu and Bundick (2017) use a di¤erent set of preferences featuring distributional weights on
current and future utility in the Epstein Zin time aggregator which do not sum to one. de Groot,
Richter, and Throckmorton (2018) show that these preferences imply an asymptote in the responses
to an uncertainty shock with unit intertemporal elasticity of substitution. This paper employs the set
of preferences proposed by Basu and Bundick (2018), which do not imply any asymptote.
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The stochastic process followed by this preference shock is:

at = (1� �a)a+ �aat�1 + �at�1"
a
t

�at = (1� ��a)�
a + ��a�

a
t�1 + ��

a

"�
a

t

where "at is the �rst-moment preference shock, and "
�a

t is a second-moment uncer-

tainty shock to the preference process which loads the law of motion regulating the

evolution of the time-varying second moment �at relative to the distribution of "
a
t .
8 The

original framework by Basu and Bundick (2017) is modi�ed to allow for (external) habit

formation in consumption. We do so to capture the hump-shaped response of consump-

tion in the data (for another paper jointly modeling Epstein-Zin preferences and habits

in consumption, see Andreasen, Fernández-Villaverde, and Rubio-Ramírez (2017)).

Intermediate goods producers rent labor from households, pay wages, and produce

intermediate goods in a monopolistically competitive framework. They own capital and

choose its utilization rate, issue equity shares and one-period riskless bonds, and invest

in physical capital to maximize the discounted stream of their pro�ts. In doing so,

they face quadratic costs of adjusting nominal prices à la Rotemberg (1982), capital

adjustment costs à la Jermann (1998) and capital utilization costs in�uencing the cap-

ital depreciation rate.9 All intermediate �rms have the same Cobb-Douglas production

function, and are subject to a �xed cost of production and stationary technology shocks.

Intermediate goods are packed by a representative �nal goods producer operating in a

perfectly competitive market. The model is closed by assuming that the central bank

follows a standard Taylor rule.

In this framework, an uncertainty shock propagates to the economy via precaution-

ary savings and precautionary labor supply. The former e¤ect reduces current consump-
8Epstein-Zin preferences written in this way imply a direct impact of the uncertainty shock on the

current utility level only. This way of writing such preferences is not uncommon, see, on top of Basu and
Bundick (2017), Albuquerque, Eichenbaum, Luo, and Rebelo (2016), Andreasen, Fernández-Villaverde,
and Rubio-Ramírez (2017). A note recently circulated by de Groot, Richter, and Throckmorton (2017)
shows that these preferences imply a response of real activity indicators to an uncertainty shock which
is discontinuous over the set of values the intertemporal elasticity of substitution  can take. When
 = 1, the reaction of real activity is not de�ned, while values of  below (above) one are consistent with
a negative (positive) response of real activity. While acknowledging the intellectually stimulating point
made by de Groot, Richter, and Throckmorton (2017), we stress here that our paper is an empirical
contribution whose aim is that of replicating the negative response of real activity to an uncertainty
shock with an estimated model. In this sense, we see no clash with the �ndings in de Groot, Richter,
and Throckmorton (2017).

9Given that adjustment costs are convex, this model does not imply a "wait-and-see" e¤ect after
an uncertainty shock. To solve the model, we use perturbation methods which require policy functions
to be di¤erentiable, a feature which is not possessed by threshold policy functions arising in presence
of real option e¤ects.
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tion in response to an increase in uncertainty, while the latter increases labor supply,

which drives real wages and �rms�marginal costs down. Given that prices are sticky,

the price mark up increases. Output, which is demand-driven in this model, falls due

to the drop in consumption, and labor demand contracts driving hours down. Given

the lower return on capital, investment falls too. Hence, in equilibrium, an increase in

uncertainty causes a drop in all four real activity indicators, i.e., output, consumption,

investment, and hours, which is what we observe in the data.

As anticipated above, the model features a well-de�ned implied �nancial volatility

concept. This is due to the fact that intermediate �rms issue equity shares on top of

one-period riskless bonds.10 Each equity share has a price PEt and pays dividends D
E
t ,

implying a one-period return REt+1 =
�
PEt+1 +DE

t+1

�
=PEt . The model-implied �nan-

cial uncertainty index V M
t is computed as the annualized expected volatility of equity

returns, i.e., V M
t = 100 �

q
4 � V ARt

�
REt+1

�
, where V ARt

�
REt+1

�
is the quarterly con-

ditional variance of the return on equity REt+1. Equity returns are endogenous in the

model, which makes V M
t endogenous too. However, in this model V M

t is almost entirely

driven by second-moment preference shocks for a variety of plausible calibrations. This

enables us to treat the uncertainty shock as a �nancial uncertainty shock proxied by

V M
t , which has a clear empirical counterpart and which enable us to exploit the facts

established in the previous Section to estimate the model.

We work with a third-order approximation of the nonlinear framework, which we

solve via perturbation techniques (Schmitt-Grohe and Uribe (2004)). The third order

approximation of agents� decision rules feature an independent role for uncertainty,

whose independent e¤ect on the equilibrium values of the endogenous variables of the

framework can therefore be studied (Andreasen (2012)). Perturbation represents an

accurate and fast way to �nd a solution also working with frameworks featuring recursive

preferences (Caldara, Fernández-Villaverde, Rubio-Ramírez, and Yao (2012)).

3.2 Minimum-distance estimation strategy

We estimate Basu and Bundick�s (2017) model via an impulse response function-matching

approach, i.e., we choose the values of the structural parameters of the DSGE model

10Basu and Bundick (2017) assume that �rms �nance a share � of their capital stock each period
with one-period riskless bonds. Given that the Modigliani-Miller theorem holds in their model, leverage
does neither in�uence �rms�value nor �rms�optimal decisions. Firms�leverage only in�uences the �rst
two unconditional moments of �nancial-related quantities (e.g., the average level and unconditional
volatility of the model-implied VXO and the equity premium), but it does not in�uences impulse
responses to an uncertainty shock.
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which minimize a measure of the distance between our IVAR impulse responses, which

are interpreted as "data", and the DSGE model-based ones. Following Christiano,

Trabandt, and Walentin (2011), we employ a Bayesian approach via which we impose

economically sensible prior densities on the structural parameters while asking the data

to shape the posterior density of the estimated model. With respect to Christiano et

al. (2011), who focus on a linearized DSGE framework and a linear VAR as auxiliary

model, we estimate a nonlinear DSGE framework approximated at a third order with

moments produced with an Interacted VAR.11

The state-dependent Bayesian minimum distance estimator works as follows. Denote

by c i the vector in which we stack the I-VAR estimated generalized impulse responses
over a 20-quarter horizon to an uncertainty shock for each regime i = 1; 2 (i.e., the

responses displayed in Figure 2).12 When the number of observations per each regime

ni is large, standard asymptotic theory suggests that

c i a� N( 
�
�i0
�
;Vi(�i0; n

i)); for i = 1; 2 (2)

where �i0 denotes the true vector of structural parameters that we estimate (i = 1; 2)

and  
�
�i
�
denotes the model-implied mapping from a vector of parameters to the

analog impulse responses in c i.
As explained earlier, the IVAR GIRFs c i conditional on a given state i are com-

puted by iterating forward the system starting from the average initial condition across

the histories linked to the state, i.e., starting from the unconditional mean of each state.

Similarly, we compute the DSGE model-related responses per each given set of parame-

ter values  
�
�i
�
by iterating forward the approximated solution of the DSGE model

starting from the (state-speci�c in our case) stochastic steady state.13 Both DSGE-based

11One way of interpreting this exercise is to think of a regime-switching type of estimation in which
we allow the parameters of the nonlinear DSGE model to be state-dependent. Bianchi and Melosi
(2017) formally model policy-related uncertainty with a regime-switching approach which allows agent
to formulate a prediction over future regime switches in an empirical framework where the DSGE
model is a linearized framework within each state. A challenge for future research is how to conduct
such an exercise with a nonlinear DSGE model like the one we work with.
12For a paper proposing information criteria to select the responses that produce consistent estimates

of the true but unknown structural parameters and those that are most informative about DSGE model
parameters, see Hall, Inoue, Nason, and Rossi (2012).
13Following Basu and Bundick (2017), we set the value of the exogenous processes to zero and

iterate forward until the model converges to its stochastic steady state. Then, we hit the model with
a one standard deviation uncertainty shock and compute impulse responses as the percent deviation
between the stochastic path followed by the endogenous variables and their stochastic steady state.
Given that no future shocks are considered, this way of computing GIRFs does not line up with Koop,
Pesaran and Potter�s (1996) algorithm. We do so to avoid simulating the model several times and
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and VAR-based impulse responses are interpreted as percent deviations of variables in-

duced by an uncertainty shock, with the exception - in our case - of the interest rate

response which is measured in percentage points as implied by the VAR speci�cation.

To compute the posterior density for �i given c i using Bayes�rule, we �rst need to
compute the likelihood of c i conditional on �i. Given (2), the approximate likelihood
of c i as a function of �i reads as follows:
f(c ij�i) = � 1

2�

�Ni

2 ��Vi(�i0; n
i)
��� 1

2�exp
�
�1
2

�c i � ��i��0Vi(�i0; n
i)�1

�c i � ��i���
(3)

where N i denotes the number of elements in c i and Vi(�i0; n
i) is treated as a �xed

value. We use a consistent estimator of Vi. Because of small sample-related consider-

ations, such estimator features only diagonal elements (see Christiano, Trabandt, and

Walentin (2011) and Guerron-Quintana, Inoue, and Kilian (2017)).14 In our case, Vi

is a regime-dependent diagonal matrix with the variances of the c i�s along the main
diagonal15. This choice is widely adopted in the literature and allows one to put more

weight in replicating VAR-based responses with relatively smaller con�dence bands.

Treating eq. (3) as the likelihood function of c i , it follows that the Bayesian posterior
of �i conditional on c i and Vi is:

f(�ijc i) = f(c ij�i)p(�i)
f(c i) , (4)

then integrate across all simulations, a procedure which would be very time consuming, above all
when combined with the MCMC algorithm we adopt for our Bayesian estimation. Basu and Bundick
(2017) show that the di¤erences between these two ways of computing GIRFs are negligible with a
framework like theirs. We also veri�ed that our IVAR GIRFs remained unchanged when future shocks
are not taken into account, something which augments the comparability between IVAR and DSGE
GIRFs. Analytical expressions for GIRFs produced with nonlinear models are available in Andreasen,
Fernández-Villaverde, and Rubio-Ramírez (2017).
14Guerron-Quintana, Inoue, and Kilian (2017) studie the asymptotic theory for VAR-based impulse

response matching estimators of the structural parameters of linearized DSGE models when the number
of impulse responses exceeds the number of linear VAR model parameters. The number of impulse
responses in our analysis (140) is lower than the number of estimated coe¢ cients of the VAR (251,
constants excluded). We are aware of no contributions studying the asymptotic theory for this estimator
when nonlinear frameworks are employed.
15Denoting by Ŵi the bootstrapped variance-covariance matrix of VAR-based impulse responses b i

for regime i, i.e., 1
M

PM
j=1( 

i
j � � 

i
)( ij � � 

i
)0 (where  ij denotes the realization of b i in the jth (out

of M = 1000) bootstrap replication and � 
i
denotes the mean of  ij), V

i is based on the diagonal
of this matrix. Notice that Vi contains the same variances that will be used to plot the con�dence
intervals for the I-VAR responses in next Section. This is the same approach used in Altig, Christiano,
Eichenbaum, and Lindé (2011).
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where p(�i) denotes the priors on �i and f(c i) is the marginal density of c i. The
mode of the posterior distribution of �i is computed by maximizing the value of the

numerator in 4. The posterior distribution of �i is computed using a standard Markov

Chain Monte Carlo (MCMC) algorithm.

We estimate 8 structural parameters, i.e. �i =
�
��a ; �; b; �K ; �P ; �R; ��; �y

�
. These

parameters are the persistence of the second moment preference shock ��a, the house-

hold risk aversion parameter �, the consumption habit formation parameter b, the

parameter regulating investment adjustment costs �K , the parameter regulating price

adjustment costs �P , and the parameters of the Taylor rule �R; ��; �y which - respec-

tively - capture the degree of interest rate smoothing and the systematic response to

in�ation and output growth. Our priors are described in columns 3-4 of Table 3. We

calibrate our prior means with the parameters used in Basu and Bundick�s (2017) analy-

sis, and we use di¤use priors. For the habit formation parameter and the parameters

of the Taylor rule, we use the same priors employed by Christiano et al. (2011).16 The

remaining parameters of the model are calibrated as in Basu and Bundick (2017). We

con�ne a discussion on the calibration of these parameters to Appendix E for the sake

of brevity.

3.3 Regime-speci�c estimation results

Our state-conditional model-based responses are reported in Figures 3 and 4 along with

the IVAR-based bootstrapped con�dence bands.17 The model captures remarkably well

the VAR dynamics in both regimes. Most of the DSGE impulse responses lie within the

68% con�dence bands of the IVAR impulse responses. The model is able to replicate

the stronger responses of real variables during contractions as well as the fact that their

responses are longer-lived than responses in expansions. While working well for output,

consumption, and investment, a note on the response of hours in recessions produced

16Canova and Sala (2009) show that the use of priors can hide identi�cation issues even in population
when it comes to estimating linearized DSGE frameworks. Given that we use priors common to the
two regimes we focus on, lack of identi�cation would work against �nding state-dependent parameter
estimates. We anticipate that our results point to substantial di¤erences in the parameter estimates
between regimes. An exercise dealing with identi�cation issues in the estimation of nonlinear DSGE
frameworks is material for future research.
17Our bootstrapped con�dence bands are based over 1,000 bootstrapped realizations for the impulse

responses, which are used to compute the bootstrapped estimate of the standard errors of the impulse
response functions. As in Altig, Christiano, Eichenbaum, and Lindé (2011), the con�dence bands are
constructed by considering the point estimates of the impulse response �1:64 times the bootstrapped
estimate of the standard errors.
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by the DSGE model is warranted. The model is able to generate a persistent contrac-

tionary response in hours worked whose shape is similar to the one produced by the

IVAR framework. However, it falls short in replicating the magnitude of the response,

above all during recessions. This issue, which we share with Basu and Bundick (2017),

may be due to various reasons. First, as pointed out by Basu and Bundick (2017), the

dynamics of hours worked in the data during recessions is substantially in�uenced by

low-productive types, which tend to quickly exit the labor market and whose dynam-

ics drive hours worked on aggregate. By contrast, the model we work with features

a representative agent. Hence, by construction, it is ill-suited to capture aggregate

dynamics driven by heterogeneities in the labor market. Second, the model predicts

an expansions in precautionary labor supply which is contrasted by the contraction of

labor demand due to the weakened demand for goods. A strong e¤ect on hours by the

expansion in labor supply makes the life of the model hard when it comes to generat-

ing a contraction in the equilibrium level of hours. Third, the labor market model in

this framework features no relevant rigidities. Leduc and Liu (2016) show that search

frictions work in favor of magnifying the e¤ects of uncertainty shocks on labor mar-

ket indicators. Cacciatore and Ravenna (2018) show that combining matching frictions

with an occasionally binding constraint on downward wage adjustment exhacerbates the

negative e¤ects of uncertainty shocks on the labor market. Our choice of working with

a �exible labor market makes our results more directly comparable to those in Basu

and Bundick (2017). Moreover, while falling short from a quantitative standpoint, the

model is clearly able to generate comovements involving also hours worked in recessions.

The overall good performance of the model can also be appreciated by looking at

Table 2, which compares the peak responses produced by the DSGE framework with

the data. The model is clearly able to generate a relatively strong response of all real

activity indicators in recessions with respect to expansions.

Turning to the nominal side, the performance of the model is admittedly less success-

ful. The response of prices is, in general, not well captured by the DSGE model. The

reason is that this model features an upward pricing bias (also present in other frame-

works, see Born and Pfeifer (2014a), Fernández-Villaverde, Guerrón-Quintana, Kuester,

and Rubio-Ramírez (2015), and Mumtaz and Theodoridis (2016)). This upward pricing

bias, which relates to the uncertainty over future pro�ts faced by entrepreneurs when

setting their prices, contrasts the price e¤ects of the contraction in real activity. Con-

sequently, the model response of the federal funds rate is also milder than in the data.

However, the lack of adherence of the model with the facts does not prevent the DSGE
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framework to replicate the generalized fall in real activity after an uncertainty shock in

the two states of interest, which is what we focus on in this paper.

Table 3 (last two columns) collects the estimated parameters of the DSGE model

for both regimes. In spite of sharing the same priors, some of the estimated parameters

are clearly state-dependent.18 In particular, household�s risk aversion is estimated to

be larger in recessions; prices are found to be stickier during recessions. On the other

hand, the persistence of the second moment preference shock ��a is estimated to be

the same between states. This implies that the di¤erent e¤ects of uncertainty shocks

in model�based responses are fully due to a di¤erent propagation mechanism which

is only explained by di¤erences in deep structural parameters. The degree of habits

in consumption b and the parameter regulating investment adjustment costs �K are

estimated to be basically the same in the two states. Given the di¤erence between the

prior means on the parameters and their posterior means, as well as the smaller posterior

standard deviation with respect to prior standard deviations, this result does not seem

to be driven by an identi�cation issue. Finally, the estimated policy rule signals a

mildly stronger response to in�ation and output in expansions, where monetary policy

is also found to be more inertial. However, the di¤erences between estimated policy

parameters appear to be small.

3.4 Role of risk aversion

Going back to the parameter instabilities detected by our econometric exercise, one

may wonder what the contribution of each single parameter is to the di¤erent responses

produced by our DSGE model in recessions and expansions. We then check the impact

of each parameter on the impulse responses produced by the DSGE model as follows.

Conditional on the set of estimates in expansions, we replace the value of each para-

meter with the corresponding estimated value in recessions. To be sure, the way in

which the exercise is designed is such that, if we replaced all estimated parameters con-

temporaneously, by construction we would replicate the impulse responses produced by

the DSGE in recessions. Appendix H documents the outcome of this exercise. Among

the unstable parameters of the model, the dominant role is played by risk aversion. In

line of this �nding, we re-estimate the DSGE model by allowing only the degree of risk

aversion to be state-dependent, while the other parameters take the estimated values

18Appendix F plots priors and posterior densities of the estimated parameters. While not being a
su¢ cient condition for identi�cation, it is interesting to notice that priors and posteriors are clearly
di¤erent. Appendix G reports detailed convergence diagnostics for the MCMC estimation.
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conditional on the impulse responses produced with the linear version of the VAR. The

estimated parameters conditional on the linear VAR are presented in Table 4 (fourth

column). When we allow only the risk aversion parameter to vary we get estimates of

150.36 and 83.90 for recessions and expansions, respectively. These �gures, however, do

not take into account the role that endogenous labor supply and habit formation play in

a¤ecting the coe¢ cient of relative risk aversion. Swanson (2012) proposes closed-form

expressions for risk aversion that take into account the role played by adjustments in

household�s labor supply. Swanson (2018) extends this analysis to the case of general-

ized recursive preferences, which include Epstein-Zin preferences. Following Swanson

(2018), we compute the value of the relative risk aversion corresponding to our estimates

of the parameter � and conditional on the structure of the economy we deal with. We

obtain a value of 85 for the coe¢ cient of relative risk aversion in recessions, and 56

in expansions. These values are in the ballpark of the calibrated (75) and estimated

(110) ones in Rudebusch and Swanson (2012). However, these levels of risk aversion are

high with respect to those typically used in the macroeconomic literature. A possible

reason is the lack of model uncertainty in our framework. Barillas, Hansen, and Sargent

(2009) employ a max�min expected utility theory approach to show that models with

high risk aversion in which rational agents are endowed with the knowledge of the true

underlying structure of the economy can be reinterpreted as frameworks in which risk

aversion is low but households have doubts about the model speci�cation. Our model

does not embed any doubts about the underlying economy by households. Therefore, it

is likely to understate the true quantity of risk faced by households in the data, which

is the reason why it requires high levels or risk aversion to match the VAR facts.

Figures 3 and 4 plots the impulse responses produced by the version of the DSGE

model in which risk aversion is the only parameter free to adjust between states over

the responses produced by allowing all parameters to adjust. Evidently, risk aversion,

which is estimated to be countercyclical, does the job by itself.

Wrapping up, our empirical investigation reveals that a DSGE model estimated by

matching facts produced with a linear VAR does a good job in replicating the impulse

responses produced with a nonlinear VAR framework and related to recessions and ex-

pansions. However, such a good job occurs if risk aversion is actually allowed to change

between states. In particular, risk aversion is estimated to be larger in recessions. Inter-

estingly, a countercyclical risk aversion has recently been advocated by Cochrane (2017)

as a feature macro-�nance models should possess to match the data. Cohn, Engelmann,

Fehr, and André Maréchal (2015) provide experimental evidence suggesting that �nan-
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cial market professionals are more risk averse during a �nancial bust than a boom. This

evidence suggests that fear may play an important role in explaining countercyclical risk

aversion. The same conclusion is reached by Guiso, Sapienza, and Zingales (2017), who

provide experimental evidence in favor of a fear model in which agents experience higher

risk aversion in periods of crisis. Kim (2014) estimates a consumption-based capital as-

set pricing model with time-varying risk aversion based on the Epstein�Zin recursive

utility, and �nds strong support for the countercyclicality of the risk aversion para-

meter. Our paper lines up with these contributions by identifying countercyclical risk

aversion as crucial to replicate the asymmetric response of real activity to uncertainty

shocks along the business cycle. As conjectured by Cohn, Engelmann, Fehr, and André

Maréchal (2015), we �nd that risk aversion ampli�es economic dynamics in response to

a shock.19

The ability of the estimated model to replicate the empirical facts produced with our

nonlinear VAR depends exclusively from the instability in the risk aversion parameter.

In fact, the role played by initial conditions in the nonlinear DSGE model we work with

is empirically negligible. Appendix I shows this by computing the DSGE-based (state-)

conditional GIRFs as de�ned in Andreasen, Fernández-Villaverde, and Rubio-Ramírez

(2017). Conditional GIRFs relative to uncertainty shocks are found to be quantitatively

insensitive to di¤erent initial conditions. Hence, to replicate the di¤erent real e¤ects

of uncertainty shocks, the estimated DSGE model has to rely on parameter instability.

The message in this paper is that instability in risk aversion is empirically found to be

necessary and su¢ cient for the DSGE model to replicate the facts.

4 The great recession

So far, our analysis has shown that a nonlinear DSGEmodel estimated with an auxiliary

nonlinear VAR framework goes a long way in replicating the asymmetric reaction of real

activity indicators to an uncertainty shock. In performing this exercise, the reference

facts we considered regarded the di¤erent responses of real activity in recessions and

expansions in general. However, the recent great recession is clearly a rare event which

19Andreasen, Fernández-Villaverde, and Rubio-Ramírez (2017) show that, in a model featuring a
portfolio allocation problem related to short- and long-term bonds plus a systematic response of the
central bank to the term spread, uncertainty shocks to households� preferences generate moments
consistent with the data even in presence of moderate values of risk aversion. The moments studied
by Andreasen, Fernández-Villaverde, and Rubio-Ramírez (2017) are, however, unconditional moments,
i.e., they are not state-speci�c.
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hardly falls under the "standard recessions" category. A way to lend support to this

statement is to exploit the �exibility of our nonlinear VAR, which allows us to move

from an analysis between states to an analysis across dates. This is possible because of

the dependence of impulse responses to initial conditions in nonlinear models (Koop,

Pesaran, and Potter (1996)). We then work out the temporal evolution of the peak

response of GDP, consumption, investment and hours worked over a �ve-year horizon

to an equally sized uncertainty shock by associating to each quarter an uncertainty

shock occurring in each initial quarter of our sample.20

Figure 5 displays the outcome of this exercise. The peak responses are much higher

(in absolute terms) in recessions, a �nding in line with the empirical facts documented in

Section 2. Moreover, the peaks point to a particularly strong response of real activity in

three recessions, i.e., 1974-1975, 1981-1982, and 2007-2009. Clearly, the great recession

is an outlier, i.e., all four real activity indicators display their maximum responses (in

absolute terms) during that extreme event. When compared to the peaks predicted

by a linear VAR model, the nonlinear framework returns �gures regarding the great

recession which are between two and three times larger.

Can our structural DSGE model replicate the drop in real activity occurred during

the great recession? While to replicate the average e¤ects of uncertainty shocks in

recession an adjustment of the calibration of the risk aversion parameter may be enough,

for this particular recession some other characteristic of the model may also need to

adjust. In fact, the beginning of the great recession called for a dramatic cut of the

policy rate, which moved from 5.25% in July 2008 to basically zero in just �ve months.

Hence, one would think that also the Taylor rule parameters should adjust to have

the model replicate the spectacular contraction experienced by the U.S. economy. To

investigate this issue, we then focus on 2008Q4, the quarter associated to the largest

realization of the uncertainty shock according to our IVAR model, and estimate our

DSGE model conditional on the IVAR responses for this quarter.

Table 4 (last three columns) collects the estimates relative to di¤erent versions of the

estimated model, i.e., one which just allows risk aversion to change; one which allows

risk aversion and the policy parameters to adjust; and one which allows all parameters
to adjust. The information reported in the table con�rms that changes in the estimated

values of risk aversion and the policy parameters are needed to replicate the great

recession.
20The �gure with the cumulative responses of real activity over a �ve-year horizon delivers the very

same qualitative message.
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Equipped with this estimated framework, we conduct an exercise which aims at

quantifying the contribution of uncertainty shocks for the cumulative output loss recorded

by the U.S. economy during and after the great recession. To do so, we follow Basu

and Bundick (2017) and take as an external reference the CBO output gap, which is a

"detrended" measure of output.21 The though experiment goes as follows. Assume the

economy to be at its stochastic steady state before the advent of the large uncertainty

shock in 2008Q4. Then, the real world is hit by the large uncertainty shock in 2008Q4, as

well as a variety of other shocks. We produce the response of output with our estimated

DSGE model in which risk aversion and the Taylor rule parameters are free to adjust.

To appreciate the role of nonlinearities for the calibration of the DSGE model, we also

produce the response of output to an equally sized uncertainty shock with a version of

the DSGE model estimated conditional on the impulse responses produced with a linear

VAR. We consider responses to a 4.5 standard deviation uncertainty shock, which is the

one estimated by our VAR for the 2008Q4. We then contrast the predictions of these

di¤erently calibrated DSGE frameworks with the the cumulative detrended output loss

(with detrendd output normalized to zero in 2008Q3) in 2008Q4-2014Q2, which is the

period during which detrended output recorded negative realizations.

Figure 6 compares the responses produced with our favorite DSGE models, i.e., the

one estimated on the nonlinear VAR, a version of the DSGEmodel estimated conditional

on a linear VAR, and the evolution of detrended output (normalized to zero in 2008Q3,

i.e., before the shock hits). The cumulative loss of output in the period considered here

is equal to 53% (with respect to the trend). Our nonlinear DSGE model estimates an

uncertainty shock in 2008Q4 to be associated to a cumulative output loss equal to 24%,

which is almost 1/2 of the total loss. This is twice as much the loss predicted by a

DSGE model estimated conditional on a linear VAR, which is, 13%. Allowing for the

risk aversion only parameter to adjust would still imply a good prediction of the peak

response of output after the shock. However, it would also imply a too quick return of

predicted output to the steady state, which would lead to an underestimation of the

output loss caused by the uncertainty shock.

21The evolution of the CBO output gap is quantitatively very similar to that of the Hodrick-Prescott
�ltered log real GDP (smoothing weight: 1,600).
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5 Conclusion

This paper employs a nonlinear VAR framework to document that �nancial uncertainty

shocks exert a stronger e¤ect on real activity in recessions. A nonlinear structural DSGE

model is �tted to the data relative to booms and busts to interpret this evidence.

The estimation of the DSGE model is conducted by working with a Bayesian direct

inference approach, which is applied in a novel manner to a nonlinear DSGE structure.

Counter-cyclical risk aversion is identi�ed as the key element that enables the DSGE

model to replicate the empirical facts. Focusing on the great recession, we show that a

combination of high risk aversion and weak, low-inertial response to in�ation is su¢ cient

for the structural model to replicate the response of real activity in 2008Q4 produced by

the nonlinear VAR. When estimated targeting such response, the model assigns about

50% of the output loss materialized in 2008-2014 to a big �nancial uncertainty shock

occurred at the end of 2008. The same DSGE model estimated by targeting the impulse

responses produced by a linear VAR is shown to substantially downplay the role played

by such shock.

This paper o¤ers solid support to Federal Reserve�s former Chairman Alan Greenspan

view on macroeconomic modeling: "[...] it is apparent that a prominent shortcoming of

our structural models is that, for ease in parameter estimation, not only are economic

responses presumed �xed through time, but they are generally assumed to be linear. An

assumption of linearity may be adequate for estimating average relationships, but few

expect that an economy will respond linearly to every aberration." Our results stress the

importance of using nonlinear frameworks for correctly quantifying the e¤ects of uncer-

tainty shocks - and, more generally, macroeconomic shocks - for the U.S. business cycle.

Nonlinear VARs can fruitfully be used to establish facts which serve as a reference to

build and evaluate structural frameworks used to conduct policy analysis. Correctly cal-

ibrating such frameworks is of paramount importance to conduct informative historical

and policy analysis.

Our paper shows that a state-of-the-art nonlinear DSGE model is able to explain

the state-dependent response of real activity to an uncertainty shock via the instability

of the estimated risk aversion parameter. We see this result as informative for the

construction of theoretical models featuring endogenous mechanisms able to replicate

the nonlinear e¤ects of uncertainty shocks.
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Peak responses relative to strong expansions
Deep contractions Strong expansions

Variable VAR DSGE VAR DSGE
Y 1.49 1.47 1 1
C 1.32 1.49 1 1
I 2.15 1.48 1 1
H 2.19 1.49 1 1

Peak responses relative to output
Deep contractions Strong expansions

Variable VAR DSGE VAR DSGE
Y 1 1 1 1
C 0.55 0.58 0.62 0.58
I 3.33 2.29 2.29 2.29
H 1.41 0.64 0.96 0.63

Table 1: IVAR responses: Relative moments. Sample: 1962Q3-2017Q2. VAR
estimated with four lags.
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Figure 1: IVAR impulse responses to an uncertainty shock in recessions and
expansions. Red line: Deep recessions. Blue line: Strong expansions. Green line: Re-
sponses associated to the nested linear VAR. Sample: 1962Q3-2017Q2. VAR estimated
with four lags.
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Figure 2: Di¤erences of the IVAR impulse responses to an uncertainty shock:
Recessions vs. expansions. Solid black lines: di¤erence between the point estimated
state-conditional GIRFs in recessions and expansions (taking the di¤erence between the
latter and the former). Grey areas: 68 percent con�dence bands of the di¤erence (from
its distribution constructed with 2,000 bootstrap draws). Sample: 1962Q3-2017Q2.
VAR estimated with four lags.
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Figure 3: DSGE vs. IVAR impulse responses to an uncertainty shock: Expan-
sions. Solid lines with squares: Responses of the DSGE model estimated by allowing
only risk aversion to adjust between recessions and expansions. Solid lines with dia-
monds: Responses of the DSGE model estimated by allowing all parameters to adjust
between recessions and expansions. Areas identi�ed by blue lines: 68% con�dence in-
terval produced with the IVAR. Sample: 1962Q3-2017Q2. VAR estimated with four
lags.
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Figure 4: DSGE vs. IVAR impulse responses to an uncertainty shock: Reces-
sions. Solid lines with squares: Responses of the DSGE model estimated by allowing
only risk aversion to adjust between recessions and expansions. Solid lines with dia-
monds: Responses of the DSGE model estimated by allowing all parameters to adjust
between recessions and expansions. Areas identi�ed by blue lines: 68% con�dence in-
terval produced with the IVAR. Sample: 1962Q3-2017Q2. VAR estimated with four
lags.
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Figure 5: IVAR time-varying impulse responses to an uncertainty shock. Blue
lines: Peak responses over a �ve-year horizon. Red lines: Peak responses as computed
by a linear VAR. Sample: 1962Q3-2017Q2. VARs estimated with four lags.
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and (only sigma and rho_a): Non-estimated parameters calibrated at the value found
when estimating the model with a linear VAR.

35



Appendix

A: Parsimonious vs. extended IVAR

The IVAR model employed in the paper is a parsimonious version of a more sophisti-

cated IVAR which we estimated to check the robustness of our results. Thinking of the

third-order approximation of the DSGE model we work with, it is natural to extent our

baseline IVAR framework to add extra interaction terms involving quadratic terms as

follows:

Yt = �+

LX
j=1

AjYt�j +

264
PL

j=1 cj lnV XOt�j �� lnGDPt�j
+
PL

j=1 cj(lnV XOt�j)
2 �� lnGDPt�j

+
PL

j=1 cj lnV XOt�j � (� lnGDPt�j)2

375+ ut
Cubic terms ((lnV XOt�j)3; (� lnGDPt�j)3) are omitted to minimize the risk of

explosiveness.

Figure A1 contrasts the impulse responses obtained with our baseline model with

those produced with the enriched framework. If anything, the reactions produced by

this framework speak even more clearly in favor of nonlinearities in the data.

B: Match between VAR and DSGE model

The Basu and Bundick (2017) has a structure which is de facto consistent with the as-

sumptions undertaken in Section 2 which regard the identi�cation of uncertainty shocks.

In our recursively identi�ed nonlinear VAR model the VXO is ordered �rst and hence it

is assumed that, while uncertainty shocks can contemporaneously a¤ect all variables in

the VAR, the VXO cannot be contemporaneously a¤ected by other shocks. The Basu

and Bundick (2017) model features an endogenous measure of �nancial uncertainty (a

model-consistent VXO) which responds to three shocks, i.e., a �rst-moment technology

shock, a �rst-moment preference shock, and a second-moment preference shock, this last

one being the uncertainty shock. Conditional on Basu and Bundick�s (2017) calibration,

however, the uncertainty shock and the model-consistent VXO move hand-in-hand, i.e.,

the VXO reacts very little to shocks other than the uncertainty one.

A Monte Carlo exercise with arti�cial data simulated with the Basu and Bundick

(2017) framework con�rms this statement. We conduct a population analysis and simu-

late a sample of 50,000 observations with the model calibrated as in Basu and Bundick
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(2017). 22 We then estimate a linear VAR and produce impulse responses to an un-

certainty shock identi�ed with a Cholesky decomposition of the reduced-form variance-

covariance matrix. In the VAR, the VXO is ordered �rst. We focus on a population

analysis and on a linear VAR to make sure that our result is not driven by any small-

sample issue or fancy nonlinear reduced-form framework.

Figure A2 documents the performance of the Cholesky-VAR in replicating the

DSGE-model consistent impulse responses. The ability of the VAR to correctly cap-

ture the responses of the DSGE model is impressive. This result justi�es the use of

a direct impulse-response function matching approach when we estimate the DSGE

framework. Figure A3 adds evidence on the "quasi-exogeneity" of the model consistent

VXO process by plotting the volatility of the preference shock against that of the VXO.

The two series clearly comove, and their correlation is equal to 0.95.

C: GIRFs in presence of the shadow rate

Figure A4 shows that our results are practically the same if the Wu and Xia (2016)

shadow rate is used in place of the federal funds rate for the period of zero lower bound.

As shown by the authors the shadow rate, and its meaningful variations, can be used

to proxy unconventional monetary policy at the zero lower bound.

D: Computation of the Generalized Impulse Response Func-
tions

The algorithm for the computation of the Generalized Impulse Response Functions

follows the steps suggested by Koop, Pesaran, and Potter (1996), and it is designed to

simulate the e¤ects of an orthogonal structural shock as in Kilian and Vigfusson (2011).

The idea is to compute the empirical counterpart of the theoretical GIRFy(h; �;!t�1)

of the vector of endogenous variables yt, h periods ahead, for a given initial condition

!t�1 = fyt�1; :::;yt�kg, k is the number of VAR lags, and � is the structural shock

hitting at time t. Following Koop, Pesaran, and Potter (1996), such GIRF can be

expressed as follows:

GIRFy(h; �;!t�1) = E[yt+h j�;!t�1] � E[yt+h j!t�1]
22Notice that nothwistanding the fact that we use a DSGE model with three shock to simulate data

on which to estimate a seven variables VAR model, we do not su¤er from stochastic singularity given
that the DSGE model at the basis of the simulation is nonlinearized, and hence there is no linear
combination of variables that is perfectly collinear to others.
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where E[�] is the expectation operator, and h = 0; 1; :::; H indicates the horizons

from 0 to H for which the computation of the GIRF is performed.

Given our model (1), we compute our GIRFs as follows:

1. we pick an initial condition !t�1. Notice that, given that uncertainty and the

policy rate are modeled in the VAR, such set includes the values of the interaction

terms (lnV XO �� lnGDP )t�j, j = 1; :::; k;

2. conditional on !t�1 and the structure of the model (1), we simulate the path

[yt+h j!t�1]r , h = [0; 1; :::; 19] (which is, realizations up to 20-step ahead) by load-
ing our VARwith a sequence of randomly extracted (with repetition) residuals eurt+h �
d(0; b
), h = 0; 1; :::; H;where b
 is the estimated VCV matrix, d(�) is the empirical
distribution of the residuals, and r indicates the particular sequence of residuals

extracted;

3. conditional on !t�1 and the structure of the model (1), we simulate the path

[yt+h j�;!t�1]r , h = [0; 1; :::; 19] by loading our VAR with a perturbation of the

randomly extracted residuals eurt+h � d(0; b
) obtained in step 2. In particular,
we Cholesky-decompose b
 = bC bC 0

, where bC is a lower-triangular matrix. Hence,

we recover the orthogonalized elements (shocks) e"rt = bC�1eurt . We then add a
quantity � > 0 to the e"runc;t, where e"runc;t is the scalar stochastic element loading
the uncertainty equation in the VAR. This enable us to obtain e"rt , which is the
vector of perturbed orthogonalized elements embedding e"runc;t. We then move
from perturbed shocks to perturbed residuals as follows: eurt = bCe"rt . These are
the perturbed residuals that we use to simulate [yt+h j�;!t�1]r ;

4. we compute the di¤erence between paths for each simulated variable at each

simulated horizon [yt+h j�;!t�1]r � [yt+h j!t�1]r , h = [0; 1; :::; 19];

5. we repeat steps 2-4 a number of times equal to R = 500. We then store the

horizon-wise average realization across repetitions r. In doing so, we obtain a con-

sistent estimate of the GIRF per each given initial quarter of our sample, i.e., an

history-dependent GIRF, \GIRF y(h; �t;!t�1) = bE[yt+h j�;!t�1] � bE[yt+h j!t�1] ,
h = [0; 1; :::; 19]. If a given initial condition !t�1 leads to an explosive response

(namely if this is explosive for most of the R sequences of residuals eurt+h, in the
sense that the response of the shocked variable diverges instead than reverting to
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zero), then such initial condition is discarded (i.e., they are not considered for the

computation of state-dependent GIRFs in step 6);23

6. in order to produce our state-dependent GIRFs for recessions and expansions, we

�rst split previous initial conditions into two subsets of interest. To do so, an

initial condition $t�1 = fYt�1; :::;Yt�Lg is classi�ed to belong to the �deep con-
tractions�state if � lnGDPt�1 is in the bottom decile of the quarter-on-quarter

GDP growth rate empirical distribution and to the "strong expansions" state if

� lnGDPt�1 is in the top decile of the quarter-on-quarter GDP growth rate empir-

ical distribution. Out of these two sets of initial conditions we take the within-set

average to obtain, for each state, the average initial condition across the histories

linked to the state, i.e. �$rec:
t�1 and �$exp.

t�1 , which work as a sort of unconditional

mean for each state. Then, to produce our state-dependent GIRFs for recessions

and expansions, \GIRF Y;t(�t; �$rec:
t�1) and \GIRF Y;t(�t; �$exp.

t�1), we adopt the same

steps 1-5 above for �$rec:
t�1 and �$

exp.
t�1 as initial conditions.

7. con�dence bands surrounding the point estimates obtained in step 6 are computed

via a bootstrap procedure. In particular, we simulate S = 1; 000 samples of size

equivalent to the one of actual data. Then, per each dataset, we i) estimate our

nonlinear VAR model; ii) implement step 6.24 In implementing this procedure the

initial conditions and VCV matrix used for our computations now depend on the

particular dataset s used, i.e., !st�1 and 

s
t . Con�dence bands are the constructed

by considering the 84th and 16th percentiles of the resulting distribution of state-

conditional GIRFs.

E: Model calibration

Some parameters of the model are calibrated as in Basu and Bundick (2017) for com-

parability reasons. Table A1 collects all the calibrated parameters. We do not estimate

these parameters for several reasons. We follow a long tradition in macroeconomics and

calibrate the capital�s share in production �, the household discount factor � and the

steady state depreciation rate � to values that are standard in the literature. The �rst-

order utilization parameter �1 and the consumption weight in the period utility function

23This never happens for our responses estimated on actual data. We veri�ed that it happens quite
rarely as regards our bootstrapped responses.
24The bootstrap used is similar to the one used by Christiano, Eichenbaum, and Evans (1999) (see

their footnote 23). The code discards the explosive arti�cial draws to be sure that exactly 1,000 draws
are used. In our simulations, this happens a negligible fraction of times.

A4



� cannot be estimated, because the �rst is determined endogenously by a steady state

relationship (involving � and �) and the second is �xed in order to imply a Frisch elas-

ticity equal to 2. The steady state in�ation rate � cannot be estimated by a impulse

response functions matching procedure that focuses on out-of-steady state dynamics,

i.e., deviations from the (stochastic) steady state. The �rm leverage parameter � does

not in�uence impulse responses in the absence of �nancial frictions and hence is not

identi�ed. As regards the parameters of the stochastic shock processes, we calibrate the

volatility of the second moment preference shock ��a by appealing to the estimated re-

sponses of our nested linear VAR model. The parameters governing the processes of the

preference and technological shocks, i.e. �a, �a, �Z and �Z are calibrated by borrowing

values from Basu and Bundick (2017). In spite of our focus on the e¤ects of the uncer-

tainty shocks, we calibrate also these parameters because these stochastic processes can

in principle in�uence (even on-impact) the response of the model-consistent VXO to

an uncertainty shock. We also do not estimate the second-order utilization parameter

�2, the elasticity of substitution between intermediate goods ��, and the IES  to not

further increase the computational burden of the estimation procedure.

F: Priors vs. posterior densities in the DSGE model estimation

Figure A5 displays the prior and posterior densities of our estimated parameters. The

evidence points to the information in our sample as able to shift and modify the prior

densities.

G: DSGE model estimation convergence diagnostics

Table A2 shows the results of the Geweke (1992)-convergence diagnostics test that

compares the means of the �rst 20% retained draws with that of the last 50%. As

indicated by the p-values of the �2 -test for the equality of the means, all MCMC chains

converge to their stationary distribution. Figures A7 and A8 show the corresponding

MCMC chains and the evolution of their means over time.

H: Counterfactuals to identify relevant parameter instabilities

We conduct counterfactual exercises per each version of our DSGE model to identify

the relevant parameters a¤ecting the impulse responses of the variables of our interest

to an uncertainty shock. As regards our analysis of recessions and expansions, we check

the impact of each parameter on the impulse responses produced by the DSGE model as
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follows. Conditional on the set of estimates in expansions, we replace the value of each

parameter with the corresponding estimated value in recessions. To be sure, the way

in which the exercise is designed is such that, if we replaced all estimated parameters

contemporaneously, by construction we would replicate the impulse responses produced

by the DSGE in recessions. Figures A8 and A9 display the outcome of this exercise.

Bottom line: The parameter which leads to a substantial change of the impulse responses

is clearly the risk aversion parameter.

I: DSGE model state-conditional GIRFs

This Section investigates whether the initial conditions in the nonlinear DSGEmodel we

employ play a role for the dynamics of the system after an uncertainty shock. Andreasen,

Fernández-Villaverde, and Rubio-Ramírez (2017) show that the initial values of the

states are potentially very important for the e¤ects of the macroeconomic shocks they

study. The computation of the GIRFs in our paper follows Basu and Bundick (2017)

and do not properly take into account the role of initial conditions. Hence, this possible

omitted factor could be behind the evidence of countercyclical risk aversion we �nd.25

It is therefore important to provide a check on the relevance of initial conditions in the

model we work with.

Figure A10 compares DSGE-related unconditional GIRFs computed at the ergodic

mean of the states with those computed in a state-conditional manner, i.e., by tak-

ing initial conditions corresponding to deep contractions and strong expansions.26 To

control for the role of parameter instability, all responses displayed in Figure 10 are

computed conditional on the estimates we obtained with the facts established by the

linear VAR. To ease comparison, we also plot our baseline responses à la Basu and

Bundick (2017) based on the same parameters values. The two states/regimes of deep

contractions and strong expansions are de�ned consistently with the de�nition adopted

for the GIRFs computed with our IVAR model.27

Two comments are in order. First, the Basu and Bundick (2017) way of comput-

25As explained in the main text, we compute responses in the model starting from the regime-speci�c
stochastic steady state implied by the estimated set of parameters.
26Unconditional and conditional GIRFs are computed based on the replication codes of Andreasen,

Fernández-Villaverde, and Rubio-Ramírez (2017). Consistently with their de�nition, these responses
have to be interpreted as deviations from the (deterministic) steady state of the model.
27Consistently with Andreasen, Fernández-Villaverde, and Rubio-Ramírez (2017), we split the initial

values of the state variables between the two regimes on the basis of the �rst and last deciles of the
distribution of the GDP growth rate obtained from a simulated sample path. 500 draws in each regimes
are selected.
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ing responses produces results very similar to the ones produced by the Andreasen,

Fernández-Villaverde, and Rubio-Ramírez (2017) method.28 Second, the initial con-

ditions in the DSGE model do not materially in�uence the computed GIRFs to an

uncertainty shock. The evidence documented in Figure 10 points to the role of initial

conditions for the computation of the state-consistent GIRFs as negligible.29

28One di¤erence is observed in the response of investment. This appears due to a di¤erent compu-
tation of GIRFs between the two approaches. The adoption of the Basu and Bundick method in our
work is justi�ed by two reasons. First, this choice enhance comparability with their empirical results.
Second, Basu and Bundick (2017) show that their methodology produces impulse responses that are
very similar to the unconditional simulation-based GIRFs à la Koop, Pesaran and Potter (1996).
29Consistently with Andreasen, Fernández-Villaverde, and Rubio-Ramírez (2017), we �nd that initial

conditions are particularly relevant for �rst moments shocks, like the preference shock in our model
(results available upon request). Our intuition is that initial conditions are less relevant for the propa-
gation of second moments shocks because such shocks propagate only via a third-order approximated
part of the solution.

A7



References

Aastveit, K. A., G. J. Natvik, and S. Sola (2017): �Economic Uncertainty and

the In�uence of Monetary Policy,�Journal of International Money and Finance, 76,

50�67.

Albuquerque, R., M. Eichenbaum, V. X. Luo, and S. Rebelo (2016): �Valua-

tion Risk and Asset Pricing,�Journal of Finance, LXXI(6), 2861�2903.

Alessandri, P., and H. Mumtaz (2018): �Financial Regimes and Uncertainty

Shocks,�Journal of Monetary Economics, forthcoming.

Altig, D., L. J. Christiano, M. Eichenbaum, and J. Lindé (2011): �Firm-

Speci�c Capital, Nominal Rigidities and the Business Cycle,�Review of Economic

Dynamics, 14(2), 225�247.

Andreasen, M. M. (2012): �On the E¤ects of Rare Disasters and Uncertainty Shocks

for Risk Premia in Non-Linear DSGEModels,�Review of Economic Dynamics, 15(3),

295�316.

Andreasen, M. M., J. Fernández-Villaverde, and J. F. Rubio-Ramírez

(2017): �The Pruned State-Space System for Non-Linear DSGE Models: Theory

and Empirical Applications,�Review of Economic Studies, forthcoming.

Auerbach, A., and Y. Gorodnichenko (2012): �Measuring the Output Responses

to Fiscal Policy,�American Economic Journal: Economic Policy, 4(2), 1�27.

Barillas, F., L. P. Hansen, and T. J. Sargent (2009): �Doubts or Variability?,�

Journal of Economic Theory, 144, 2388�2418.

Basu, S., and B. Bundick (2017): �Uncertainty Shocks in a Model of E¤ective

Demand,�Econometrica, 85(3), 937�958.

Basu, S., and B. Bundick (2018): �Uncertainty Shocks in a Model of E¤ective

Demand: Reply,�Econometrica, 86(4), 1527�1531.

Bianchi, F., and L. Melosi (2017): �Escaping the Great Recession,� American

Economic Review, 107(4), 1030�58.

Bloom, N. (2009): �The Impact of Uncertainty Shocks,�Econometrica, 77(3), 623�

685.

A8



Born, B., and J. Pfeifer (2014a): �Policy Risk and the Business Cycle,�Journal of

Monetary Economics, 68, 68�85.

(2014b): �Risk Matters: The Real E¤ects of Volatility Shocks: Comment,�

American Economic Review, 104(12), 4231�4239.

(2019): �Uncertainty-driven business cycles:assessing the markup channel,�

Frankfurt School of Finance & Management and University of Cologne, mimeo.

Cacciatore, M., and F. Ravenna (2018): �Uncertainty, Wages, and the Business

Cycle,�HEC Montreal, mimeo.

Caggiano, G., E. Castelnuovo, V. Colombo, and G. Nodari (2015): �Estimat-

ing Fiscal Multipliers: News From a Nonlinear World,�Economic Journal, 125(584),

746�776.

Caggiano, G., E. Castelnuovo, and J. M. Figueres (2017): �Economic Pol-

icy Uncertainty and Unemployment in the United States: A Nonlinear Approach,�

Economics Letters, 151, 31�34.

Caggiano, G., E. Castelnuovo, and N. Groshenny (2014): �Uncertainty Shocks

and Unemployment Dynamics: An Analysis of Post-WWII U.S. Recessions,�Journal

of Monetary Economics, 67, 78�92.

Caggiano, G., E. Castelnuovo, and G. Nodari (2019): �Uncer-

tainty and Monetary Policy in Good and Bad Times,� available at

https://sites.google.com/site/efremcastelnuovo/.

Caggiano, G., E. Castelnuovo, and G. Pellegrino (2017): �Estimating the

Real E¤ects of Uncertainty Shocks at the Zero Lower Bound,�European Economic

Review, 100, 257�272.

Caldara, D., J. Fernández-Villaverde, J. F. Rubio-Ramírez, and W. Yao

(2012): �Computing DSGE Models with Recursive Preferences and Stochastic

Volatility,�Review of Economic Dynamics, 15, 188�206.

Canova, F., and L. Sala (2009): �Back to Square One: Identi�cation Issues in DSGE

Models,�Journal of Monetary Economics, 56(4), 431�449.

A9



Castelnuovo, E., and G. Pellegrino (2018): �Uncertainty-dependent E¤ects of

Monetary Policy Shocks: A New Keynesian Interpretation,� Journal of Economic

Dynamics and Control, 93, 277�296.

Christiano, L., M. Trabandt, and K. Walentin (2011): �DSGE Models for

Monetary Policy Analysis,�in: B. M. Friedman and M. Woodford (Eds.): Handbook

of Monetary Economics, Volume 3a, 285�367.

Christiano, L. J., M. Eichenbaum, and C. Evans (1999): �Monetary Policy

Shocks: What Have We Learned and to What End?,�In: J.B. Taylor and M. Wood-

ford (eds.): Handbook of Macroeconomics, Elsevier Science, 65�148.

Cochrane, J. (2017): �Macro-Finance,�Review of Finance, 21(3), 945�985.

de Groot, O., A. W. Richter, and N. A. Throckmorton (2017): �Uncertainty

Shocks in a Model of E¤ective Demand: Comment,�Federal Reserve Bank of Dallas

Research Department Working Paper 1706.

(2018): �Uncertainty Shocks in a Model of E¤ective Demand: Comment,�

Econometrica, 86(4), 1513�1526.

Drautzburg, T., J. Fernández-Villaverde, and P. Guerrón-Quintana

(2017): �Political Distribution Risk and Aggregate Fluctuations,�.

Fernández-Villaverde, J., P. Guerrón-Quintana, K. Kuester, and J. F.

Rubio-Ramírez (2015): �Fiscal Volatility Shocks and Economic Activity,�Ameri-

can Economic Review, 105(11), 3352�3384.

Fernández-Villaverde, J., P. Guerrón-Quintana, J. F. Rubio-Ramírez, and

M. Uribe (2011): �Risk Matters: The Real E¤ects of Volatility Shocks,�American

Economic Review, 101, 2530�2561.

Ferrara, L. (2003): �A three-regime real-time indicator for the US economy,�Eco-

nomics Letters, 81(3), 373�378.

Greenspan, A. (2003): �Monetary Policy under Uncertainty,�Remarks at a sympo-

sium sponsored by the Federal Reserve Bank of Kansas City, Jackson Hole, Wyoming,

August 29.

A10



Guerron-Quintana, P., A. Inoue, and L. Kilian (2017): �Impulse Response

Matching Estimators for DSGE Models,�Journal of Econometrics, 196, 144�155.

Guiso, L., P. Sapienza, and L. Zingales (2017): �Time Varying Risk Aversion,�

Journal of Financial Economics, forthcoming.

Hall, A., A. Inoue, J. Nason, and B. Rossi (2012): �Information Criteria for Im-

pulse Response Function Matching Estimation of DSGE Models,�Journal of Econo-

metrics, 170(2), 499�518.

Jermann, U. (1998): �Asset Pricing in Production Economies,�Journal of Monetary

Economics, 41, 257�275.

Jurado, K., S. C. Ludvigson, and S. Ng (2015): �Measuring Uncertainty,�Amer-

ican Economic Review, 105(3), 1177�1216.

Kilian, L., and R. Vigfusson (2011): �Are the Responses of the U.S. Economy

Asymmetric in Energy Price Increases and Decreases?,�Quantitative Economics, 2,

419�453.

Koop, G., M. Pesaran, and S. Potter (1996): �Impulse response analysis in

nonlinear multivariate models,�Journal of Econometrics, 74(1), 119�147.

Leduc, S., and Z. Liu (2016): �Uncertainty Shocks are Aggregate Demand Shocks,�

Journal of Monetary Economics, 82, 20�35.

Ludvigson, S. C., S. Ma, and S. Ng (2019): �Uncertainty and Business Cycles:

Exogenous Impulse or Endogenous Response?,�New York University and Columbia

University, mimeo.

Mumtaz, H., and K. Theodoridis (2016): �The changing transmission of uncer-

tainty shocks in the US: An empirical analysis,�Journal of Business and Economic

Statistics, forthcoming.

Rotemberg, J. J. (1982): �Monopolistic Price Adjustment and Aggregate Output,�

Review of Economic Studies, 49, 517�531.

Rudebusch, G. D., and E. T. Swanson (2012): �The Bond Premium in a DSGE

Model with Long-Run Real and Nominal Risks,� American Economic Journal:

Macroeconomics, 4(1), 105�143.

A11



Ruge-Murcia, F. (2017): �Indirect Inference Estimation of Nonlinear Dynamic Gen-

eral EquilibriumModels: With an Application to Asset Pricing under Skewness Risk,�

McGill University, mimeo.

Schmitt-Grohe, S., and M. Uribe (2004): �Solving Dynamic General Equilibrium

Models Using a Second-Order Approximation to the Policy Function,� Journal of

Economic Dynamics and Control, 28, 755�775.

Swanson, E. T. (2012): �Risk Aversion and the Labor Margin in Dynamic Equilibium

Models,�American Economic Review, 102, 1663�1691.

(2018): �Risk Aversion, Risk Premia, and the Labor Margin with Generalized

Recursive Preferences,�Review of Economic Dynamics, 28, 290�321.

Sá, F., P. Towbin, and T. Wieladek (2014): �Capital In�ows, Financial Structure

and Housing Booms,�Journal of the European Economic Association, 12(2), 522�546.

Teräsvirta, T. (2018): �Nonlinear Models in Macroeconometrics,�Oxford Research

Encyclopedias in Economics and Finance, Oxford: Oxford University Press.

Teräsvirta, T., D. Tjøstheim, and C. W. Granger (2010): �Modeling Nonlinear

Economic Time Series,�Oxford University Press, Oxford.

Towbin, P., and S. Weber (2013): �Limits of �oating exchange rates: The role

of foreign currency debt and import structure,�Journal of Development Economics,

101(1), 179�101.

Wu, J. C., and F. D. Xia (2016): �Measuring the Macroeconomic Impact of Monetary

Policy at the Zero Lower Bound,�Journal of Money, Credit, and Banking, 48(2-3),

253�291.

A12



P
ar
.

D
es
cr
ip
ti
on

V
al
ue

So
ur
ce

�
�
a

vo
la
ti
lit
y
of
th
e
un
ce
rt
ai
nt
y
sh
oc
k

0:
00
5

lin
ea
r
V
A
R

�
a

pe
rs
is
te
nc
e
of
th
e
pr
ef
er
en
ce
sh
oc
k

0:
94

B
B
(2
01
7)

�
a

vo
la
ti
lit
y
of
th
e
pr
ef
er
en
ce
sh
oc
k

0:
00
3

B
B
(2
01
7)

�
Z

pe
rs
is
te
nc
e
of
th
e
te
ch
no
lo
gy
sh
oc
k

0:
99

B
B
(2
01
7)

�
Z

vo
la
ti
lit
y
of
th
e
te
ch
no
lo
gy
sh
oc
k

0:
00
1

B
B
(2
01
7)

�
ca
pi
ta
l�s
sh
ar
e
in
pr
od
uc
ti
on

0:
33
3

B
B
(2
01
7)

�
ho
us
eh
ol
d
di
sc
ou
nt
fa
ct
or

0:
99
4

B
B
(2
01
7)

�
st
ea
dy
st
at
e
de
pr
ec
ia
ti
on
ra
te

0:
02
5

B
B
(2
01
7)

� 1
�r
st
-o
rd
er
ut
ili
za
ti
on
pa
ra
m
et
er

0:
03

B
B
(2
01
7)

�
co
ns
um
pt
io
n
w
ei
gh
t
in
th
e
pe
ri
od
ut
ili
ty
fu
nc
ti
on

0:
35

B
B
(2
01
7)

�
st
ea
dy
st
at
e
in
�a
ti
on
ra
te

1:
00
5

B
B
(2
01
7)

�
�r
m
le
ve
ra
ge
pa
ra
m
et
er

0:
9

B
B
(2
01
7)

� 2
se
co
nd
-o
rd
er
ut
ili
za
ti
on
pa
ra
m
et
er

0:
00
03

B
B
(2
01
7)

� �
el
as
ti
ci
ty
of
su
bs
t.
be
tw
ee
n
in
te
rm
ed
ia
te
go
od
s

6:
0

B
B
(2
01
7)

 
in
te
rt
em
po
ra
l
el
as
ti
ci
ty
of
su
bs
ti
tu
ti
on

0:
95

B
B
(2
01
7)

T
ab
le
A
1:
D
S
G
E
m
od
el
:
C
al
ib
ra
te
d
p
ar
am
et
er
s.
B
B
(2
01
7)
st
an
ds
fo
r
B
as
u
an
d
B
un
di
ck
(2
01
7)
.

A13



P
ar
.

In
te
rp
re
ta
ti
on

4%
ta
pe
r
8%

ta
pe
r
15
%
ta
pe
r
4%

ta
pe
r
8%

ta
pe
r
15
%
ta
pe
r

D
ee
p
co
nt
ra
ct
io
ns

St
ro
ng
ex
pa
ns
io
ns

�
�
a

P
er
s.
un
c.
sh
oc
k

0.
08
1

0.
06
6

0.
02
9

0.
11
3

0.
10
5

0.
07
6

�
R
is
k
av
er
si
on

0.
76
0

0.
73
1

0.
68
2

0.
40
8

0.
38
7

0.
40
0

b
H
ab
it
fo
rm
.

0.
16
8

0.
19
0

0.
13
6

0.
76
4

0.
75
5

0.
75
7

�
K

In
v.
ad
j.
co
st
s

0.
26
6

0.
26
7

0.
26
9

0.
46
0

0.
45
6

0.
40
5

�
P

P
r.
ad
j.
co
st
s

0.
08
1

0.
09
9

0.
11
2

0.
17
6

0.
18
4

0.
17
5

�
R

T
R
pa
r.
,
sm
oo
th
.
0.
73
5

0.
74
7

0.
75
3

0.
41
6

0.
40
0

0.
38
8

�
�

T
R
pa
r.
,
in
�.

0.
01
2

0.
01
3

0.
00
4

0.
10
1

0.
11
7

0.
12
3

�
y

T
R
pa
r.
,
ou
t.
gr
.
0.
74
9

0.
74
7

0.
74
5

0.
24
1

0.
26
9

0.
27
4

T
ab
le
A
2:
D
S
G
E
m
od
el
es
ti
m
at
io
n
:
G
ew
ek
e
(1
99
2)

C
on
ve
rg
en
ce

D
ia
gn
os
ti
cs
.
N
um
be
rs
ar
e
p-
va
lu
es
of
th
e

C
hi
-s
qu
ar
ed
te
st
fo
r
eq
ua
lit
y
of
m
ea
ns
of
th
e
�r
st
20
dr
aw
s
(a
ft
er
th
e
�r
st
12
00
0
dr
aw
s
ar
e
di
sc
ar
de
d
as
bu
rn
-i
n)
.

A14



5 10 15 20

O
ut

pu
t

­0.4

­0.2

0

0.2
Contractions

Baseline
Higher order terms

5 10 15 20

C
on

s.

­0.4

­0.2

0

0.2

5 10 15 20

In
ve

st
.

­2

­1

0

1

5 10 15 20

H
ou

rs

­1

­0.5

0

0.5

5 10 15 20

Pr
ic

es

­0.4

­0.2

0

0.2

5 10 15 20

FF

­0.5

0

0.5

5 10 15 20
­0.4

­0.2

0

0.2
Expansions

Baseline
Higher order terms

5 10 15 20
­0.2

­0.1

0

0.1

5 10 15 20
­1

­0.5

0

0.5

5 10 15 20
­0.4

­0.2

0

0.2

5 10 15 20
­0.5

0

0.5

1

5 10 15 20
­0.4

­0.2

0

0.2

Diff. (Higher Order terms)

5 10 15 20
­0.5

0

0.5

5 10 15 20
­0.1

0

0.1

0.2

5 10 15 20
­2

­1

0

1

5 10 15 20
­0.5

0

0.5

5 10 15 20
­0.5

0

0.5

5 10 15 20
­0.5

0

0.5

Figure A1: IVAR impulse responses: Role of higher order terms. Solid lines in
the �rst and second columns: Impulse responses and 68% con�dence bands produced
with the baseline, parsimonious IVAR. Lines with stars (�rst and second columns):
Impulse responses produced with the expanded IVAR featuring extra-interaction terms.
Densities of the di¤erences between recessions and expansions (68% bands) plotted in
the third column.
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Figure A2: Monte Carlo simulation: DSGE model vs. VAR responses to
an uncertainty shock. Calibration of the DSGE model as in Basu and Bundick
(2017). Size of the simulated sample: 50,000 observations. Uncertainty shock in the
VAR framework identi�ed by assuming a recursive structure of the economic system
with the VXO ordered �rst.
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Figure A3: DSGE-consistent processes: Volatility vs. VXO. Series produced
with the Basu and Bundick (2017) model. Simulated series: 100,000 observations,
99,000 used as a burn in. Both series are standardized to ease readibility. Correlation
coe¢ cient: 0.95.
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Figure A4: IVAR impulse responses: check with shadow rate. Solid lines in the
�rst and second columns: Impulse responses and 68% con�dence bands produced with
the baseline IVAR with the FFR on all the sample. Lines with stars (�rst and second
columns): Impulse responses produced with the IVAR featuring the Wu and Xia (2016)
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Figure A6: Evolution of the MCMC sampler over time. Grey line: MCMC
evolution for a particular parameter (60,000 draws). Black line: Expanding-window
mean of of the chain over time.
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Figure A7: Evolution of the MCMC sampler over time. Grey line: MCMC
evolution for a particular parameter (60,000 draws). Black line: Expanding-window
mean of of the chain over time.
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Figure A8: Role of structural parameters for the state-contingent IRFs pro-
duced by the DSGE model: First set of parameters.
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Figure A9: Role of structural parameters for the state-contingent IRFs pro-
duced by the DSGE model: Second set of parameters.
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Figure A10: Role of initial conditions for DSGE impulse responses: un-
conditional GIRFs versus conditional GIRFs à la Andreasen, Fernández-
Villaverde, and Rubio-Ramírez (AFVRR, 2017). Green stars: response of the
DSGE estimated on the linear VAR model with computation à la Basu and Bundick
(2017). Green diamonds: unconditional response of the DSGE for the same set of
parameters values with computation à la AFVRR (2017). Red squares: response of
the DSGE conditional on deep contractions for the same set of parameters values with
computation à la AFVRR (2017). Blue circles: response of the DSGE conditional on
strong expansions for the same set of parameters values with computation à la AFVRR
(2017).
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